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Abstract

COMPoissonReg is an R package which supports Conway-Maxwell Poisson (CMP) and Zero-Inflated
Conway-Maxwell Poisson (ZICMP) models. This vignette describes fundamental computational details,
especially those involving the normalizing constant and related quantities. The CMP normalizing constant
does not have a general closed form; furthermore, it requires care to handle numerically as its magnitude
can vary greatly with changes in the parameters. Primary COMPoissonReg functions are demonstrated
with examples, including those implementing basic distribution functions and regression modeling.
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1 Introduction

The R package COMPoissonReg supports Conway-Maxwell Poisson (CMP) and Zero-Inflated Conway-Maxwell
Poisson (ZICMP) models for analysis of count data in a flexible manner, to account for data dispersion
relative to a Poisson model. The package provides regression functionality in addition to basic distribution
functions. Interested users can refer to Sellers and Shmueli [2010] and Sellers and Raim [2016] regarding the
underlying theoretical developments for the CMP and ZICMP regressions, respectively. A full specification of
the public COMPoissonReg interface can be found in the manual. In addition to package prerequisites Rcpp

[Eddelbuettel, 2013] and numDeriv [Gilbert and Varadhan, 2019], ggplot2 [Wickham, 2016] is also used in
this vignette.

One of the challenges of working with CMP and ZICMP lies in computing the normalizing constant and
related quantities. The normalizing constant does not have a simple closed form in general and can quickly
increase or decrease magnitude as parameters are varied. COMPoissonReg takes a hybrid approach of either
truncating the infinite series or making use of an approximation, depending on parameter values.

The remainder of the vignette proceeds as follows. Section 2 describes functions to support the CMP
distribution, including numerical handling of the normalizing constant. Section 3 describes functions for ZICMP.
Finally, Section 4 demonstrates regression functions; Sections 4.1 and 4.2 give specific examples based on CMP
and ZICMP outcomes, respectively. The COMPoissonReg package is on CRAN at https://cran.r-project.org/
package=COMPoissonReg and the source code is on Github at https://github.com/lotze/COMPoissonReg.

2 Conway-Maxwell Poisson Distribution

Let Y ∼ CMP(λ, ν) be a Conway-Maxwell Poisson (CMP) random variable with density

f(y ♣ λ, ν) =
λy

(y!)νZ(λ, ν)
, y ∈ N, Z(λ, ν) =

∞∑

r=0

λr

(r!)ν
,

where λ > 0, ν > 0, and N represents the nonnegative integers ¶0, 1, 2, . . .♢. Three notable special cases of
CMP(λ, ν) help to demonstrate its flexibility in count modeling.

a. The case ν = 1 corresponds to Poisson(λ).

b. When λ ∈ (0, 1) and ν = 0, the CMP(λ, ν) distribution is Geometric(1 − λ) with density f(y ♣ λ) =
(1− λ)λy for y ∈ N, which is overdispersed relative to Poisson.

c. When ν → ∞, CMP(λ, ν) converges to a Bernoulli(λ/(1 + λ)) distribution which is underdispersed
relative to Poisson.

2.1 Normalizing Constant

The normalizing constant Z(λ, ν) presents some challenges in the practical use of CMP models and has been
a topic of interest in the CMP literature. In general, there is no simple closed form expression for the series
Z(λ, ν). Shmueli et al. [2005] give the approximation

Z(λ, ν) =
exp(νλ1/ν)

λ(ν−1)/2ν(2π)(ν−1)/2ν1/2

{
1 + O(λ−1/ν)

}
, (1)

where the O(·) term vanishes as λ−1/ν becomes small. Approximations have been further studied and refined
in subsequent literature; see for example Gillispie and Green [2015], Daly and Gaunt [2016], and Gaunt et al.
[2019]. The expression in (1) emphasizes that the magnitude of Z(λ, ν) explodes as ν → 0 when λ > 1. For
example, Z(2, 0.075) ≈ e780.515 is too large to store as a double-precision floating point number, and may
evaluate to infinity if care is not taken. In contrast, Z(λ, ν)→ 1/(1− λ) when λ < 1 and ν → 0.

In practice, the COMPoissonReg package does not place constraints on λ and ν, except to ensure that they
are positive, so that their values are driven by the data or the user’s selection. A hybrid strategy motivated
by (1) is taken by COMPoissonReg.
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To compute Z(λ, ν), suppose we are given a small tolerance δ > 0. If

λ−1/ν < δ, (2)

the first term of (1) dominates the second term, and we take

Z(λ, ν) ≈ exp(νλ1/ν)

λ(ν−1)/2ν(2π)(ν−1)/2ν1/2

= exp


νλ1/ν − ν − 1

2ν
log λ− ν − 1

2
log(2π)− 1

2
log ν


. (3)

as an approximation. Otherwise, the series is computed by truncating to a finite number of terms, which is
described next. In either case, computations are kept on the log-scale as much as possible to accommodate
numbers with potentially very large and very small magnitudes.

We approximate Z(λ, ν) by a finite summation Z(M)(λ, ν) =
∑M

r=0 λr/(r!)ν if condition (2) fails, so that the
remainder is smaller than a given tolerance. The general approach is described in Appendix B of Shmueli
et al. [2005]. Robbins [1955] gives bounds for Stirling’s approximation as

√
2πnn+1/2e−ne1/(12n+1) < n! <

√
2πnn+1/2e−ne1/(12n).

Noting that e1/(12n+1) ≥ 1 for n ≥ 1 and
√

2πe1/(12n) ≤ e for n ≥ 2, we obtain simpler bounds
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n,

which will be convenient in the following calculations.1 We may then bound the truncation error for Z(M)(λ, ν)
using

♣Z(λ, ν)− Z(M)(λ, ν)♣ = Z(λ, ν)− Z(M)(λ, ν)

=

∞∑

r=M+1

λr

(r!)ν

≤
∞∑

r=M+1

λr

(2π)ν/2rνr+ν/2e−rν

≤
∞∑

r=M+1

λr

(2π)ν/2(M + 1)νr+ν/2e−rν

= (2π)−ν/2(M + 1)−ν/2
∞∑

r=M+1


λeν

(M + 1)ν

r

(4)

= (2π)−ν/2(M + 1)−ν/2
∞∑

r=0


λeν

(M + 1)ν

r+M+1

= (2π)−ν/2(M + 1)−ν/2


λeν

(M + 1)ν

M+1
1

1− λeν

(M+1)ν

=: ∆M ,

assuming that ♣λeν/(M + 1)ν ♣ < 1 so that the geometric series in (4) converges. To ensure this convergence
we choose M at least large enough so that

λeν/(M + 1)ν < 1 ⇐⇒ M > λ1/νe− 1.

For a small given number ϵ > 0, we may consider bounding the relative error by

♣Z(λ, ν)− Z(M)(λ, ν)♣
Z(M)(λ, ν)

≤ ∆M

Z(M)(λ, ν)
< ϵ. (5)

1These bounds are also stated at https://en.wikipedia.org/wiki/Stirling/%27s_approximation, last accessed 2022-10-09.
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The second inequality of (5) can be expressed on the log-scale using

log ∆M − log Z(M)(λ, ν) < log ϵ, (6)

where

log ∆M = −ν

2
log(2π)− ν


M +

3

2


log(M + 1) + (M + 1)(ν + log λ)− log


1− λeν

(M + 1)ν


.

Therefore, we compute Z(M)(λ, ν) until at least M > λ1/νe− 1, increasing M and updating Z(M)(λ, ν) until
(6) is satisfied. This is summarized as Algorithm 1.

Algorithm 1 Compute the CMP normalizing constant using truncation approach.

Input: λ > 0 rate parameter.
Input: ν > 0 dispersion parameter.
Input: ϵ > 0 tolerance.
Input: ymax ∈ N upper limit for M

1: function Truncated-Z(λ, ν, ϵ, ymax)
2: M = 0, Z(0) = 1
3: while M ≤ λ1/νe− 1 and M ≤ ymax do

4: Z(M+1) ← Z(M) + λM /(M !)ν

5: M ←M + 1

6: while log ∆M − log Z(M) ≥ log ϵ and M ≤ ymax do

7: Z(M+1) ← Z(M) + λM /(M !)ν

8: M ←M + 1

9: return ¶Z(M), M♢

The individual terms λr/(r!)ν in the summation may be too large to store at their original scale. Therefore,
summation is carried out at the log-scale, wherever possible, using the identity

log(x + y) = log x + log(1 + exp¶log y − log x♢); (7)

this is especially helpful when 0 < y ≪ x, as log x may be kept on the log-scale by the first term of the
right-hand side of (7), and the standard library function log1p may be used to accurately compute log(1 + ϕ)
for very small ϕ > 0.

Many of the functions in the user interface of COMPoissonReg take an optional control argument, which
can be constructed as follows.

> control = get.control(

+ ymax = 100000,

+ hybrid.tol = 1e-2,

+ truncate.tol = 1e-6

+ )

The tolerances δ and ϵ are specified as hybrid.tol and truncate.tol respectively. Taking hybrid.tol

to be a very small positive number results in use of the truncated sum Z(M)(λ, ν), while hybrid.tol

= Inf uses the approximation method (3), except in extreme cases where λ−1/ν evaluates to zero or ∞
numerically. The argument ymax specifies upper limit M ; this is a safety measure which prevents very large
computations unless the user opts to allow them. When no control object is specified, a global default (via
option COMPoissonReg.control) is used.

