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addalmostexact Use a Penalty to Obtain a Near Exact Match

Description

A near-exact match (also known as an almost exact match) for a nominal covariate maximizes the
number of pairs that are exactly matched for the nominal covariate. This is done by adding a large
penalty to the covariate distance between individuals with different values of the nominal covariate.
The topic is discussed in Section 10.2 of the second edition of "Design of Observational Studies".

Usage

addalmostexact(dmat, z, f, mult = 10)

Arguments

dmat A distance matrix with one row for each treated individual and one column for
each control. Often, this is either the Mahalanobis distance based on covariates,
’mahal’, or else a robust variant produced by ’smahal’.

z z is a vector that is 1 for a treated individual and 0 for a control. length(z) must
equal sum(dim(dmat)).

f A vector or factor giving the levels of the nominal covariate. length(f) must
equal length(z).

mult Let mx be the largest distance in dmat. Then mult*mx is added to each distance
in dmat for which the treated and control individuals have different values of f.
For large enough values of mult, this will ensure that a minimum distance match
maximizes the number of individuals who are exactly matched for f.
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Details

Very large values of mx may result in numerical instability or slow computations.

Used informally, a small value of mx, say 1 or 1/10, may not maximize the number of exactly
matched pairs, but it may usefully increase the number of exactly matched pairs.

Value

Returns the penalized distance matrix.

Note

Section 10.2 of "Design of Observational Studies", second edition, discusses almost-exact match-
ing, also called near-exact matching. The topic is also discussed in section 9.2 of the first edition.

The matching functions in the ’DOS2’ package are aids to instruction or self-instruction while
reading "Design of Observational Studies". As in the book, these functions break the task of match-
ing into small steps so they are easy to understand in depth. In practice, matching entails a fair
amount of book-keeping best done by a package that automates these tasks. Consider R packages
’optmatch’, ’rcbalance’, ’DiPs’, ’designmatch’ or ’bigmatch’. Section 14.10 of "Design of Obser-
vational Studies", second edition, discusses and compares several R packages for optimal matching.

Author(s)

Paul R. Rosenbaum

References

Zubizarreta, J. R., Reinke, C. E., Kelz, R. R., Silber, J. H. and Rosenbaum, P. R. (2011) <doi:10.1198/tas.2011.11072>
"Matching for several sparse nominal variables in a case control study of readmission following
surgery". The American Statistician, 65(4), 229-238. Combines near-exact matching with fine
balance for the same covariate.

Examples

data(costa)
z<-1*(costa$welder=="Y")
aa<-1*(costa$race=="A")
smoker=1*(costa$smoker=="Y")
age<-costa$age
x<-cbind(age,aa,smoker)
dmat<-mahal(z,x)
# Mahalanobis distances
round(dmat[,1:6],2)
# Mahalanobis distanced penalized for mismatching on smoking.
dmat<-addalmostexact(dmat, z, smoker, mult = 10)
# The first treated subject (row labeled 27) is a nonsmoker, but the
# third control (column 3) is a smoker, so there is a big penalty.
round(dmat[,1:6],2)



4 addcaliper

addcaliper Implement a Caliper Using a Penalty Function in Optimal Matching

Description

A caliper forces a close match on a continuous covariate, often the propensity score (Rosenbaum
and Rubin 1985). Alternatively or additionally, a caliper may be imposed on a prognostic score
estimated from some other independent data set (Hansen 2008). Rosenbaum and Rubin (1985) sug-
gested minimizing the Mahalanobis distance within calipers defined by the propensity score. If the
caliper is implemented using a penalty function, the caliper cannot create infeasibility. Implemen-
tation of a caliper using a penalty function is discussed in Chapter 9 of "Design of Observational
Studies", second edition.

