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Abstract

CircSpaceTime is the only R package currently available that implements Bayesian
models for spatial and spatio-temporal interpolation of circular data. Such data are of-
ten found in applications where, among the many, wind directions, animal movement
directions, and wave directions are involved. To analyze such data we need models for ob-
servations at locations s and times ¢, so-called geostatistical models, providing structured
dependence which is assumed to decay in distance and time. For example, for wave direc-
tions in a body of water, we conceptualize a wave direction at every location and every
time and introduce structured dependence into these angular data. The approach we take
begins with Gaussian processes defined for linear variables over space and time. Then, we
use either wrapping or projection to obtain processes for circular data. The models are
cast as hierarchical, with fitting and inference within a Bayesian framework. Altogether,
this package implements work developed by a series of papers; the most relevant being
Jona Lasinio, Gelfand, and Jona Lasinio (2012); Wang and Gelfand (2014); Mastrantonio,
Jona Lasinio, and Gelfand (2016b). All procedures are written using Repp. Estimates
are obtained by MCMC allowing parallelized multiple chains runs. As running example,
for the spatial setting, we use a wave direction dataset while simulated data are used to
illustrate the spatio-temporal models.

Keywords: Directional data, spatial model, spatio-temporal model, Rcpp.

1. Introduction

In the last ten years the interest in circular data has received renewed attention, with new
theoretical results and models (for an extended review of both theory and applications see
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Ley and Verdebout 2017, 2019). Most of the existing literature before 2012

1.1. Modeling of circular data

1.2. Available circular packages

There exist several R packages dealing with circular data. The best known are circular
(Agostinelli and Lund 2017) and CircStats (Lund and Agostinelli 2018), both implementing
inference for univariate data as described in Jammalamadaka and SenGupta (2001). Another
recent set of functions specifically devoted to wrapped distributions is Wrapped (Nadara-
jah and Zhang 2017). The package computes the probability density function, cumulative
distribution function, quantile function and many more features for several (about fifty) uni-
variate wrapped distributions. A very interesting set of functions is implemented in CircSizer
(Oliveira, Crujeiras, and Rodriguez-Casal 2014) where a non-parametric approach is adopted.
Based on scale-space ideas, CircSiZer presents a graphical device to assess which observed
features are statistically significant, both for density and regression analysis. Also a book on
circular data in R has been published (Pewsey, Neuh auser, and Ruxton 2013) with many nice
examples and a narrative of the topic that makes easy to learn how to run inferences on univari-
ate data. In 2013 the first version of the package isocirc was presented (Barragén, Fernédndez,
Rueda, and Das Peddada 2013), making available functions to perform constrained inference
using isotonic regression for circular data (Rueda, Fernandez, and Peddada 2009; Fernandez,
Rueda, and Peddada 2011). The CircOutlier (Ghazanfarihesari and Mashhad 2016) collects
functions to detect outliers in circular-circular regression as proposed in Abuzaid, Hussin,
and Mohamed (2013). Bayesian estimation for univariate regression models is implemented
in bpnreg (Cremers 2018) that presents models developed in Nuniez-Antonio and Gutiérrez-
Pena (2014) and Cremers, Mulder, and Klugkist (2017). Again in the Bayesian framework
the work in Mulder and Klugkist (2017) is implemented in circglmbayes. More recent is the
Directional (Tsagris, Athineou, Sajib, Amson, and Waldstein 2018) package, mostly linked to
the textbook by Mardia and Jupp (1999). A series of wrapper functions to implement the 10
maximum likelihood models of animal orientation, described by Schnute and Groot (1992),
are included in the CircMLE. The proposals in Zimmermann and Wright (2017) are presented
in circumplex. Dependent and multivariate circular data are often found in applications (see
Ley and Verdebout 2019, for recent developments). To handle them in a likelihood framework
we can refer to the package CircNNTSR (Fernandez-Duran and Gregorio-Dominguez 2016),
that implements functions to plot, fit by maximum likelihood, and simulate models based on
non-negative trigonometric sums for circular, multivariate circular, and spherical data.

None of the above packages deal with spatial or spatio-temporal interpolation of circular data,
that is the main objective of CircSpaceTime, the package we are proposing. In what follows
we are going to present models that have been developed, starting from 2012 (Jona Lasinio
et al. 2012); a summary of these models can also be found in Jona Lasinio, Mastrantonio, and
Gelfand (2019). CircSpaceTime is

available at https://github.com/santoroma/CircSpaceTime.

There are different approaches to specify valid circular distributions, see for example Jam-
malamadaka and SenGupta (2001), here we focus on the two methods that allow to built
a circular distribution starting from a linear one, namely the wrapping, and the projection.
Both revealed to be useful in the definition of spatial and spatio-temporal data modeling,



see for example Mastrantonio, Gelfand, and Jona Lasinio (2016a) and Wang and Gelfand
(2014). Under both methods, the resulting distribution has a complex functional form but
introducing suitable latent variables, the joint distribution of observed and latent variables,
in a fully Bayesian framework, are really easy to handle.