> control = getOption("COMPoissonReg.control")

> control$ymax

[1] 1e+06

> control$hybrid.tol

[1] 0.01
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> control$truncate.tol

[1] 1e-06

The default may be replaced in your current session if desired.

> options(COMPoissonReg.control = control)

The control object contains several other useful arguments to be discussed later in the vignette.

The ncmp function computes the normalizing constant Z(λ, ν) and returns its value either on the original
scale or the log-scale.

> ncmp(lambda = 1.5, nu = 1.2)

[1] 4.01341

> ncmp(lambda = 1.5, nu = 1.2, log = TRUE)

[1] 1.389641

> ncmp(lambda = 1.5, nu = 1.2, log = TRUE, control = get.control(hybrid.tol = 1e10))

[1] 1.373642

> ncmp(lambda = 1.5, nu = 1.2, log = TRUE, control = get.control(hybrid.tol = 1e-10))

[1] 1.389641

Before proceeding, let us define a function to display errors and warnings which are intentionally triggered in
the remainder of the vignette.

> print_warning = function(x) { print(strwrap(x), quote = FALSE) }

The function tcmp returns the truncation value M obtained from Algorithm 1.

> nu_seq = c(1, 0.5, 0.2, 0.1, 0.05, 0.03)

> tryCatch({ tcmp(lambda = 1.5, nu = nu_seq) }, warning = print_warning)

[1] simpleWarning in y_trunc(prep$lambda, prep$nu, tol = truncate.tol, ymax

[2] = ymax): Terms of normalizing constant CMP(1.5, 0.03) could not be

[3] bounded by a geometric series when y <= 1e+06. Consider adjusting the

[4] controls ymax, hybrid.tol, and truncate.tol

Note that tcmp returns 1e6 and produces a warning for the smallest nu value 0.03 because Algorithm 1 has
reached ymax = 1e6 before the series could be bounded by a geometric series. Here, it is likely that support
values with non-negligible mass are being left out. Let us increase ymax to avoid this problem.

> tcmp(lambda = 1.5, nu = nu_seq, control = get.control(ymax = 3e6))

[1] 11 20 56 219 9039 2013739

It is also possible to reach the second loop of Algorithm 1 where the geometric series can be used, but ymax

is not large enough to satisfy (6). Here is an example where this occurs.

> tcmp(lambda = 1.2, nu = 0.03, control = get.control(ymax = 1200))

Warning in y_trunc(prep$lambda, prep$nu, tol = truncate.tol, ymax = ymax):

Absolute relative error 1.13902e-05 was larger than tolerance 1e-06 with

CMP(1.2, 0.03) truncated to 1200. Consider adjusting the controls ymax,

hybrid.tol, and truncate.tol

[1] 1200

Now that we have a somewhat robust computation for the normalizing constant, let us create a plot of the
interesting behavior when λ > 1 and ν is decreasing.

library(ggplot2)

nu_seq = seq(0.03, 1.5, length.out = 20)

nc1 = ncmp(lambda = 0.5, nu = nu_seq, log = TRUE)
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nc2 = ncmp(lambda = 1.05, nu = nu_seq, log = TRUE)

nc3 = ncmp(lambda = 1.20, nu = nu_seq, log = TRUE)

ggplot() +

geom_point(data = data.frame(x = nu_seq, y = nc1), aes(x = x, y = y), pch = 1) +

geom_point(data = data.frame(x = nu_seq, y = nc2), aes(x = x, y = y), pch = 2) +

geom_point(data = data.frame(x = nu_seq, y = nc3), aes(x = x, y = y), pch = 3) +

xlab("nu") +

ylab("log of normalizing constant") +

theme_bw()
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Figure 1: Log of normalizing constant for λ = 0.5 (◦), λ = 1.05 (∆), and λ = 1.20 (+).

We see that with λ = 1.2 a value of Z(λ, 0.03) ≈ e18.67 is obtained, which is an extremely large jump from
the next value in the series Z(λ, 0.1074) ≈ e3.2.

2.2 Density, Generation, CDF, and Quantile Functions

The respective functions for CMP density, variate generation, CDF, and quantile functions are dcmp, rcmp,
pcmp , and qcmp. Their usage is similar to distribution functions provided by the R stats package.

> dcmp(0, lambda = 10, nu = 0.9)

[1] 6.819476e-06

> dcmp(0:17, lambda = 10, nu = 0.9, log = TRUE)

[1] -11.895728 -9.593143 -7.914390 -6.600556 -5.545636 -4.691545

[7] -4.001543 -3.450278 -3.019190 -2.694107 -2.463848 -2.319369

[13] -2.253200 -2.259069 -2.331636 -2.466296 -2.659041 -2.906347

> dcmp(c(0, 1, 2), lambda = c(10, 11, 12), nu = c(0.9, 1.0, 1.1), log = TRUE)

[1] -11.895728 -8.602105 -6.071951

> rcmp(50, lambda = 10, nu = 0.9)

[1] 10 13 8 18 17 12 13 15 13 10 20 13 13 14 15 5 18 14 14 17 9 20 17 10 10

[26] 16 11 13 10 12 14 12 15 14 11 14 10 11 14 8 13 18 6 13 18 18 11 13 15 9

> pcmp(0:17, lambda = 10, nu = 0.9)

[1] 6.819476e-06 7.501423e-05 4.404609e-04 1.800073e-03 5.704532e-03

6



[6] 1.487703e-02 3.316443e-02 6.490125e-02 1.137420e-01 1.813448e-01

[11] 2.664516e-01 3.647872e-01 4.698497e-01 5.742973e-01 6.714341e-01

[16] 7.563328e-01 8.263482e-01 8.810232e-01

> qq = seq(0, 0.95, length.out = 10)

> qcmp(qq, lambda = 10, nu = 0.9)

[1] 0 8 10 11 12 13 14 15 17 19

The CMP distribution functions compute the normalizing constant via Section 2.1. The density dcmp uses the
hybrid method, while rcmp, pcmp, and qcmp use the truncation method regardless of condition (2). Variate
generation, CDF, and quantiles are then computed on CMP as if it were a discrete distribution on the sample
space ¶0, . . . , M♢. As with tcmp and ncmp, a warning is emitted in cases where they may not produce reliable
results.

> tryCatch({ rcmp(1, lambda = 2, nu = 0.01) }, warning = print_warning)

[1] simpleWarning in r_cmp(n, prep$lambda, prep$nu, hybrid.tol,

[2] truncate.tol, ymax): Terms of normalizing constant CMP(2, 0.01) could

[3] not be bounded by a geometric series when y <= 1e+06. Consider

[4] adjusting the controls ymax, hybrid.tol, and truncate.tol

The truncation method for qcmp can result in unreliable quantiles when the requested probability is very close
to 1. For example, the actual quantile for probability 1 is ∞, which can be expressed with no computation,
but the computed quantity will be the truncation value M . More generally, (5) implies that

Z(λ, ν)− Z(M)(λ, ν)

Z(λ, ν)
< ϵ ⇐⇒ P(Y > M) < ϵ

⇐⇒ 1− F (M ♣ λ, ν) < ϵ

⇐⇒ F −(1− ϵ ♣ λ, ν) < M. (8)

Therefore, it is possible that quantiles larger than 1− ϵ may be inaccurately computed with the truncated
support. COMPoissonReg gives a warning when these are requested.

> tryCatch({

+ qcmp(0.9999999, lambda = 1.5, nu = 0.5)

+ }, warning = print_warning)

[1] simpleWarning in qcmp(0.9999999, lambda = 1.5, nu = 0.5): At least one

[2] requested quantile was very close to 1. In particular, 1 of the given

[3] probabilities were greater than 1 - truncate_tol = exp(-1e-06), where

[4] truncate_tol = 1e-06. Associated results may be affected by truncation.

[5] Consider adjusting the controls ymax and truncate.tol or reducing logq.

As a sanity check, let us ensure that the empirical density values, cumulative probabilities, and quantiles of
draws from rcmp align with respective results computed via dcmp, pcmp, and qcmp.

library(ggplot2)

n = 100000

lambda = 0.5

nu = 0.1

x = rcmp(n, lambda, nu)

xx = seq(-1, max(x)) ## Include -1 to ensure it gets probability zero

qq = seq(0, 0.99, length.out = 100)

fx = dcmp(xx, lambda, nu)

px = pcmp(xx, lambda, nu)
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qx = qcmp(qq, lambda, nu)

qx_emp = quantile(x, probs = qq)

ggplot() +

geom_bar(data = data.frame(x = x), aes(x = x, y = ..prop..), fill = "NA",

col = "black") +

geom_point(data = data.frame(x = xx[-1], fx = fx[-1]), aes(x, fx)) +

ylab("Density") +

theme_bw()

Warning: The dot-dot notation (`..prop..`) was deprecated in ggplot2 3.4.0.

i Please use `after_stat(prop)` instead.
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Figure 2: Empirical density of draws (histogram) versus density computed via the dcmp function (points).

ggplot() +

stat_ecdf(data = data.frame(x = x), aes(x), geom = "step") +

geom_point(data = data.frame(x = xx, px = px), aes(x, px)) +

ylab("Probability") +

theme_bw()

ggplot() +

geom_point(data = data.frame(x = qq, qx_emp = qx_emp), aes(qq, qx_emp), pch = 1) +

geom_point(data = data.frame(x = qq, qx = qx), aes(qq, qx), pch = 3) +

xlab("Probability") +

ylab("Quantile") +

theme_bw()

2.3 Expected Value and Variance

For Y ∼ CMP(λ, ν), we can consider computing the expectation and variance of Y in two ways. First, if
there is a moderately-sized M where ¶0, . . . , M♢ contains all but a negligible amount of the mass of Y , we

8



0.00

0.25

0.50

0.75

1.00

0 4 8 12

x

P
ro

b
a

b
ili

ty

Figure 3: Empirical CDF of draws (solid line) versus CDF computed via the pcmp function (points).
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Figure 4: Empirical quantiles of draws (o) versus quantiles computed via the qcmp function (+).
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can compute the moments using truncated summations

E(Y ) =

M∑

y=0

y
λy

(y!)νZ(λ, ν)
, E(Y 2) =

M∑

y=0

y2 λy

(y!)νZ(λ, ν)
, Var(Y ) = E(Y 2)− [E(Y )]2.

