
Working example of MOSS’ application on pan-cancer multi-omic

data.

Contents

Introduction. 2

Retrieving and loading pan-cancer data from repository. 2

Omic integration of pan-cancer omic data via sparse principal components. 3

Assessing pan-cancer associations between gene expression and copy number variants. 6

Session information. 8

References 9

1

Introduction.

In this document we show an application of MOSS on a large data set consisting of 33 cancer types across

5008 samples and and 60112 features (expression of 20319 genes -GE-, methylation at 28241 CpG islands

-METH-, and copy number variant intensity for 11552 genes -CNV-), from The Cancer Genome Atlas

(TCGA) data set (Network 2012). For a description of the data edition and quality controls, please refer to

(González-Reymúndez and Vázquez 2020). The whole example takes ~53 minutes on a Dell desktop computer

(XPS 8900, x64, 06B8, Intel i7-67000 CPU), running under Windows 10 (see session info at the end of the

document). To obtain the visual results in the following sections, packages ggplot2 (Wickham 2009) and

ComplexHeatmaps (Gu, Eils, and Schlesner 2016) must be installeld.

Retrieving and loading pan-cancer data from repository.

The following lines load MOSS and additional packages for visualizing results and handling FBM matrices.

require(bigstatsr)
require(ggplot2)
require(ggpmisc)
library(MOSS)

The following code assumes that you have downloaded the following files from here

• GE.RData

• METH.RData

• CNV.RData

and saved them in your current folder.

#Loading omic data.
load(file = "GE.RData")
load(file = "METH.RData")
load(file = "CNV.RData")

#Creating a list with omic blocks.
omic_blocks <- list("GE" = GE,

"METH" = METH,
"CNV"= CNV)

2

https://data.mendeley.com/datasets/r8p67nfjc8/1

Omic integration of pan-cancer omic data via sparse principal com-

ponents.

The following code shows how to run a sparse principal components analysis. By setting argument “ex-

act.dg=FALSE”, we can explore different degrees of sparsity without a direct correspondence to number of

features. This allows Elastic Net to select a potentially larger number of non_zero elements, larger than the

specified degree of sparsity. In this way, we can use a less dense grid to tune the degree of sparsity. In this

example, however, we will work with a small grid of values ranging from 1 to 100.

set.seed(347)
out <- MOSS::moss(data.blocks = omic_blocks,

method = 'pca',
scale.arg = TRUE,
norm.arg = TRUE,
K.X = 50,
tSNE = list(perp=100,

n.iter=1e3,
n.samples=1),

clus.lab = MOSS::metdat(x = rownames(GE),
i = 1),

nu.v = 1:100,
exact.dg = FALSE,
use.fbm = TRUE,
alpha.v = 0.5,
plot = TRUE)

The following code returns a plot of eigenvalues, together with their first and second derivative across PC
index:

#Showing scree plot.
out$scree_plot

3

A tSNE map:

out$tSNE_plot

4

A plot with the marginal variation in PEV across degrees of sparsity at features levels is presented bellow.

The numbers in the peaks of first and second-reciprocal derivatives show the point of rapid and/or accelerated

changes. The minimum between the global maximum in the trajectory of first and second derivative,

respectively, is automatically chosen as ‘optimal’:

out$tun_dgSpar_plot

5

Assessing pan-cancer associations between gene expression and

copy number variants.

The code bellow shows how to fit a sparse low rank regression model between GE and CNV. Notice that,

in this case, the number of latent factors K.X will be used to approximate the CNV data so it is easy

to compute the inverses needed to obtain B. Ideally, the user would want a higher value to assure the

approximation is good enough. The value of K.Y, on the other hand, will control how many eigenvectors

will be used to approximate B. In this case, the left eigenvectors represent CNV, and the right ones, GE.