2. From Linear to Circular models

In this section we are going to introduce, in both univariate and multivariate settings, the two
approaches that we exploit to built distributions/processes for circular variables, starting from
probability distributions with support the real line; we start with linear random variables to
obtain circular random variables. The two methods that we are going to illustrate are totally
general and can be applied to all linear variables with any distribution. We focus on the
Gaussian case, since the resulting models are highly flexible and they are those implemented
in CircSpaceTime.

2.1. The wrapping approach

With the wrapping approach, the idea is to “wrap” the density of a linear variable around the
unit circle, obtaining than a circular density. In more details, let Y € R be a linear random
variable with pdf fy(-|¥), where 9 is a vector of parameters. We obtain a circular random
variable using the following transformation:

© =Y mod 27 € [0, 27).
The pdf of © is then
fo(Olp) = > fr(0+ 2rk|ep). (1)

k=—0o0

It is easy to find the relation between Y and © that is the following: Y = © 4 27K, where
K is the so-called winding number. Equation (1) wraps the density fy (-|t) around the unit
circle and then O is called the wrapped version of Y of period 27. If Y is normally distributed,
then © follows a wrapped normal (WN) distribution.

The evaluation of (1) is not easy since it involves an infinite sum, possibly, making inference
based on the wrapped distribution a really complex task. Following Coles and Casson (1998),
this problem can be easily overcome if we consider K as a (latent) random variable. We have
then fo k(0,k|Y) = fy(0 + 2mk|1), i.e. the joint density of (O, K) is fy (6 + 27k|tp), that is
the density Y, seen as function of § and k. Notice that (1) can be seen as a marginalization
over K of the joint density of (0, K). The conditional distribution of K, that is needed for
the implementation of the MCMC, is easy to handle since it is proportional to fy (6 + 27k|).
This result shows that it is much easier to work with the joint density of (0, K), with respect
to the marginal of ©.

The wrapping approach can be easily extended to a multivariate setting, see for example
Jona Lasinio et al. (2012). In details, let Y = (Y1,...,Y,) be a n-variate vector with pdf
fy (:]3b). We have then that ® = (04,...,0,)’, with

0, =Y, mod 2m,i=1,...,n, (2)
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is a vector of circular variables with density

fe(Olp) = > -+ Y fy(0+27k[e).

ki=—00 kp=—00

Extending the reasoning applied to the univariate setting, we can easily find that the full
conditional of K is proportional to fy (6 + 27k|t) and the joint density of (©,K) is fv (0 +
27k|ep). If we assume that Y is normally distributed, this means that the joint density of
(0,K) is

$n(0 + 2mk|p, A), 3)

where ¢, (-|p, A) is the n—variate normal pdf with mean vector and covariance matrix given
by (u, A). Here again it is easy to see that any type of model implementation is facilitated if
K is introduced as a latent variable.

2.2. The projection approach

With the wrapping approach, from one linear variable we obtain a circular one. The projection
approach is quite different in this regard since it requires two linear variables to obtain one
circular. The basic idea is to take two random variables, that can be seen as coordinates in
a Euclidean space, and express them as polar coordinates. The associated angle is itself a
random variables and it is circular.

Let Y = (Y1,Y3) be a bivariate vector of linear variables with pdf fy(:|¢). The relation
between the angle © and Y is expressed by the following:

tan(Q) = ? (4)

The circular variable can be then obtained using the inverse tangent function but some care
must be taken. The inverse has domain of length 7 while we want our random variable to have
domain [0,27). This is generally achieved by using the atan® inverse (see Jammalamadaka
and SenGupta 2001, pag.13 for a detailed definition), that takes into account the sign of
the components of Y, to identify to which of the 4 quadrants the circular variable belongs.

Between © and Y the following relation exists Y = Bil} =R [Zfi g} = RU, with R = ||Y]|,
2

where the joint vector (©, R) is the representation in polar coordinates of Y. From equation
(4) is easy to see that distributions based on the projection are not identifiable, since ¢Y and
Y, with ¢ > 0, gives rise to the same circular variables; an identification constraint is then
needed (Wang and Gelfand 2013).

The pdf of © is
fo(Blw) = / r (1 cos(8), 7 sin(0)) |4)dr, (5)

R+

that is obtained by finding first the joint density of (©, R), which is

rfy((rcos(),rsin(0))’|),

and then, a marginalization over R, gives the density of ©. The integral in equation (5) is
not easy to solve and, even when a closed form exists, the resulting pdf has a complicated



functional structure. For example, if we assume Y ~ No(a, ), with a = (a1, a2)" and

_ o? 10
_'<7'0 1>’ (6)

where (E)22 = 1 is needed for identifiability purpose, as explained above, the density of ©,
computed using (5), is

d2(a|02,E) + aD(0)P(D(0)|0, Ig)qb(aC(@)_% (a1 sin(f)) — ag cos(h))

fo(61y) = =0 o

where ®,,(+|-,-) is the n—variate cumulative density function, with

a=(ov/1-72) "
C(0) = a? (c0s2(c9) + o?sin?(0) — 7o sin(29)) ,
D(0) = aQC(H)*% (a1(cos(f) — 1o sin(f)) + ago(osin(d) — pcos(h))) .

Under the normal assumption, we have that the joint density of (©, R) is
r¢2((rcos(), rsin(f)|a, 2). (8)

Equation (8) is less complex than (7) but, as for the wrapping approach, to work with it we
need to introduce a latent variable, that is R.