Otherwise, a different approach is taken. Notice that the expected value is related to the first derivative of
the log-normalizing constant via

∂

∂λ
log Z(λ, ν) =

∂
∂λ Z(λ, ν)

Z(λ, ν)
=

1

Z(λ, ν)

∞∑

y=0

y
λy−1

(y!)ν

⇐⇒ E(Y ) = λ
∂

∂λ
log Z(λ, ν).

For the second derivative,

∂2

∂λ2
log Z(λ, ν) =

Z(λ, ν) ∂2

∂λ2 Z(λ, ν)− [ ∂
∂λ Z(λ, ν)]2

Z(λ, ν)2
=

1

Z(λ, ν)

∞∑

y=0

y(y − 1)
λy−2

(y!)ν
−


E(Y )

λ

2

⇐⇒ λ2 ∂2

∂λ2
log Z(λ, ν) = E[Y (Y − 1)]− [E(Y )]2 = Var(Y )− E(Y )

⇐⇒ Var(Y ) = λ2 ∂2

∂λ2
log Z(λ, ν) + E(Y ).

Therefore, we may use first and second derivatives of log Z(λ, ν), taken with respect to λ, to compute E(Y )
and Var(Y ). The ecmp and vcmp functions implement this computation of the expectation and variance,
respectively. The control object is used to determine whether to use the truncation or differentiation approach.
Condition (2) is used to determine whether to use the truncation approach (if false) or differentiation approach
(if true).

> ecmp(lambda = 10, nu = 1.2)

[1] 6.727397

> ecmp(lambda = 1.5, nu = 0.5)

[1] 2.815447

> ecmp(lambda = 1.5, nu = 0.05)

[1] 3334.757

> ecmp(lambda = 1.5, nu = 0.05, control = get.control(hybrid.tol = 1e-10))

[1] 3334.762

> ecmp(lambda = 1.5, nu = 0.05, control = get.control(hybrid.tol = 1e10))

[1] 3334.757

> vcmp(lambda = 10, nu = 1.2)

[1] 5.679667

> vcmp(lambda = 1.5, nu = 0.5)

[1] 4.513041

> vcmp(lambda = 1.5, nu = 0.05)

[1] 66505.13

> vcmp(lambda = 1.5, nu = 0.05, control = get.control(hybrid.tol = 1e-10))

[1] 66505.03

> vcmp(lambda = 1.5, nu = 0.05, control = get.control(hybrid.tol = 1e10))

[1] 66505.13

Provided that an enormously large truncation value M is not required, we may compute other moments by
truncated sums using tcmp.

> M = tcmp(lambda = 1.5, nu = 0.05)

> print(M)
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[1] 9039

> xx = seq(0, M)

> sum(xxˆ3 * dcmp(xx, lambda, nu)) # E(Xˆ3)

[1] 7.794469

> sum(xxˆ4 * dcmp(xx, lambda, nu)) # E(Xˆ4)

[1] 35.92968

3 Zero-Inflated Conway-Maxwell Poisson Distribution

Let S ∼ Bernoulli(p) and T ∼ CMP(λ, ν) be independent random variables. Then Y = (1− S)T follows a
Zero-Inflated Conway-Maxwell Poisson distribution ZICMP(λ, ν, p) with density

f(y ♣ λ, ν, p) = (1− p)
λy

(y!)νZ(λ, ν)
+ p · I(y = 0), y ∈ N.

Like CMP, several interesting special cases are obtained.

a. Taking ν = 1 corresponds to Zero-Inflated Poisson ZIP(λ, p) with density f(y ♣ λ, p) = (1−p)e−λλy/y!+
p · I(y = 0).

b. When λ ∈ (0, 1) and ν → 0, ZICMP(λ, ν) converges to a Zero-Inflated Geometric distribution with
density f(y ♣ λ, p) = (1− p)(1− λ)λy + p · I(y = 0) for y ∈ N.

c. When ν → ∞, ZICMP(λ, ν, p) converges to a “Zero-Inflated Bernoulli” distribution with density

f(y ♣ λ, p) = (1 − p) [λ/(1 + λ)]
y

[1/(1 + λ)]
1−y

+ p · I(y = 0). which remains a Bernoulli distribution
with an adjusted success probability. Here the λ and p parameters are not individually identifiable.
Therefore, users may want to avoid zero-inflation in CMP data analyses with extreme underdispersion.

d. Finally, p = 0 yields CMP(λ, ν).

3.1 Density, Generation, CDF, and Quantile Functions

There is a close relationship between the CMP and ZICMP distributions, as we have seen from construction of
ZICMP. The relationship between the CMP densities and variate generation mechanisms was given earlier in
this section. Denote F (x ♣ λ, ν) and F (x ♣ λ, ν, p) as the CDFs of CMP(λ, ν) and ZICMP(λ, ν, p), respectively.
We have

F (x ♣ λ, ν, p) = (1− p)F (x ♣ λ, ν) + p · I(x ≥ 0).

For a given probability ϕ ∈ [0, 1], the associated CMP and ZICMP quantile functions are related via

F −(ϕ ♣ λ, ν, p) = inf¶x ∈ N : F (x ♣ λ, ν, p) ≥ ϕ♢
= inf¶x ∈ N : (1− p)F (x ♣ λ, ν) + p · I(x ≥ 0) ≥ ϕ♢
= inf¶x ∈ N : F (x ♣ λ, ν) ≥ (ϕ− p)/(1− p)♢

= F −


ϕ− p

1− p
♣ λ, ν


. (9)

The respective functions for ZICMP density, variate generation, CDF, and quantile functions are dzicmp,
rzicmp, pzicmp , and qzicmp. They make use of the CMP implementation described in Section 2 such as
the criteria to either truncate or approximate the normalizing constant.

> qq = seq(0, 0.95, length.out = 20)

> rzicmp(20, lambda = 1.5, nu = 0.2, p = 0.25)

[1] 10 17 14 8 0 11 0 19 12 16 8 0 10 0 0 12 8 10 12 0

> dzicmp(c(0, 1, 2), lambda = 1.5, nu = 0.2, p = 0.25)
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[1] 0.26630689 0.02446034 0.03194095

> pzicmp(c(0, 1, 2), lambda = 1.5, nu = 0.2, p = 0.25)

[1] 0.2663069 0.2907672 0.3227082

> qzicmp(qq, lambda = 1.5, nu = 0.2, p = 0.25)

[1] 0 0 0 0 0 0 2 3 4 5 6 7 8 9 11 12 13 15 17 20

As with qcmp, the qzicmp function is computed by the truncation method, and cannot accurately compute
quantiles very close to 1. More specifically, from the CMP distribution, (8) gives

M > F −(1− ϵ ♣ λ, ν)

= F −


ϕϵ − p

1− p
♣ λ, ν



= F − (ϕϵ ♣ λ, ν, p)

where ϕϵ = (1− ϵ)(1− p) + p and the last equality uses (9). This motivates a warning from qzicmp when the
argument is larger than ϕϵ.

> tryCatch({

+ qzicmp(0.9999999, lambda = 1.5, nu = 0.5, p = 0.5)

+ }, warning = print_warning)

[1] simpleWarning in qzicmp(0.9999999, lambda = 1.5, nu = 0.5, p = 0.5): At

[2] least one requested quantile was very close to 1. In particular, 1 of

[3] the given probabilities were greater than (1 - truncate.tol) * (1-p) +

[4] p, where truncate_tol = 1e-06. Associated results may be affected by

[5] truncation. Consider adjusting the controls ymax and truncate.tol or

[6] reducing logq.