Sparsity in these vectors can then be used to select what combination of genes and CNVs have effects different

from zero.

set.seed(seed = 347)
out2 <- moss(data.blocks = omic_blocks[-2],

6

resp.block = 1,
method = 'lrr',
scale.arg = TRUE,
norm.arg = TRUE,
K.X = 50,
K.Y = 2,
nu.v = 100,
nu.u = 100,
exact.dg=TRUE,
alpha.v = 0.5,
alpha.u = 0.5,
use.fbm = TRUE,
plot = TRUE)

B.sub <- t(x = out$B[which(x = rowMeans(x = out2$sparse$u != 0) > 0),
which(rowMeans(out2$sparse$v != 0) > 0)])

h <- ComplexHeatmap::Heatmap(matrix = B.sub,
column_title = "Copy number variants",
row_title = "Gene expression",
show_column_names = FALSE,
show_row_names = FALSE,
show_heatmap_legend = FALSE)

7

Session information.

sessionInfo()

R version 3.6.2 (2019-12-12)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

8

other attached packages:
[1] ggpubr_0.2.4 magrittr_1.5 MOSS_0.1.0 ggplot2_3.2.1 bigstatsr_1.1.4

testthat_2.3.1

loaded via a namespace (and not attached):
[1] fs_1.3.1 flock_0.7 usethis_1.5.1 devtools_2.2.1
[5] doParallel_1.0.15 RColorBrewer_1.1-2 rprojroot_1.3-2 tools_3.6.2
[9] backports_1.1.5 R6_2.4.1 lazyeval_0.2.2 colorspace_1.4-1

[13] GetoptLong_0.1.8 withr_2.1.2 tidyselect_0.2.5 gridExtra_2.3
[17] prettyunits_1.1.1 processx_3.4.1 compiler_3.6.2 bigparallelr_0.2.3
[21] cli_2.0.1 xml2_1.2.2 desc_1.2.0 labeling_0.3
[25] scales_1.1.0 callr_3.4.1 stringr_1.4.0 digest_0.6.23
[29] dbscan_1.1-5 rmarkdown_2.1 htmltools_0.4.0 pkgconfig_2.0.3
[33] sessioninfo_1.1.1 rlang_0.4.3 GlobalOptions_0.1.1 ggthemes_4.2.0
[37] rstudioapi_0.10 shape_1.4.4 farver_2.0.3 dplyr_0.8.3
[41] Matrix_1.2-18 Rcpp_1.0.3 munsell_0.5.0 fansi_0.4.1
[45] viridis_0.5.1 lifecycle_0.1.0 stringi_1.4.3 yaml_2.2.1
[49] ggpmisc_0.3.3 pkgbuild_1.0.6 Rtsne_0.15 plyr_1.8.5
[53] grid_3.6.2 parallel_3.6.2 crayon_1.3.4 lattice_0.20-38
[57] cowplot_1.0.0 circlize_0.4.8 knitr_1.27 ComplexHeatmap_2.2.0
[61] ps_1.3.0 pillar_1.4.3 rjson_0.2.20 ggsignif_0.6.0
[65] reshape2_1.4.3 codetools_0.2-16 pkgload_1.0.2 bigassertr_0.1.2
[69] glue_1.3.1 evaluate_0.14 remotes_2.1.0 splus2R_1.2-2
[73] png_0.1-7 foreach_1.4.7 gtable_0.3.0 purrr_0.3.3
[77] clue_0.3-57 assertthat_0.2.1 xfun_0.12 RSpectra_0.16-0
[81] roxygen2_7.0.2 viridisLite_0.3.0 tibble_2.1.3 iterators_1.0.12
[85] memoise_1.1.0 cluster_2.1.0 ellipsis_0.3.0

References

González-Reymúndez, Agustín, and Ana I. Vázquez. 2020. “Multi-omic signatures identify pan-cancer

classes of tumors beyond tissue of origin.” Scientific Reports 10 (1). Nature Publishing Group: 8341.

doi:10.1038/s41598-020-65119-5.

Gu, Zuguang, Roland Eils, and Matthias Schlesner. 2016. “Complex heatmaps reveal patterns and cor-

relations in multidimensional genomic data.” Bioinformatics 32 (18). Oxford University Press: 2847–9.

doi:10.1093/bioinformatics/btw313.

Network, The Cancer Genome Atlas Research. 2012. “Comprehensive genomic characterization of squamous

cell lung cancers.” Nature 489 (7417). Nature Publishing Group: 519–25. doi:10.1038/nature11404.

Wickham, Hadley. 2009. Ggplot2 : elegant graphics for data analysis. Springer.

9

https://doi.org/10.1038/s41598-020-65119-5
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1038/nature11404

	Introduction.
	Retrieving and loading pan-cancer data from repository.
	Omic integration of pan-cancer omic data via sparse principal components.
	Assessing pan-cancer associations between gene expression and copy number variants.
	Session information.
	References