The extension of the projection approach to multivariate variable is straightforward. We take
Y as a 2n—variate linear variable, and we build the n—variate vector of (projected) circular
variables through the following transformation:

Y .
@Z-:atan*< 2 ),izl,...,n, 9)
Yoi—1

i.e., the 2n elements of Y are grouped in n sets, each of them containing only two values, and
where one element of Y can only belong to one of the n sets. Each set gives rise to a circular
variable. The density of the vector ® = (01, ...,0,)" is then

n
fol@) = [ [ TIni@xwdn...dn, (10)

REJRY
where r; = ||(y2i—1,y2:)’|| and y(0,r) is used to indicated that y must be seen as function of
0 and r = (r1,...,7r,). Even assuming a normal density for Y, it is not possible to write in

closed form (10). As for the univariate case, it is much easier to work with the joint density
of (®,R) since, if for example a normal distribution of Y is assumed, it is then

n

[ ridon(y(0.7) 1. A), (11)

=1

where, as in equation (3), (@, A) are the mean and covariance matrix.

Differences between the two approaches
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There are considerable differences between the two approaches discussed above. The wrapping
creates circular distributions that are in general similar to their counter-parts on the real line.
For example, the wrapped normal is still unimodal and symmetric. Moreover, the circular
mean and variance (see Jammalamadaka and SenGupta 2001, for the definitions and details),
are simple functions of the mean and variance of the linear variable.

On the other hand, even under the normal assumption, the projection approach creates a
distribution that has often properties very different from its linear partners. Again in the
Gaussian setting, the projected normal can be bimodal, asymmetric and antipodal. Moreover,
only in few special cases, exists a closed form expression of the mean and variance of the
projected distribution.

The main reasons to propose these two approaches is that, in both, it is easy to introduce
dependence (spatial, temporal or both). The wrapping gives results that are really easy to
interpret in terms of phenomena behaviour, while the projection is very useful when interpre-
tation is not central, and a highly flexible model is required (Mastrantonio et al. 2016b).

2.3. Spatio-temporal processes for circular variables

A stochastic process can be defined through its finite dimensional distribution, i.e. the distri-
bution of an n—dimensional realization, that has a multivariate pdf (Gelfand, Diggle, Fuentes,
and Guttorp 2010). Since in the previous sections we have already given multivariate dis-
tributions for circular variables, it is then easy to define circular processes. More precisely,
starting from a distribution for linear variables, we can use the wrapping or the projection
approach to obtain a multivariate circular distribution and then, as a consequence, from an
n—dimensional realization of a linear process we can obtain the associated n—dimensional
realization of a circular one.

Let Y(s) = {Yi(s)}¥_, € R? be a p—variate Gaussian process (GP) defined over a s—dimensional
domain, i.e., s € S C R? and let y = (y1,...,yn) € RP x R™ be the set of n realizations.
The vector y is then normally distributed. Given Y (s) we can easily built the wrapped and
the projected GP using (2) and (9), respectively. More precisely, the former is obtained as

©(b) = Y (s) mod 2.

O(s) = atan” <§2§3) .

The same transfromation, applied to y, give the realization of the wrapped and projected GP.

while the latter is given by

For both, the spatial or space-time representations are obtained by considering a spatially or
spatio-temporally structured covariance matrix.

3. The implemented models

The basic linear model we adopt is the following:

Y(s) = a+ w(s), (12)
w(s) ~ GPP(Opv C(ha QD) ® E)a



Name Function Parameters
R ol—v hep \© hs
Matérn X0 (\/ 2v pp> K, (\/ QVTP) v, p
Exponential exp (—phsp) p
Gaussian exp (— thsp) p
.. . sphs
Gneiting (spatio-temporal) o h% 7 XD —7(; h§+1p) 7 > Pts Psp, 1

Table 1: Correlation functions implemented. hg, and hy are, respectively, spatial and temporal
distance.

Parameter ‘ Wrapped Normal | Projected Normal
Spatial and temporal decay (p, psp, pt) uniform uniform

o2 inverse gamma inverse gamma
Separability parameter (7 = sep_par) Beta Beta

mean parameters () Wrapped Gaussian Gaussian
correlation between components (7) uniform

Table 2: Available prior distributions

where o € RP? is a mean vector, w(s) is a zero mean p—variate GP and ® is the usual Kronecker
product. The correlation function of the GP is C(h;¢) and it depends on parameter ¢ and
the vector of distances h, that contains the spatial and temporal distances hsp and hy if d = 3,
and only hg, if d = 2. Under p = 1 the model (12) is used to build a wrapped GP while p = 2
is used for the projected. Table 1 shows the correlation functions and Table 2 the choice of
prior distributions available in the package CircSpaceTime. The parameter E is defined as in
equation (6) if p =2, and o2 if p = 1.

3.1. Model implementation

As we stated in Section 2, the multivariate wrapped and projected normal have densities too
complex to be used for model inference but, if we introduce as latent observations the vector
k, for the wrapped normal, and r for the projected, inference through MCMC algorithm is
straightforward.