Let us repeat the sanity check from Section 2.2 to ensure that the empirical density values, cumulative
probabilities, and quantiles line up with the ones computed via dzicmp, pzicmp, and qzicmp.

library(ggplot2)

n = 100000

lambda = 0.5

nu = 0.1

p = 0.5

x = rzicmp(n, lambda, nu, p)

xx = seq(-1, max(x)) ## Include -1 to ensure it gets probability zero

qq = seq(0, 0.99, length.out = 100)

fx = dzicmp(xx, lambda, nu, p)

px = pzicmp(xx, lambda, nu, p)

qx = qzicmp(qq, lambda, nu, p)

qx_emp = quantile(x, probs = qq)

ggplot() +

geom_bar(data = data.frame(x = x), aes(x = x, y = ..prop..), fill = "NA",

col = "black") +

geom_point(data = data.frame(x = xx[-1], fx = fx[-1]), aes(x, fx)) +

ylab("Density") +

theme_bw()
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Figure 5: Empirical density of draws (histogram) versus density computed via the dzicmp function (points).

ggplot() +

stat_ecdf(data = data.frame(x = x), aes(x), geom = "step") +

geom_point(data = data.frame(x = xx, px = px), aes(x, px)) +

ylab("Probability") +

theme_bw()
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Figure 6: Empirical CDF of draws (solid line) versus CDF computed via the pzicmp function (points).

ggplot() +

geom_point(data = data.frame(x = qq, qx_emp = qx_emp), aes(qq, qx_emp), pch = 1) +

geom_point(data = data.frame(x = qq, qx = qx), aes(qq, qx), pch = 3) +

xlab("Probability") +

ylab("Quantile") +

theme_bw()
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Figure 7: Empirical quantiles of draws (o) versus quantiles computed via the qzicmp function (+).

3.2 Expectation and Variance

The expected value and variance of Y ∼ ZICMP(λ, ν, p) are apparent from the construction Y = (1− S)T
given earlier in this section. Namely,

E(Y ) = (1− p) E(T ) and Var(Y ) = (1− p)
{

Var(T ) + p[E(T )]2
}

may be obtained using formulas for iterated conditional expectations and variances. They are evaluated in
COMPoissonReg using the ezicmp and vzicmp functions respectively. These functions make use of the ecmp

and vcmp functions described in Section 2.3 to compute E(T ) and Var(T ).

> ezicmp(lambda = 1.5, nu = 0.5, p = 0.1)

[1] 2.533903

> ezicmp(lambda = 1.5, nu = 0.5, p = c(0.1, 0.2, 0.5))

[1] 2.533903 2.252358 1.407724

> vzicmp(lambda = 1.5, nu = 0.5, p = 0.1)

[1] 4.775144

> vzicmp(lambda = 1.5, nu = 0.5, p = c(0.1, 0.2, 0.5))

[1] 4.775144 4.878712 4.238206

4 Regression Modeling with CMP and ZICMP

Suppose there are n subjects with outcomes y1, . . . , yn ∈ N and covariates xi ∈ R
d1 , si ∈ R

d2 , and wi ∈ R
d3

for i = 1, . . . , n. The COMPoissonReg package fits both CMP and ZICMP regression models.

The CMP regression model assumes that

Yi
ind∼ CMP(λi, νi), i = 1, . . . , n,

where log λi = x⊤

i β and log νi = s⊤

i γ. Writing θ = (β, γ), the likelihood is

L(θ) =
n∏

i=1


λyi

i

(yi!)νiZ(λi, νi)


. (10)
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The ZICMP regression model assumes that

Yi
ind∼ ZICMP(λi, νi, pi), i = 1, . . . , n,

where log λi = x⊤

i β, log νi = s⊤

i γ, and logit pi = w⊤

i ζ. Writing θ = (β, γ, ζ), the likelihood is

L(θ) =

n∏

i=1


(1− pi)

λyi

i

(yi!)νiZ(λi, νi)
+ pi I(yi = 0)


. (11)

We will write d = d1 + d2 + d3 for the total dimension of θ. The n× d1 design matrix whose rows consist of
xi will be denoted X. Similarly, we will write S and W as the n× d2 and n× d3 design matrices constructed
from si and wi, respectively. The glm.cmp function provides a formula interface to fit models of both types:
(10) and (11).

out = glm.cmp(formula.lambda, formula.nu = ~ 1, formula.p = NULL,

data = NULL, init = NULL, fixed = NULL, control = NULL, ...)

The interface contains three formulas: formula.lambda specifies the regression x⊤

i β used for λi, while
formula.nu and formula.p correspond to s⊤

i γ for νi and w⊤

i ζ for pi, respectively. ZICMP regression is
utilized when formula.p is set to something other than its default NULL value; otherwise, CMP regression is
assumed. The data argument is used to pass a data.frame explicitly rather than having the data be read
from the local environment. The init, fixed, and control arguments and associated helper functions are
described below.

The init argument represents an initial value for the optimizer. The following functions can be used to
construct it.

> get.init(beta = c(1, 2, 3), gamma = c(-1, 1), zeta = c(-2, -1))

$beta

[1] 1 2 3

$gamma

[1] -1 1

$zeta

[1] -2 -1

attr(,"class")

[1] "COMPoissonReg.init"

> get.init.zero(d1 = 3, d2 = 2, d3 = 2)

$beta

[1] 0 0 0

$gamma

[1] 0 0

$zeta

[1] 0 0

attr(,"class")

[1] "COMPoissonReg.init"

The fixed argument is used to specify indices of the three coefficients which will remain fixed at their initial
value during optimization.
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> get.fixed(beta = c(1L, 2L), gamma = c(1L))

$beta

[1] 1 2

$gamma

[1] 1

$zeta

integer(0)

attr(,"class")

[1] "COMPoissonReg.fixed"

The specification above requests the first two elements of beta and the first element of gamma to be fixed.
Notice that indices must be integers and that the default value is an empty integer vector which is interpreted
as “no elements are fixed”. The fixed argument can usually be disregarded but may be useful in some
circumstances; an example is given in Section 4.2.

Specifying the elements of init and fixed may be somewhat awkward with the formula interface, as they
require knowledge of how formulas will be expanded into design matrices and coefficients. It can be helpful
to produce the design matrices using R’s model.matrix function.

> model.matrix(formula.lambda, data = data)

> model.matrix(formula.nu, data = data)

> model.matrix(formula.p, data = data)

The control argument has been introduced in Section 2; regression modeling makes use of several additional
arguments. COMPoissonReg uses optim to compute the maximum likelihood estimate (MLE) θ̂ for θ under
the specified model. Several controls are provided to influence how COMPoissonReg invokes optim; here are
their default values.

> control = getOption("COMPoissonReg.control")

> control$optim.method

[1] "L-BFGS-B"

> control$optim.control

$maxit

[1] 150

The element optim.method is a string which is passed as the method argument to optim, while optim.control

is a list passed as the control argument of optim. Note that, for the latter, if an entry is given for fnscale,
it will be ignored and overwritten internally by COMPoissonReg.

The covariance of θ̂ is estimated by V̂ (θ̂) = −[H(θ̂)]−1, where H(θ) = ∂2 log L(θ)/[∂θ∂θ⊤] is the Hessian
of the log-likelihood computed by optim. The standard error for coefficient θj in θ is then obtained as the

square root of the jth diagonal of V̂ (θ̂).

We will now illustrate use of the regression tools using two examples whose data are included in the package.
Note that these demonstrations are not intended to be complete regression analyses, and results may be
slightly different than previously published analyses due to differences in the computations.

4.1 CMP Regression

4.1.1 Freight Dataset

The freight dataset [Kutner et al., 2003] was analyzed using CMP regression by Sellers and Shmueli
[2010] and found to exhibit underdispersion. The data describe n = 10 instances where 1,000 ampules were
transported via air shipment. The outcome of interest is the variable broken which describes the number of
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broken ampules in each shipment. The covariate transfers describes the number of times the carton was
transferred from one aircraft to another during the shipment.

Let us load and view the dataset.

> data(freight)

> print(freight)

broken transfers

1 16 1

2 9 0

3 17 2

4 12 0

5 22 3

6 13 1

7 8 0

8 15 1

9 19 2

10 11 0

Before fitting a CMP regression, let us fit a Poisson regression model Yi
ind∼ Poisson(λi) with

log λi = β0 + β1 · transfersi.

This can be carried out with the standard glm function.

> glm.out = glm(broken ~ transfers, data = freight, family = poisson)

> summary(glm.out)

Call:

glm(formula = broken ~ transfers, family = poisson, data = freight)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.81053 -0.23893 -0.02029 0.32991 0.60742

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.35295 0.13174 17.86 < 2e-16 ***

transfers 0.26384 0.07924 3.33 0.000869 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12.5687 on 9 degrees of freedom

Residual deviance: 1.8132 on 8 degrees of freedom

AIC: 50.395

Number of Fisher Scoring iterations: 4

4.1.2 CMP Regression

Next, let us fit a similar CMP regression model with

log λi = β0 + β1 · transfersi,

log νi = γ0,
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using only an intercept for νi.