The key element here is that, once the latent variables are obtained, the full conditionals of the
model parameters are exactly the same as if we were working with observed linear variables.
This is due to the the functional form of the likelihood of circular and latent variables, see
(3) and (11), which gives the same contribution to the full conditionals of the parameters, as
if the data has a multivariate normal density.

Due to the priors available in the package, see Table 2, the update of a, i.e. the mean
parameter, is done with a Gibbs sample since its full conditional is multivariate normal under
the projected model and wrapped normal under the wrapped model. The parameters of
the covariance structure are updated all together, within a Metropolis step. To speed up
convergence and to have the possibility to choose the final acceptance rate, for the multivariate
proposal distribution we implemented the algorithm shown in Andrieu and Thoms (2008),
algorithm 4.

The latent discrete variable k is updated component-wise with Metropolis steps. In each one
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of them, given the current value k;, the proposal is selected from the set (k; — 1, k;, k; + 1),
where each element has probability 1/3 to be selected. The latent variable r is also updated
component-wise with Metropolis steps, but in this case we use the algorithm proposed by
Rosenthal (2007).

In fitting the wrapped Gaussian models we center data (and all related quantities) around 7.
Outputs for the mean and the interpolated values are given on the original scale, while the
winding numbers are those obtained centering around .

To improve performances we implemented everything in C++ (Wickham 2015) and using
Rcpp package we simplify the integration between C++ and R codes (Eddelbuettel and Fran-
cois 2011). In particular we used the ReppArmadillo package (Eddelbuettel and Sanderson
2014), that implements the Armadillo matrix library, for its simplicity and elegance (Eddel-
buettel 2017), although the ReppEigen is a bit faster (Bates and Eddelbuettel 2013). For a
fast multiple chain estimations we use doParallel package (MicrosoftCorporation and Weston
2017).

4. A package’s tutorial

4.1. Functions structure

Estimation of posterior distributions are obtained via the following functions:

e WrapSp, ProjSp - Spatial models;

e WrapSpTi, ProjSpTi - Spatio-temporal models.

All functions require, as input data, a list of starting values, a list of priors parameters and
information for the adaptive MCMC algorithm and the MCMC run (number of iterations,
burnin, thinning and the number of chains). All functions return outputs organized with as
many lists as the number of chains and each list has as many elements as the number of model
parameters.

Prediction in space and/or space and time is performed using:

e WrapKrigSp, ProjKrigSp - Spatial models;

e WrapKrigSpTi, ProjKrigSpTi - Spatio-temporal models.

As input, the interpolation functions require the results from the posterior distribution es-
timation and the locations where we want to predict the process. Outputs are organized as
lists with 3 elements: posterior predictive mean and variance (M_out, V_out), and predicted
values (Pred_out).

4.2. Data for the spatial examples

We consider an example based on wave directions (and heights). These data are obtained as
outputs from a deterministic computer model implemented by Istituto Superiore per la Pro-
tezione e la Ricerca Ambientale (ISPRA) (Inghilesi, Orasi, and Catini 2016). The computer



model starts from a wind forecast model predicting the surface wind over the entire Mediter-
ranean. The hourly evolution of sea wave spectra is obtained by solving energy transport
equations using the wind forecast as input. Wave spectra are locally modified using a source
function describing the wind energy, the energy redistribution due to nonlinear wave interac-
tions, and energy dissipation due to wave fracture. The model produces estimates every hour
on a grid with 10 x 10 km cells (Inghilesi et al. 2016). The ISPRA dataset has forecasts for
a total of 4941 grid points over the Italian Mediterranean. Over the Adriatic sea area, there
are 1494 points.

We load a list containing 4 data frames each of 35856 rows and 7 columns
e Date: Date, format: yyyy-mm-dd;
e hour: Factor w/ 24 levels corresponding to the 24h, format: 00:00;
e Lon, Lat: Decimal longitude and latitude;
e HmO0: Significant wave heights in meters;
e Dm: Direction of waves in degrees (North=0);

” 7,

e state: Factor w/ 3 levels "calm” transition”, "storm”, the categories are built on the
basis of the wave height (Hm0): Hm0 < 1m calm, 1 < Hm0 < 2 transition, Hm0 > 2
storm.

We select the month of April 2010 at 20:00:

R> require(CircSpaceTime)

R> data(april)

R> storml <- april$apr6.2010[april$apr6.2010$hour == "20:00",]
We convert the directions into radians

R> storm1$Dmr<-storml$Dm*pi/180

We plot the samples in terms of the sea state

R> require(gridExtra)

R>

R> r1 <- rose_diag(storm1$Dmr[storml$state == "calm"],

R> bins = 15, color = 3, template = "wind_rose") +

R> ggtitle("Calm")

R> r2 <- rose_diag(storm1$Dmr[storml$state == "transition"],

R> bins = 15, color = "yellow", template = "wind_rose") +
R> ggtitle("Transition")

R> r3 <- rose_diag(storml1$Dmr[storml$state == "storm"],

R> bins = 15, col = 2, template = "wind_rose") +

R> ggtitle("Storm")

R> grid.arrange(rl, r2, r3, ncol = 3)
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April 6, 2010
20:00

Wave Height (m)

Figure 1: Adriatic sea: waves directions on April 6, 2010 at 8pm, the color scale follows the
state of the sea from green to red (state of the sea according to wave height <lm, calm,
between 1 and 2 m, transition, above 2m, storm)

From Figure 2 it is very clear that the variability decreases from calm to storm. This finding is
very relevant in terms of model choices. When the variability is too high, i.e. the distribution is
close to the circular uniform, the variance parameter of the wrapped normal is not identifiable
(see Jona Lasinio et al. 2012)). Then, When modeling highly variable data, the projected
normal may be a better choice than the wrapped normal. When dealing with concentrated
data, as for the storm regime, both models may be tested as we’ll do in what follows. We’ll
choose the model that “best” fit the data according to prediction error and a proper score (see
below for details).