> cmp.out = glm.cmp(broken ~ transfers, data = freight)

> print(cmp.out)

CMP coefficients

Estimate SE z-value p-value

X:(Intercept) 13.8286 6.2405 2.2159 0.0267

X:transfers 1.4843 0.6892 2.1537 0.03127

S:(Intercept) 1.7550 0.4493 3.9065 9.365e-05

--

Transformed intercept-only parameters

Estimate SE

nu 5.7835 2.5982

--

Chi-squared test for equidispersion

Xˆ2 = 9.1048, df = 1, p-value = 2.5494e-03

--

Elapsed: 0.06 sec Sample size: 10 formula interface

LogLik: -18.6449 AIC: 43.2898 BIC: 44.1975

Optimization Method: L-BFGS-B Converged status: 0

Message: CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

The coefficients used in the λi formula are prefixed with an X: label, while an S: label is used for coefficients
of the νi formula. Notice that estimates for X: coefficients from the CMP fit are dissimilar to those from the
Poisson fit; this may occur when the estimate of ν deviates from the value of 1. Similarly to the glm output,
the output of glm.cmp displays several quantities for each coefficient θj , j = 1, . . . , d: a point estimate θ̂j , an

associated standard error ŜE(θ̂j), a z-value zj = θ̂j/ŜE(θ̂j), and a p-value 2Φ(−♣zj ♣) for the test H0 : θj = 0
versus H1 : θj ≠ 0. Here, Φ is the CDF of the standard normal distribution. Because an intercept-only
formula was specified for νi, ν̂ = exp(γ̂) does not vary with i and its estimate and associated standard error
are added to the display. Here we see evidence of underdispersion with ν̂ > 1. A test for equidispersion
is displayed to determine whether there is a significant amount of over or underdispersion in the data. In
particular, a likelihood ratio test is used to decide whether H0 : γ = 0 versus H0 : γ ≠ 0. The test statistic is
displayed along with the degrees of freedom and associated p-value. Here we have fairly strong evidence to
reject the null hypothesis of equidispersion.

The AIC for the CMP model cmp.out shows some improvement over that of glm.out. Let us also consider a
slope coefficient for the ν component using

log νi = γ0 + γ1 · transfersi.

via the following call to glm.cmp.

> cmp2.out = glm.cmp(broken ~ transfers, formula.nu = ~ transfers, data = freight)

> print(cmp2.out)

CMP coefficients

Estimate SE z-value p-value

X:(Intercept) 15.5959 7.1087 2.1939 0.02824

X:transfers 4.6322 2.3978 1.9319 0.05338

S:(Intercept) 1.8935 0.4525 4.1846 2.857e-05

S:transfers 0.1206 0.0505 2.3883 0.01693

--

Chi-squared test for equidispersion

Xˆ2 = 11.6991, df = 2, p-value = 2.8812e-03

--

Elapsed: 0.08 sec Sample size: 10 formula interface

LogLik: -17.3477 AIC: 42.6954 BIC: 43.9058
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Optimization Method: L-BFGS-B Converged status: 0

Message: CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

Model cmp2.out provides a slight improvement over cmp.out in AIC and BIC, but we may prefer cmp.out

in the interest of simplicity.

4.1.3 Adjustments to Optim

To gain some insight into the optimization, we may wish to increase the trace level, which can be done as
follows.

> control = get.control(optim.control = list(maxit = 5, trace = 3, REPORT = 1))

> cmp3.out = glm.cmp(broken ~ transfers, data = freight, control = control)

N = 3, M = 5 machine precision = 2.22045e-16

This problem is unconstrained.

At X0, 0 variables are exactly at the bounds

At iterate 0 f= 273.34 |proj g|= 260.29

At iterate 1 f = 49.923 |proj g|= 113

At iterate 2 f = 46.155 |proj g|= 44.594

At iterate 3 f = 29.883 |proj g|= 22.868

At iterate 4 f = 27.657 |proj g|= 2.6174

At iterate 5 f = 27.599 |proj g|= 4.443

At iterate 6 f = 27.359 |proj g|= 7.3357

final value 27.359209

stopped after 6 iterations

N = 2, M = 5 machine precision = 2.22045e-16

This problem is unconstrained.

At X0, 0 variables are exactly at the bounds

At iterate 0 f= 148.87 |proj g|= 152.94

At iterate 1 f = 57.259 |proj g|= 146.63

At iterate 2 f = 53.033 |proj g|= 67.913

At iterate 3 f = 42.039 |proj g|= 42.645

At iterate 4 f = 36.942 |proj g|= 38.126

At iterate 5 f = 32.584 |proj g|= 43.852

At iterate 6 f = 24.06 |proj g|= 17.695

final value 24.060495

stopped after 6 iterations

Data from the local environment may be passed to the glm.cmp function without explicitly using the data

argument.

> y = freight$broken

> x = freight$transfers

> glm.cmp(y ~ x)

4.1.4 Offset Term

In a count regression model, it may be desirable to include offset terms such as

log λi = x⊤

i β + offxi, log νi = s⊤

i β + offsi.

An offset term may be used in the formula interface to accomplish this.

> freight$offx = 13

> freight$offs = 1

> glm.cmp(broken ~ transfers + offset(offx), data = freight)

> glm.cmp(broken ~ transfers + offset(offx), formula.nu = ~1 + offset(offs), data = freight)
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For users who wish to bypass the formula interface and prepare the X and S design matrices manually, a
“raw” interface to the regression functionality is also provided.

> y = freight$broken

> X = model.matrix(~ transfers, data = freight)

> S = model.matrix(~ 1, data = freight)

> offs = get.offset(x = rep(13, nrow(freight)), s = rep(1, nrow(freight)))

> cmp.raw.out = glm.cmp.raw(y, X, S, offset = offs)

4.1.5 Accessor Functions

Several accessors are provided to extract results from the output object.

> logLik(cmp.out) ## Log-likelihood evaluated at MLE.

[1] -18.64489

> AIC(cmp.out) ## AIC evaluated at MLE.

[1] 43.28978

> BIC(cmp.out) ## BIC evaluated at MLE.

[1] 44.19754

> coef(cmp.out) ## Estimates of theta as a flat vector

X:(Intercept) X:transfers S:(Intercept)

13.828561 1.484303 1.755002

> coef(cmp.out, type = "list") ## Estimates of theta as a named list

$beta

X:(Intercept) X:transfers

13.828561 1.484303

$gamma

S:(Intercept)

1.755002

> vcov(cmp.out) ## Estimated covariance matrix of theta hat

X:(Intercept) X:transfers S:(Intercept)

X:(Intercept) 38.944034 4.0877545 2.8000943

X:transfers 4.087754 0.4749988 0.2978880

S:(Intercept) 2.800094 0.2978880 0.2018301

> sdev(cmp.out) ## Standard deviations from vcov(...) diagonals

X:(Intercept) X:transfers S:(Intercept)

6.2405155 0.6892016 0.4492551

> sdev(cmp.out, type = "list") ## Standard deviations as a named list

$beta

[1] 6.2405155 0.6892016

$gamma

[1] 0.4492551

The predict function computes several useful quantities evaluated at the estimate θ̂. The argument default
type = "response" produces a vector of estimates of the response ŷi = E(Yi) for i = 1, . . . , n using the
method described in Section 2.3. The argument type = "link" produces a data.frame with columns for
the linked parameters λi and νi.

> predict(cmp.out)

[1] 13.70507 10.50769 17.83752 10.50769 23.17871 13.70507 10.50769 13.70507

[9] 17.83752 10.50769

> predict(cmp.out, type = "link")

lambda nu

1 4469845 5.78346
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2 1013136 5.78346

3 19720454 5.78346

4 1013136 5.78346

5 87004438 5.78346

6 4469845 5.78346

7 1013136 5.78346

8 4469845 5.78346

9 19720454 5.78346

10 1013136 5.78346

Note that the estimated nu values are equal for all observations because the model assumed only an intercept
term for the dispersion component.

We can also use predict on new covariate values. Note that models fit with the formula interface expect the
new data to be provided as a data.frame which is interpreted using the formula used to fit the model. If the
raw interface was used to fit the model, use the get.modelmatrix function to specify design matrices to use
for prediction.

# Prepare new data to fit by formula interface

new.df = data.frame(transfers = 0:10)

# Prepare new data to fit by raw interface

X = model.matrix(~ transfers, data = new.df)

S = model.matrix(~ 1, data = new.df)

new.data = get.modelmatrix(X = X, S = S)

# Pass new data to model from by formula interface

y.hat.new = predict(cmp.out, newdata = new.df)

# Pass new data to model from by raw interface

y.hat.new = predict(cmp.raw.out, newdata = new.data)

# Compute predictions for links

predict.out = predict(cmp.out, newdata = new.df, type = "link")

# Plot predictions

ggplot() +

geom_point(data = new.df, aes(transfers, y.hat.new)) +

xlab("Number of transfers") +

ylab("Predicted number broken") +

theme_bw()
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> print(y.hat.new)

[1] 1.176542 2.690927 5.694026 11.715378 23.807032 48.096062

[7] 96.889869 194.912671 391.832565 787.430083 1582.156271

> print(predict.out)

lambda nu

1 1.013136e+06 5.78346

2 4.469845e+06 5.78346

3 1.972045e+07 5.78346

4 8.700444e+07 5.78346

5 3.838538e+08 5.78346

6 1.693520e+09 5.78346

7 7.471622e+09 5.78346

8 3.296396e+10 5.78346

9 1.454333e+11 5.78346

10 6.416355e+11 5.78346

11 2.830824e+12 5.78346

The leverage function computes the diagonal entries of a “hat” matrix which can be formulated in CMP
regression. These can be used to diagnose influential observations. For details, see Section 3.6 of Sellers and
Shmueli [2010].