First we select the area where the storm is still in full force.
R> storm2 <- storml[(storml$state == "storm" & stormi$Lat<=41),]
Further, it is better to convert the coordinates into UTM as the estimation algorithm uses

Euclidean distance. We also hold out 20% of the locations for validation purposes, defining a
training and testing sets. In Figure 3 we show the two datasets

R> nval <- round (nrow(storm2)*0.2)

R> sample.val <- sort (sample(c(1:nrow(storm2)),nval))
R> train <- storm2[-sample.val,]

R> test <- storm2[sample.val,]

R> coords <- storm2[,3:4]

R> colnames (coords) <- c("X","y")

R> attr(coords, "projection") <- "LL"

R> attr(coords, "zone") <- 32

R> coords_2 <- PBSmapping: :convUL(coords,km = TRUE)
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Calm Transition Storm

Figure 2: Adriatic sea: rose diagrams of waves directions according to the state of the sea
(wave height <1m, calm, between 1 and 2 m, transition, above 2m, storm)

R> coords.train <- coords_2[-sample.val,]
R> coords.test <- coords_2[sample.val,]
R> distance_matrix <- dist(coords_2)

The elements for the definition of prior distributions are organized in a list that is passed to
the functions WrapSp or ProjSp.

From the distance matrix we compute the empirical practical range interval, that is used
in the definition of the uniform prior distribution adopted for the spatial correlation decay
parameter.

R> rho_max <- 3./min(distance_matrix[which(distance_matrix > 0)])
R> rho_min <- 3./max(distance_matrix[which(distance_matrix > 0)])

4.3. Spatial Wrapped Gaussian model

The first example we illustrate involves the WN model and starts with the estimation of the
posterior distribution.

The function WrapSp produces samples from the wrapped normal spatial model.

In our example we choose an exponential correlation and we run 2 chains in parallel. The
available prior distributions for the wrapped and projected models are described in Table 2.
Notice that we choose a vector of zeros as starting value for k. This is a reasonable value
when circular data are centered around .

R> startl <- 1list(

R> "alpha" = c(2+#pi,3.14),

R> "rho" = c¢(.5%(rho_min + rho_max),.1*(rho_min + rho_max)),
R> "sigma2" = c(0.1,1),

R> "k" = c(rep(0, nrow(train)),rep(0, nrow(train)))

R> )

R> # Running WrapSp may take some time
R> storm <- WrapSp(
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April 6, 2010 April 6, 2010
train, 20.00 test, 20:00

Wave Height (m) - . Wave Height (m) - -

225250215300 225250275300

Figure 3: Adriatic sea: test and training sets from the storm on April 6, 2010 at 8pm, the
color scale follows the state of the sea from green to red (state of the sea according to wave
height <1m, calm, between 1 and 2 m, transition, above 2m, storm)

R> x = train$Dmr,

R> coords = coords.train,

R> start = startl,

R> priors = list("alpha" = c(pi,10),
R> "rho" = c¢(rho_min, rho_max),
R> "sigma2" = ¢(3,0.5)),
R> sd_prop = list("sigma2" = 1,

R> "rho" =0.3),

R> iter = 30000,

R> BurninThin = c(burnin = 15000,

R> thin = 10),

R> accept_ratio = 0.5,

R> adapt_param = c(start = 100,

R> end = 10000,

R> exp = 0.8),

R> corr_fun = "exponential,

R> n_chains = 2,

R> parallel = TRUE,

R> n_cores =2

R> )

We can control the convergence of the MCMC using the function ConvCheck, that returns
an meme.list (memce), to be used with the coda package, and the Potential scale reduction



factors (Rhat) of the model parameters, computed using the gelman.diag function in the
coda package.

R> check <- ConvCheck(storm)
R> check$Rhat

| | Point est.| Upper C.I. |
| === |- | -————- 2
| alpha | 1.00 | 1.00 |
| rho | 1.00 | 1.01 |
| sigma2 | 1.00 | 1.00 I

Multivariate psrf

We draw the traceplots always remebering that alpha is a circular variable

R> 1library(coda)
R> plot(check$mcmc, trace = TRUE, density = FALSE)

Convergence is clearly achieved and we can proceed to estimate the values on the test sites,
using the posterior samples we just obtained.

R> Pred.storm <- WrapKrigSp(WrapSp_out = storm,

R> coords_obs = coords.train,
R> coords_nobs = coords.test,
R> X_obs = train$Dmr

R> )

Once the estimates are obtained, we compute the Average Prediction Error (APE) (see
Jona Lasinio et al. 2012) and the circular continuous ranked probability score (CRPS) (Grimit,
Gneiting, Berrocal, and Johnson 2006), computed using the functions APEcirc and CRPScirc,
available in the package. They both return the average index value, computed over the test
sites, and a vector of scores computed on each site.

R> Ape.storm.wrap <- APEcirc(test$Dmr,Pred.storm$Prev_out)
R> crps.storm.wrap <- CRPScirc(test$Dmr,Pred.storm$Prev_out)
R> Ape.storm.wrap$Ape

R> [1] 0.001149621

R> crps.storm.wrap$CRPS

R> [1] 8.631822e-05

4.4. Spatial Projected Normal model

13
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Trace of alpha Trace of sigma2
e _
o~
f=3
w S
~ =
-+
~ 2
o
« ] o
~N
o~ 2
o~ Qo 7
o
1 I 1 1 1 I I I
15000 20000 25000 30000 15000 20000 25000 30000
Itarations Itarations

Trace of rho

00145 00155 0.0165 0.0175

15000 20000 25000 30000

Itarations

Figure 4: Traces from the meme run for the wrapped Gaussian spatial example - April 6 2010,
storm data.

In this section we are going to run the predictions, on the same storm data used for the
wrapped normal example, adopting a projected normal (PN) spatial model (Mastrantonio
et al. 2016b). The function ProjSp produces samples from the PN. In our example we choose
again an exponential correlation and we run 2 chains in parallel.

R> set.seed(12345)
R> start_PN <- list(

R> "alpha" = c(2*pi, pi/4, pi*2/3, pi*2/3),
R> '"tau" = ¢(-0.9,-0.7),

R> '"rho" = ¢(0.015,0.02),

R> '"sigma2" = c¢(1,0.1),

R> "r" = abs(rnorm(nrow(train)))

R> )

R>

R> storm_PN <- ProjSp(

R> x = train$Dmr,

R> coords = coords.train,

R> start = start_PN ,

R> priors = list("rho" = c(rho_min,rho_max/2),

R> "tau" c(-1,1),



R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

"sigma2" =c(1,1),

"alpha_mu" = c(0, 0),

"alpha_sigma" = diag(20,2)),
sd_prop = list("sigma2" = .1,

"tau" = .1,

"rho" = .1,

"sdr" = rep(.01,nrow(train))),
iter = 50000,
BurninThin = c(burnin = 25000, thin = 10),

accept_ratio = 0.234,
adapt_param = c(start = 100, end = 10000, exp = 0.5),

corr_fun = "exponential",
n_chains =2,

parallel = TRUE ,

n_cores =2

)

check_PN <- ConvCheck(storm_PN)
check_PN$Rhat
Potential scale reduction factors:

Point est. Upper C.I.
sigma2 1.21 1.71
rho 1.01 1.06
tau 1.23 1.79
alphal 1.00 1.02
alpha2 1.00 1.01
Multivariate psrf

1.24

From the convergence check and the traceplots (not reported) we see that the chains need to
be updated. This can be easily done by setting as starting values the last values of all chains,
and removing the adaptive step by setting a starting iteration for the adaptation larger than
the number of iterations.

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

n <- length(storm_PN[[1]]$sigma2)
start_PN.up <-list("alpha" = c(storm_PN[[1]]$alpha[1,n],
storm_PN[[1]]$alpha[2,n],
storm_PN[[2]]$alpha[l,n],
storm_PN[[2]]$alpha[2,n]),
"tau" = c(storm_PN[[1]]$tauln],
storm_PN[[2]]$tauln]),
"rho" = c(storm_PN[[1]]$rho[n],
storm_PN[[2]]$rho[n]),
"sigma2" = c(storm_PN[[1]]$sigma2[n],

15
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R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

CircSpaceTime: an R package for circular spatial data

storm_PN[[2]]$sigma2[n]),
"yt = abs(rnorm(nrow(train)))
)
storm_PN.up <- ProjSp(
X = train$Dmr,
coords = coords.train,
start = start_PN.up,
priors = list("rho" = c(rho_min,rho_max/2),
"tau" =c(-1,1),
"sigma2" =c(1,1),
"alpha_mu" = ¢(0, 0),
"alpha_sigma" = diag(20,2)),
sd_prop = list("sigma2" = .1,
"tau" = .1,
"rho" = .1,
"sdr" = rep(.01,nrow(train))),
iter = 50000,
BurninThin = c(burnin = 25000,
thin = 10),
accept_ratio = 0.234,
adapt_param = c(start = 70001, #no adaptive mcmc
end = 70001,
exp = 0.5),
corr_fun = "exponential",
n_chains =2,
parallel = TRUE ,
n_cores =2
)

We run the update 4 times and eventually we reach convergence:

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

check.PNstorm1<-ConvCheck (storm_PN.up)

check.PNstorm1$Rhat

Potential scale reduction factors:
Point est. Upper C.I.

sigma2 1.09 1.22

rho 1.01 1.03

tau 1.03 1.08

alphal 1.00 1.02

alpha2 1.00 1.00

Multivariate psrf

1.07
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We can then move to the prediction step.

R> Pred.krig PN <- ProjKrigSp(storm_PN.up,

R> coords_obs = coords.train,
R> coords_nobs = coords.test,
R> x_obs = train$Dmr)

We can compare the predictions of the two models using the APE and the CRPS.