> leverage(cmp.out)

[1] 0.1541752 0.1943925 0.2733327 0.2259140 0.6002368 0.3795226 0.2379250

[8] 0.1117655 0.3653074 0.4574283

The residuals function provides either raw (the default) or quantile-based residuals [Dunn and Smyth, 1996].
In a CMP regression setting, raw residuals yi − ŷi generally do not work well with traditional regression
diagnostics, such as Q-Q plots. Quantile-based residuals often produce interpretable diagnostics; however,
a random element is used in the computation of quantile residuals for discrete distributions. This aids
interpretability but gives slightly different residual values each time they are computed. See Dunn and Smyth
[1996] for details.

> res.raw = residuals(cmp.out)

> res.qtl = residuals(cmp.out, type = "quantile")

Pearson residuals may be preferred over raw residuals for diagnostics; these can be obtained by standardizing
raw residuals using leverage values and variance estimates.

22



> link.hat = predict(cmp.out, type = "link")

> vv = vcmp(link.hat$lambda, link.hat$nu)

> hh = leverage(cmp.out)

> res.pearson = res.raw / sqrt(vv*(1-hh))

For each type of residual—raw, Pearson, and quantile—we now plot fitted values versus residuals and Q-Q
plots.

plot.fit.res = function(y.hat, res) {

ggplot(data.frame(y = y.hat, res = res)) +

geom_point(aes(y, res)) +

xlab("Fitted Value") +

ylab("Residual Value") +

theme_bw() +

theme(plot.title = element_text(size = 10))

}

plot.qq.res = function(res) {

ggplot(data.frame(res = res), aes(sample = res)) +

stat_qq() +

stat_qq_line() +

theme_bw() +

theme(plot.title = element_text(size = 10))

}

y.hat = predict(cmp.out)

plot.fit.res(y.hat, res.raw) +

ggtitle("Fitted Values vs. Raw Residuals")

plot.qq.res(res.raw) +

ggtitle("Q-Q Plot of Raw Residuals")

plot.fit.res(y.hat, res.pearson) +

ggtitle("Fitted Values vs. Pearson Residuals")

plot.qq.res(res.pearson) +

ggtitle("Q-Q Plot of Pearson Residuals")

plot.fit.res(y.hat, res.qtl) +

ggtitle("Fitted Values vs. Quantile Residuals")

plot.qq.res(res.qtl) +

ggtitle("Q-Q Plot of Quantile Residuals")

23



−2

−1

0

1

2

10 15 20

Fitted Value

R
e

s
id

u
a

l 
V

a
lu

e

Fitted Values vs. Raw Residuals

−2

−1

0

1

2

3

−1 0 1

x

y

Q−Q Plot of Raw Residuals

−2

−1

0

1

10 15 20

Fitted Value

R
e

s
id

u
a

l 
V

a
lu

e

Fitted Values vs. Pearson Residuals

−2

−1

0

1

2

−1 0 1

x

y

Q−Q Plot of Pearson Residuals

−2

−1

0

1

10 15 20

Fitted Value

R
e

s
id

u
a

l 
V

a
lu

e

Fitted Values vs. Quantile Residuals

−2

−1

0

1

−1 0 1

x

y

Q−Q Plot of Quantile Residuals

In this example, with only 10 observations, it is difficult to see an advantage of using quantile residuals;
the benefit will be more apparent in Section 4.2. One benefit of raw residuals is that they may be used to
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compute a mean-squared error.

> mean(res.rawˆ2)

[1] 2.191384

To access the results of the equidispersion test shown in the output of cmp.out, we may use the equitest

accessor function.

> equitest(cmp.out)

$teststat

[1] 9.104772

$pvalue

[1] 0.002549436

$df

[1] 1

The deviance function computes the deviance quantities Di = −2[log Li(θ̂) − log Li(θ̃i)] for i = 1, . . . , n,

where Li(θ) is the term of the likelihood corresponding to the ith observation, θ̂ is the MLE computed under
the full likelihood L(θ) =

∏n
i=1 Li(θ), and θ̃i is the maximizer of Li(θ).

> deviance(cmp.out)

[1] 0.3376988 -0.5150035 -1.7750671 -0.6863613 -2.2081582 -1.9383878

[7] 2.1710154 -1.1354954 -1.6584238 -2.1772063

The parametric.bootstrap function carries out a parametric bootstrap with R repetitions. Using the

fitted MLE θ̂, bootstrap samples y(r) = (y
(r)
1 , . . . , y

(r)
n ) are drawn from the likelihood L(θ̂) for r = 1, . . . , R.

Estimate θ̂(r) is fitted from bootstrap sample y(r). An R× d matrix is returned whose rth row is θ̂(r).

> cmp.boot = parametric.bootstrap(cmp.out, reps = 100)

> head(cmp.boot)

(Intercept) transfers (Intercept)

[1,] 12.435045 1.066322 1.620051

[2,] 22.895677 2.768967 2.297103

[3,] 21.989757 2.518793 2.223626

[4,] 26.788708 2.663686 2.416597

[5,] 15.550523 2.011527 1.873008

[6,] 8.892033 1.240461 1.348294

We used R = 100 in the display above to keep vignette computations small, but a larger number may be
desired in practice. Bootstrap repetitions can be used, for example, to compute 95% confidence intervals for
each of the coefficients.

> t(apply(cmp.boot, 2, quantile, c(0.025,0.975)))

2.5% 97.5%

(Intercept) 8.2489159 55.910246

transfers 0.8240959 5.806495

(Intercept) 1.2567221 3.135545

4.1.6 Large Covariates

Large covariates can present numerical difficulties in fitting CMP regression. We will briefly demonstrate the
difficulties and some possible workarounds. First let us generate a new dataset based on a large covariate in
the regression for λi.

set.seed(1234)

n = 200
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x = rnorm(n, 500, 10)

X = cbind(intercept = 1, slope = x)

S = matrix(1, n, 1)

beta_true = c(-0.05, 0.05)

gamma_true = 2

lambda_true = exp(X %*% beta_true)

nu_true = exp(S %*% gamma_true)

y = rcmp(n, lambda_true, nu_true)

Notice that the generated counts y1, . . . , yn are relatively small compared to the covariate x1, . . . , xn.

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

471.4 492.3 498.3 499.4 505.5 530.4

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

22.0 27.0 29.0 29.1 31.0 37.0

An initial attempt to fit the true data-generating model fails.

> tryCatch({

+ glm.cmp(y ~ x, formula.nu = ~ 1)

+ }, error = print_warning)

[1] Error in optim(par.init, loglik, method = optim.method, control =

[2] optim.control, : L-BFGS-B needs finite values of 'fn'

Internally, the linked rate parameter λi = exp(β0 + β1xi) may evaluate to Inf or become very close to zero
as the optimizer moves β1 away from zero in a positive or negative direction, respectively. Some possible
ways to address this are as follows.

Standardize the covariate to have mean zero and variance one.

> glm.cmp(y ~ scale(x), formula.nu = ~ 1)

CMP coefficients

Estimate SE z-value p-value

X:(Intercept) 26.0617 2.5565 10.1944 2.1e-24

X:scale(x) 0.5253 0.0627 8.3848 5.082e-17

S:(Intercept) 2.0416 0.0980 20.8290 2.365e-96

--

Transformed intercept-only parameters

Estimate SE

nu 7.7031 0.755

--

Chi-squared test for equidispersion

Xˆ2 = 232.4625, df = 1, p-value = 1.7311e-52

--

Elapsed: 0.63 sec Sample size: 200 formula interface

LogLik: -417.9344 AIC: 841.8689 BIC: 851.7638

Optimization Method: L-BFGS-B Converged status: 0

Message: CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

Use a logarithmic transformation on the covariate.

> glm.cmp(y ~ log(x), formula.nu = ~ 1)

CMP coefficients

Estimate SE z-value p-value

X:(Intercept) -134.3015 17.4934 -7.6773 1.625e-14
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X:log(x) 25.8123 3.1597 8.1693 3.103e-16

S:(Intercept) 2.0422 0.1017 20.0764 1.188e-89

--

Transformed intercept-only parameters

Estimate SE

nu 7.7074 0.784

--

Chi-squared test for equidispersion

Xˆ2 = 232.3911, df = 1, p-value = 1.7943e-52

--

Elapsed: 0.62 sec Sample size: 200 formula interface

LogLik: -417.9869 AIC: 841.9738 BIC: 851.8688

Optimization Method: L-BFGS-B Converged status: 0

Message: CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

Change optimization method or other optim arguments.

> control = get.control(optim.method = "BFGS", optim.control = list(maxit = 200))

> suppressWarnings({

+ cmp.out = glm.cmp(y ~ x, formula.nu = ~ 1, control = control)

+ print(cmp.out)

+ })

CMP coefficients

Estimate SE z-value p-value

X:(Intercept) 12.1759 0.0467 260.6333 0

X:x -0.0210 NaN NaN NaN

S:(Intercept) -0.6747 NaN NaN NaN

--

Transformed intercept-only parameters

Estimate SE

nu 0.5093 NaN

--

Chi-squared test for equidispersion

Xˆ2 = 254.5417, df = 1, p-value = 2.6567e-57

--

Elapsed: 0.12 sec Sample size: 200 formula interface

LogLik: -937.3960 AIC: 1880.7921 BIC: 1890.6870

Optimization Method: BFGS Converged status: 0

In this case, standardization and logarithmic transformation produce a usable fit. Changing the optimization
method to BFGS allows the optimization to finish, but there are further numerical problems in computing the
Hessian for standard errors.

4.1.7 Large Outcomes

Now consider a generated dataset with large outcomes but a relatively small covariate. This situation can
also present numerical difficulties.

set.seed(1234)

n = 200

x = runif(n, 1, 2)

X = cbind(intercept = 1, slope = x)

S = matrix(1, n, 1)

beta_true = c(1, 1)

gamma_true = -0.95
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lambda_true = exp(X %*% beta_true)

nu_true = exp(S %*% gamma_true)

y = rcmp(n, lambda_true, nu_true)

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.009 1.238 1.486 1.483 1.735 1.999

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

156.0 332.0 606.5 810.5 1161.2 2391.0

An initial attempt to fit the data-generating model fails.

> tryCatch({

+ glm.cmp(y ~ x, formula.nu = ~ 1)

+ }, error = print_warning)

[1] Error in optim(par.init, loglik, method = optim.method, control =

[2] optim.control, : L-BFGS-B needs finite values of 'fn'

Informative starting values help the optimizer to initially make progress. True data-generating parameters
will not be available in a real data analysis situation but help to illustrate the idea.

> init = get.init(beta = beta_true, gamma = gamma_true)

> glm.cmp(y ~ x, formula.nu = ~ 1, init = init)

CMP coefficients

Estimate SE z-value p-value

X:(Intercept) 0.9970 0.1050 9.4933 2.238e-21

X:x 1.0029 0.1047 9.5757 1.012e-21

S:(Intercept) -0.9498 0.1044 -9.0936 9.584e-20

--

Transformed intercept-only parameters

Estimate SE

nu 0.3868 0.0404

--

Chi-squared test for equidispersion

Xˆ2 = 133.5665, df = 1, p-value = 6.7968e-31

--

Elapsed: 0.01 sec Sample size: 200 formula interface

LogLik: -1023.2186 AIC: 2052.4373 BIC: 2062.3322

Optimization Method: L-BFGS-B Converged status: 0

Message: CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

Without choosing an initial value, changing the optimization method to Nelder-Mead and increasing the
maximum number of iterations also helps the optimizer find a solution.

> control = get.control(optim.method = "Nelder-Mead", optim.control = list(maxit = 1000))

> glm.cmp(y ~ x, formula.nu = ~ 1, control = control)

CMP coefficients

Estimate SE z-value p-value

X:(Intercept) 0.8460 0.0424 19.9591 1.25e-88

X:x 0.8518 0.0417 20.4230 1.043e-92

S:(Intercept) -1.1133 0.0486 -22.8895 5.915e-116

--

Transformed intercept-only parameters

Estimate SE

nu 0.3285 0.016
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--

Chi-squared test for equidispersion

Xˆ2 = 5048.8383, df = 1, p-value = 0.0000e+00

--

Elapsed: 0.03 sec Sample size: 200 formula interface

LogLik: -1024.1845 AIC: 2054.3691 BIC: 2064.2640

Optimization Method: Nelder-Mead Converged status: 0

Note that this solution is different from the previous one; the log-likelihood of the previous one is slightly
better.

4.2 ZICMP Regression

4.2.1 Couple Dataset

The couple dataset [Loeys et al., 2012] was analyzed with ZICMP regression in Sellers and Raim [2016]
and found to exhibit overdispersion. The data concern separation trajectories of n = 387 couples. The
variable UPB records the number of unwanted pursuit behavior perpetrations and is considered the outcome
of interest. Included covariates are the binary variable EDUCATION, which is 1 if at least a bachelor’s degree
was attained, and a continuous variable ANXIETY which measures anxious attachment. A zero-inflated count
model is considered for these data because 246 of the 387 records have an outcome of zero.

Let us load and view the first few records in the dataset.

> data(couple)

> head(couple)

UPB EDUCATION ANXIETY

1 15 0 1.0053

2 0 0 -0.7034

3 0 1 -0.7034

4 3 1 0.6110

5 12 0 0.2167

6 0 1 2.0569

As a preliminary model, let us fit a standard Poisson model Yi
ind∼ Poisson(λi) with

log λi = β0 + β1 · EDUCATIONi + β2 ·ANXIETYi.

We may use the standard glm function.

> glm.out = glm(UPB ~ EDUCATION + ANXIETY, data = couple, family = poisson)

> summary(glm.out)

Call:

glm(formula = UPB ~ EDUCATION + ANXIETY, family = poisson, data = couple)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.2829 -2.0556 -1.5971 0.0018 12.5621

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.81695 0.04386 18.628 <2e-16 ***

EDUCATION -0.21579 0.07047 -3.062 0.0022 **

ANXIETY 0.42169 0.03333 12.651 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2478.3 on 386 degrees of freedom

Residual deviance: 2310.8 on 384 degrees of freedom

AIC: 2782.4

Number of Fisher Scoring iterations: 6

4.2.2 ZICMP Regression

Now consider a ZICMP regression with

log λi = β0 + β1 · EDUCATIONi + β2 ·ANXIETYi,

log νi = γ0,

logit pi = ζ0 + ζ1 · EDUCATIONi + ζ2 ·ANXIETYi.

We use the glm.cmp function as follows.

> zicmp0.out = glm.cmp(UPB ~ EDUCATION + ANXIETY,

+ formula.nu = ~ 1,

+ formula.p = ~ EDUCATION + ANXIETY,

+ data = couple)

> print(zicmp0.out)

ZICMP coefficients

Estimate SE z-value p-value

X:(Intercept) -0.1604 0.0189 -8.4844 2.169e-17

X:EDUCATION -0.0678 0.0325 -2.0849 0.03708

X:ANXIETY 0.0226 0.0142 1.5923 0.1113

S:(Intercept) -11.0963 59.4006 -0.1868 0.8518

W:(Intercept) 0.4176 0.1599 2.6119 0.009005

W:EDUCATION -0.3863 0.2677 -1.4433 0.1489

W:ANXIETY -0.5234 0.1335 -3.9200 8.856e-05

--

Transformed intercept-only parameters

Estimate SE

nu 0 9e-04

--

Chi-squared test for equidispersion

Xˆ2 = 350.5662, df = 1, p-value = 3.1903e-78

--

Elapsed: 4.57 sec Sample size: 387 formula interface

LogLik: -627.1675 AIC: 1268.3350 BIC: 1296.0440

Optimization Method: L-BFGS-B Converged status: 0

Message: CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

There are now three sets of coefficients reported in the output: the X:, S:, and W: prefixes label estimates for
the λi, νi, and pi formulas respectively.

4.2.3 Comments about Results

The AIC of the ZICMP model is drastically smaller than the Poisson model, indicating a greatly improved fit.
However, there are signs of possible numerical issues. The estimate for γ0 is a large negative number, but
with an extremely large associated SE, which suggests that the effect may not be statistically significant. On
the other hand, the estimate of ν is nearly zero with a small SE, which suggests that the dispersion parameter
is indeed statistically significant. On the surface, this seems to be a contradiction.
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The issue is that the Hessian of the log-likelihood becomes insensitive to small changes in γ0 when λi < 1
and γ0 is a large negative number. Let us first verify that the estimates for λi are indeed smaller than 1.

> pred.out = predict(zicmp0.out, type = "link")

> summary(pred.out$lambda)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.7719 0.8034 0.8264 0.8300 0.8560 0.9030

To show the insensitivity of the Hessian, let us consider a simpler setting with Y ∼ CMP(λ, ν), λ =
exp¶−0.25♢ ≈ 0.7788 fixed, and ν = exp¶γ0♢. We then have log-density

log f(y ♣ γ0) = y log λ− eγ0 log(y!)− log Z(λ, eγ0),

with first derivative and second derivatives, respectively,

∂

∂γ0
log f(y ♣ γ0) = −eγ0 log(y!)− ∂

∂γ0
log Z(λ, eγ0),

∂2

∂γ2
0

log f(y ♣ γ0) = −eγ0 log(y!)− ∂2

∂γ2
0

log Z(λ, eγ0).

For a given value of y, −eγ0 log(y!) approaches zero as γ0 decreases. Therefore, let us focus on the function
g(γ0) = − log Z(λ, eγ0) and its first and second derivatives. The following code illustrates their behavior.

library(numDeriv)

g = function(gamma0) {

-ncmp(lambda = exp(-0.25), nu = exp(gamma0), log = TRUE)

}

dat = data.frame(gamma0 = seq(0, -13), g = NA, d_g = NA, d2_g = NA)

for (j in 1:nrow(dat)) {

gamma0 = dat$gamma0[j]

dat$g[j] = g(gamma0)

dat$d_g[j] = numDeriv::grad(func = g, x = gamma0)

dat$d2_g[j] = numDeriv::hessian(func = g, x = gamma0)

}

Here is the result.