R> Ape.storm.PN <- APEcirc(real = test$Dmr,

R> sim = Pred.krig_ PN$Prev_out
R> )

R>

R> crps.storm.PN <- CRPScirc(real = test$Dmr,

R> sim = Pred.krig_PN$Prev_out
R> )

And we can compare results with the wrapped spatial model.

R> > Ape.storm.PN$Ape

R> [1] 0.09892174

R> > crps.storm.PN$CRPS
R> [1] 0.01115289

R> > Ape.storm.wrap$Ape
R> [1] 0.0009515616

R> > crps.storm.wrap$CRPS
R> [1] 8.631822e-05

According to these diagnostic, the wrapped normal, in this example, performs better than
the projected. However both models are highly accurate as both APE are smaller than one
radians.

In the following sections we drop real data and we move to two simple simulated examples,
to illustrate the implementation of both circular space-time models, wrapped and projected.

4.5. Spatio-temporal circular wrapped normal model

We simulate 100 spatial coordinates from a uniform distribution on (0,100) and 100 time
coordinates from the same interval. Then we generate 100 values from a GP with Gneiting
correlation function (Gneiting 2002) (see Table 1) with the following setting:

e constant mean alpha=0.5 on each location;
e spatial decay rho=0.05;
e time decay rhoT=0.01;

e process variance sigma2=0.3;
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Figure 5: Simulated values for the wrapped normal space-time example

e separability parameter sep_par=0.5.

Then we wrap the obtained results around the circle component-wise, using (2), generating
the data reported in Figure 5.

R> rmnorm=function(n = 1, mean = rep(0, d), varcov)

R> {

R> d <- if (is.matrix(varcov))
R> ncol (varcov)

R> else 1

R> =z <- matrix(rnorm(n * d), n, d) /*J, chol(varcov)
R> y <- t(mean + t(z))
R> return(y)

R> }

R>

R> #H####HHH AR R AR RS
R> ## Simulation ##

R> #UHHAUHHUARBRHRABRRRUBRRURRR AR BB BRRRRRRH

R> set.seed(1)

R> n = 100

R> ### simulate coordinates from a uniform distribution

R> coords = cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates
R> coordsT = sort(runif(n,0,100)) #time coordinates (ordered)

R> Dist = as.matrix(dist(coords))
R> DistT = as.matrix(dist(coordsT))
R>

R> rho = 0.05 #spatial decay



R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
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rhoT = 0.01 #temporal decay
sep_par = 0.5 #separability parameter
sigma2 = 0.3 # variance of the process
alpha = ¢(0.5)
#Gneiting covariance
SIGMA = sigma2*(rhoT*DistT 2+1) "~ (-1)*
exp (-rho*Dist/(rhoT*DistT ~2+1) ~(sep_par/2))

Y = rmnorm(1,rep(alpha,times=n), SIGMA) #generate the linear variable
theta = c()
## wrapping step
for(i in 1:n)

{

thetali] = Y[i]%}(2*pi)
}

As in the spatial case we set values for the spatial and temporal range priors, we build training

and testing sets and we run the WrapSpTi function with a large number of iterations

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

1

### use this values as references for the
### definition of initial values and priors
rho_sp.min <- 3/max(Dist)
rho_sp.max <- rho_sp.min+0.5
rho_t.min <- 3/max(DistT)
rho_t.max <- rho_t.min+0.5
val <- sample(1:n,round(n*0.2)) #validation set
set.seed(100)
mod <- WrapSpTi(
X = theta[-val],
coords = coords[-val,],
times = coordsT[-val],
start = list("alpha" = c(1, 0.1),
"rho_sp" = c(runif(1,0.01,rho_sp.max),
runif(1,0.001,rho_sp.max)),
"rho_t" = c(runif(1,0.01,rho_t.max),
runif(1,0.001,rho_t.max)),
"sigma2" = c(0.1, 1),
"sep_par" = c(0.4, 0.01),
" = rep(0,length(theta))),
priors = list("rho_sp" = c(0.01,3/4),
"rho_t" = ¢(0.01,3/4),
"sep_par" = c(1,1),
"sigma2" = c(5,5),
"alpha" = ¢(0,20)

lit is reasonably fast with this data size
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R> )

R> sd_prop = list("sigma2" = 0.1,
R> "rho_sp" = 0.1,
R> "rho_t" = 0.1,
R> "sep_par" =0.1),
R> iter = 150000,

R> BurninThin = c(burnin = 50000,

R> thin = 10),

R> accept_ratio = 0.234,
R> adapt_param = c(start = 1,

R> end = 1000,
R> exp = 0.5),
R> n_chains =2,

R> parallel = TRUE ,

R> n_cores =2

R> )

The convergence check returns a Multivariate psrf of 1.01 and all parameters chains seem to
have reached convergence, as it can be seen in Figure 6

Again we can move to the prediction on the test sites.

R> Krig <- WrapKrigSpTi(

R>  WrapSpTi_out = mod,

R> coords_obs = coords[-val,],
R> coords_nobs = coords[val,],
R> times_obs = coordsT[-val],
R> times_nobs = coordsT[val],
R> x_obs = theta[-val]

R> )

R> ### checking the prediction

R> Wrap_Ape <- APEcirc(thetal[vall, Krig$Prev_out)
R> Wrap_CRPS <- CRPScirc(thetal[val], Krig$Prev_out)

The Average prediction error on the 20 test locations is 0.25 radians, ranging from 0.123 to
0.899, while the average CRPS is 0.122, with point values ranging from 0.010 to 0.545.

4.6. Spatio-temporal projected normal model

We simulate data using the same scheme of the wrapped spatio-temporal example, but the
simulated GP is here bivariate. The parameters are:

e constant mean alpha=(0.5,0.5)’ on each location;
e spatial decay rho=0.05;
e time decay rhoT=0.01;

e process variance sigma2=0.3;
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Figure 6: Trace plots for the wrapped normal space-time example
e tau=0.2;
e separability parameter sep_par=0.1.
After the GP is simulated, we obtain the projected normal realization using (9).
R> set.seed(1)
R> n <- 100

R> coords <- cbind(runif(n,0,100), runif(n,0,100))
R> coordsT <- cbind(runif(n,0,100))

R> Dist <- as.matrix(dist(coords))
R> DistT <- as.matrix(dist(coordsT))
R>

R> rho <- 0.05

R> rhoT <- 0.01
R> sep_par <- 0.1
R> sigma2 <- 0.3
R> alpha <- c(0.5)

21
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Figure 7: Data generated from a projected normal spatio-temporal process

R> SIGMA  <- sigma2*(rhoT*DistT 2+1) " (-1)*

R> exp (-rho*Dist/(rhoT*DistT ~2+1) "~ (sep_par/2))

R> tau <- 0.2

R>

R>Y <- rmnorm(1,rep(alpha,times=n),

R> kronecker (SIGMA,matrix(c(sigma2,sqrt(sigma2)*
R> tau, sqrt (sigma2)*tau,1 ),nrow=2)))

R> theta <- c()

R> for(i in 1:n)

R> {

R> thetal[i] <- atan2(Y[(i-1)*2+2],Y[(i-1)*2+1])
R> }

R> rose_diag(theta)

Data are plotted in Figure 7

Again we compute minimimum and maximum practical ranges, we define training and testing
sets, and we run the estimation of the projected normal spatio-temporal process.

R> set.seed(100)
R> mod = ProjSpTi(
R> X

R> coords

R> times

theta[-val],
coords[-val,],
coordsT[-val],

R> start = list("alpha" = c(1,1,pi/4,pi/4),
R> "rho_sp" = c(0.1, rho_sp.max),
R> "rho_t" = ¢(0.1, rho_t.max),
R> "sep_par" = c(0.4, 0.01),

R> "tau" = ¢(0.1, 0.5),

R> "sigma2" = c(0.1, 1),

R> "r = abs(rnorm( length(theta)) )),



R> priors = list("rho_sp" = ¢(0.001,3/4),
R> "rho_t" = ¢(0.001,3/4),
R> "sep_par" = c(1,1),

R> "tau" =c(-1,1),

R> "sigma2" = ¢(5,5),

R> "alpha_mu" = ¢c(0, 0),

R> "alpha sigma" = diag(10,2)),
R> sd_prop = list("sep_par'"= 0.1,

R> "sigma2" = 0.1,

R> "tau" =0.1,

R> "rho_sp" = 0.1,

R> "rho_t" = 0.1,

R> "sdr" = rep(.05,length(theta))),
R> iter = 150000,

R> BurninThin = c(burnin = 50000,

R> thin = 10),
R> accept_ratio = 0.234,
R>  adapt_param c(start = 1,

R> end = 1000,
R> exp = 0.5),
R> n_chains = 2,

R> parallel = TRUE,

R> n_cores =2

R> )

Convergence is achieved in a reasonable time, in both runs (Figure 8)

We move again to interpolation on the validation set

R> Pred.krig PNSpt <- ProjKrigSpTi(
R> ProjSpTi_out = mod,

R>  coords_obs coords[-val,],
R> coords_nobs coords([val,],
R> times_obs coordsT[-val],
R> times_nobs coordsT([val],
R> x_obs theta[-val]

R> )

And again we can check results using APE (average = 0.38, range= (0.057,0.813)) and CRPS
(average = 0.059, range= (0.009, 0.172)).

5. Concluding Remarks

In this paper we presented the CircSpaceTime package, that collects functions implementing
spatial and spatio-temporal Bayesian models allowing interpolation of dependent circular
data. The implemented models have been introduced in a series of papers that are briefly
summarized here (see Jona Lasinio et al. 2012; Wang and Gelfand 2013, 2014; Mastrantonio

23
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Figure 8: Trace plots of spatio temporal PN example

et al. 2016b, for details). The current version of the package do not include models with
nugget and allows for constant mean only. Future versions will include nugget and regression-
type mean. We also plan to include more models for dependent circular data spreading from
the works Bulla, Lagona, Maruotti, and Picone (2012), Lagona and Picone (2012), Bulla,
Lagona, Maruotti, and Picone (2015), Lagona, Picone, Maruotti, and Cosoli (2015) and
Maruotti, Punzo, Mastrantonio, and Lagona. (2016), that develop likelihood based estimation
for complex modeling of circular and cilindrical data.
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