> print(dat)

gamma0 g d_g d2_g

1 0 -0.7788006 1.899077e-01 -6.055103e-02

2 -1 -0.9888736 2.197811e-01 1.939888e-03

3 -2 -1.1975605 1.883311e-01 5.754063e-02

4 -3 -1.3531805 1.206365e-01 7.009797e-02

5 -4 -1.4415733 6.002814e-02 4.795655e-02

6 -5 -1.4821920 2.534234e-02 2.308249e-02

7 -6 -1.4986634 9.858232e-03 9.528758e-03

8 -7 -1.5049621 3.704947e-03 3.658399e-03

9 -8 -1.5073136 1.373898e-03 1.364919e-03

10 -9 -1.5081834 5.069224e-04 5.060507e-04

11 -10 -1.5085040 1.866893e-04 1.865710e-04

12 -11 -1.5086220 6.870664e-05 6.869063e-05

13 -12 -1.5086654 2.527949e-05 2.527732e-05

14 -13 -1.5086814 9.300307e-06 9.300014e-06

Notice that g(γ0) approaches a limit as γ0 → −∞, which coincides with the CMP distribution approaching
a Geometric distribution. It may not be surprising that the first and second derivatives approach zero
accordingly. This explains the large SE for γ0 in the model zicmp0.out. With estimates tending to this
region of the parameter space, it may be preferable to fix fix γ0 at a value such as −∞, which will be done in
the next section.
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4.2.4 Fixed Coefficients

Our attempt to fit the previous model strongly tended to the Zero-Inflated Geometric special case of ZICMP,
but SEs computed via the Hessian become large in this region. In this section, we fix γ0 at the extreme −∞
and fit the remaining coefficients. Let us use the raw interface to do this.

init = coef(zicmp0.out, type = "list")

y = couple$UPB

X = model.matrix(~ EDUCATION + ANXIETY, data = couple)

S = model.matrix(~ 1, data = couple)

W = model.matrix(~ EDUCATION + ANXIETY, data = couple)

control = get.control(optim.method = "BFGS")

zicmp.out = glm.zicmp.raw(y, X, S, W,

init = get.init(beta = c(-1,0,0), gamma = -Inf, zeta = c(-1,0,0)),

fixed = get.fixed(gamma = 1L), control = control)

> print(zicmp.out)

ZICMP coefficients

Estimate SE z-value p-value Fixed

X:(Intercept) -0.1605 0.0188 -8.5432 1.305e-17 F

X:EDUCATION -0.0678 0.0325 -2.0837 0.03718 F

X:ANXIETY 0.0226 0.0142 1.5896 0.1119 F

S:(Intercept) -Inf NA NA NA T

W:(Intercept) 0.4172 0.1599 2.6090 0.009082 F

W:EDUCATION -0.3863 0.2678 -1.4428 0.1491 F

W:ANXIETY -0.5245 0.1336 -3.9261 8.632e-05 F

--

Transformed intercept-only parameters

Estimate SE

nu 0 0

--

Some elements of gamma were fixed. Chi-squared test for equidispersion not defined.

--

Elapsed: 0.86 sec Sample size: 387 raw interface

LogLik: -627.1672 AIC: 1266.3345 BIC: 1290.0850

Optimization Method: BFGS Converged status: 0

Notice that an additional Fixed column has been added to the display, indicating that the coefficient gamma

is fixed. Furthermore, its Estimate column is set to the initial value and the columns SE, z-value, and
p-value are set to NA. This model achieves a similar log-likelihood value as our first attempt using L-BFGS-B

but does not exhibit signs of numerical issues.

4.2.5 Accessor Functions

Here are several of the accessors provided to extract model outputs.

> logLik(zicmp.out) ## Log-likelihood evaluated at MLE

[1] -627.1672

> AIC(zicmp.out) ## AIC evaluated at MLE

[1] 1266.334

> BIC(zicmp.out) ## BIC evaluated at MLE

[1] 1290.085

> coef(zicmp.out) ## Estimates of theta as a flat vector

X:(Intercept) X:EDUCATION X:ANXIETY S:(Intercept) W:(Intercept)

-0.16047147 -0.06776507 0.02257241 -Inf 0.41722279

W:EDUCATION W:ANXIETY
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-0.38633736 -0.52450590

> coef(zicmp.out, type = "list") ## Estimates of theta as a named list

$beta

X:(Intercept) X:EDUCATION X:ANXIETY

-0.16047147 -0.06776507 0.02257241

$gamma

S:(Intercept)

-Inf

$zeta

W:(Intercept) W:EDUCATION W:ANXIETY

0.4172228 -0.3863374 -0.5245059

> vcov(zicmp.out) ## Estimated covariance matrix of theta hat

X:(Intercept) X:EDUCATION X:ANXIETY W:(Intercept)

X:(Intercept) 0.0003528180 -2.909813e-04 -1.246030e-04 0.0005767772

X:EDUCATION -0.0002909813 1.057615e-03 2.583975e-05 -0.0005084108

X:ANXIETY -0.0001246030 2.583975e-05 2.016361e-04 -0.0001489969

W:(Intercept) 0.0005767772 -5.084108e-04 -1.489969e-04 0.0255741783

W:EDUCATION -0.0005266101 2.146314e-03 7.074582e-05 -0.0255267345

W:ANXIETY -0.0001695705 1.830298e-04 3.848049e-04 -0.0006753149

W:EDUCATION W:ANXIETY

X:(Intercept) -5.266101e-04 -0.0001695705

X:EDUCATION 2.146314e-03 0.0001830298

X:ANXIETY 7.074582e-05 0.0003848049

W:(Intercept) -2.552673e-02 -0.0006753149

W:EDUCATION 7.169741e-02 0.0009802763

W:ANXIETY 9.802763e-04 0.0178471340

> sdev(zicmp.out) ## Standard deviations from vcov(...) diagonals

X:(Intercept) X:EDUCATION X:ANXIETY W:(Intercept) W:EDUCATION

0.01878345 0.03252099 0.01419986 0.15991929 0.26776372

W:ANXIETY

0.13359317

> sdev(zicmp.out, type = "list") ## Standard deviations as a named list

$beta

[1] 0.01878345 0.03252099 0.01419986

$gamma

[1] NA

$zeta

[1] 0.1599193 0.2677637 0.1335932

> equitest(zicmp0.out) ## Likelihood ratio test for H_0: gamma = 0

$teststat

[1] 350.5662

$pvalue

[1] 3.190326e-78

$df

[1] 1

> tryCatch({ ## An error is thrown for model with fixed gamma

+ equitest(zicmp.out)
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+ }, error = print_warning)

[1] Error in equitest.zicmpfit(zicmp.out): Some elements of gamma were

[2] fixed, chi-squared test for equidispersion not defined

Because we fixed γ = −∞ to obtain zicmp0.out, the equitest function throws an error instead of proceeding
with an equidispersion test.

The predict function behaves similarly as in CMP regression; however, the link type here also includes a
column with the estimated pi.

> y.hat = predict(zicmp.out) ## Fitted values based on ecmp

> link.hat = predict(zicmp.out, type = "link")

> head(y.hat)

[1] 3.570765 1.622937 1.451592 2.391102 2.522830 3.713332

> head(link.hat)

lambda nu p

1 0.8712909 0 0.4725120

2 0.8383254 0 0.6870063

3 0.7833983 0 0.5986451

4 0.8069894 0 0.4281048

5 0.8559186 0 0.5753131

6 0.8337620 0 0.2596150

In this example, we can see the benefit of using quantile residuals rather than raw residuals for diagnostic
plots. The functions plot.fit.res and plot.qq.res have been defined in Section 4.1.

res.raw = residuals(zicmp.out, type = "raw")

res.qtl = residuals(zicmp.out, type = "quantile")

plot.fit.res(y.hat, res.raw) +

ggtitle("Fitted Values vs. Raw Residuals")

plot.qq.res(res.raw) +

ggtitle("Q-Q Plot of Raw Residuals")

plot.fit.res(y.hat, res.qtl) +

ggtitle("Fitted Values vs. Quantile Residuals")

plot.qq.res(res.qtl) +

ggtitle("Q-Q Plot of Quantile Residuals")
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Here is an example of computing fitted values for new covariate data.

new.df = data.frame(EDUCATION = round(1:20 / 20), ANXIETY = seq(-3,3, length.out = 20))

X.new = model.matrix(~ EDUCATION + ANXIETY, data = new.df)

S.new = model.matrix(~ 1, data = new.df)

W.new = model.matrix(~ EDUCATION + ANXIETY, data = new.df)

new.data = get.modelmatrix(X.new, S.new, W.new)

# For model fit using raw interface, use get.modelmatrix to prepare new design

# matrices, offsets, etc

y.hat.new = predict(zicmp.out, newdata = new.data)

# For models fit with the formula interface, pass a data.frame with the same

# structure as used in the fit.

y.hat.new = predict(zicmp0.out, newdata = new.df)

> print(y.hat.new)

[1] 0.4699009 0.5622034 0.6711344 0.7991174 0.9487440 1.1227246 1.3238519

[8] 1.5549321 1.8187435 2.1180079 2.0359259 2.2797300 2.5382952 2.8108725

[15] 3.0968672 3.3959399 3.7081292 4.0339807 4.3745609 4.7316167

As with CMP regression, a parametric.bootstrap function is provided for convenience to obtain a bootstrap
sample θ̂(r) of θ based on the estimate θ̂. Because it is too time consuming to run this example within the
vignette, we show the code without output below. As in Section 4.1, we consider using the bootstrap samples
to construct a 95% confidence interval for each of the coefficients.

> zicmp.boot = parametric.bootstrap(zicmp.out, reps = 100)

> head(zicmp.boot)

> apply(zicmp.boot, 2, quantile, c(0.025,0.975))
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