Usage

addcaliper(dmat, z, p, caliper = 0.1, penalty = 1000)

Arguments

dmat A distance matrix with one row for each treated individual and one column for
each control. Often, this is either the Mahalanobis distance based on covariates,
’mahal’, or else a robust variant produced by ’smahal’.

z z is a vector that is 1 for a treated individual and 0 for a control. The number
of treated subjects, sum(z), must equal the number of rows of dmat, and the
number of potential controls, sum(1-z), must equal the number of columns of
dmat.

p A vector covariate to which the caliper will be applied. Often, p is the propensity
score. length(p) must equal length(z).

caliper A positive number. A penalty will be added to row i and column j of the distance
matrix dmat if treated unit i and control unit j have values of p that differ in ab-
solute value by more than caliper*sd(p), the default being a tenth of the standard
deviation of p. This is different from the code in the first edition of "Design of
Observational Studies", where caliper defaulted to 0.2, rather than 0.1.

penalty A positive number. penalty determines the magnitude of the penalty that is
added to the distance matrix when the caliper is violated. Let pt and pc be the
values of p for a treated individual and a control. If |pt-pc| <= caliper*sd(p), then
nothing is added to dmat for these individuals. Otherwise, define gap = |pt-pc|-
caliper*sd(p); then, the distance between these individuals in dmat is increased
by gap*penalty. So there is no penalty inside the caliper, but dmat is increased
rapidly as violation of the caliper increases in magnitude. A reasonable value of
penalty will depend upon the units in which p is measured, and the default values
are reasonable starting points for the propensity score expressed as a probability.
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Details

By calling ’addcaliper’ several times, calipers may be imposed on several variables, say a propensity
score and age. If you use several penalties, say from addcaliper, addalmostexact, and fine, then you
need to pay some attention to their relative magnitudes to ensure that they express your view of the
relative importance of the conditions they impose.

Value

Returns the penalized distance matrix.

Note

The use of a penalty function to implement a caliper is discussed in chapter 9 of the second edition
of "Design of Observational Studies". It is also discussed in chapter 8 of the first edition.

The matching functions in the ’DOS2’ package are aids to instruction or self-instruction while
reading "Design of Observational Studies". As in the book, these functions break the task of match-
ing into small steps so they are easy to understand in depth. In practice, matching entails a fair
amount of book-keeping best done by a package that automates these tasks. Consider R packages
’optmatch’, ’rcbalance’, ’DiPs’, ’designmatch’ or ’bigmatch’. Section 14.10 of "Design of Obser-
vational Studies", second edition, discusses and compares several R packages for optimal matching.

Author(s)

Paul R. Rosenbaum

References

Hansen, B. B. and Klopfer, S. O. (2006) <doi:10.1198/106186006X137047> "Optimal full match-
ing and related designs via network flows". Journal of Computational and Graphical Statistics,
15(3), 609-627. (’optmatch’ package)

Hansen, B. B. (2007) <https://www.r-project.org/conferences/useR-2007/program/presentations/hansen.pdf>
"Flexible, optimal matching for observational studies". R News, 7, 18-24. (’optmatch’ package)

Hansen, B. B. (2008) <doi:10.1093/biomet/asn004> "The prognostic analogue of the propensity
score". Biometrika, 95(2), 481-488.

Rosenbaum, P. R. and Rubin, D. B. (1985) <doi:10.1080/00031305.1985.10479383> "Construct-
ing a control group using multivariate matched sampling methods that incorporate the propensity
score". The American Statistician, 39, 33-38.

Examples

data(costa)
z<-1*(costa$welder=="Y")
aa<-1*(costa$race=="A")
smoker=1*(costa$smoker=="Y")
age<-costa$age
x<-cbind(age,aa,smoker)
dmat<-mahal(z,x)
# Mahalanobis distances
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round(dmat[,1:6],2)
# Compare with Table 9.5 in Design of Observational
# Studies, 2nd edition.
# Impose propensity score calipers
prop<-glm(z~age+aa+smoker,family=binomial)$fitted.values # propensity score
# Mahalanobis distanced penalized for violations of a propensity score caliper.
# This version is used for numerical work.
dmat<-addcaliper(dmat,z,prop,caliper=.5)
round(dmat[,1:6],2)
# Compare with Table 9.5 in "Design of Observational
# Studies", 2nd edition.
## Not run:
# Find the minimum distance match within propensity score calipers.
optmatch::pairmatch(dmat,data=costa)

## End(Not run)
# Conceptual versions with infinite
# distances for violations of propensity caliper.
dmat[dmat>20]<-Inf
round(dmat[,1:6],2)
# Compare with Table 9.5 in "Design of Observational
# Studies", 2nd edition.

angristlavy Class Size and Academic Performance – Maimonidies Rule

Description

This data set is from Angrist and Lavy (1999). There are 86 pairs of two Israeli schools, one with
slightly more than 40 students in the fifth grade, the other with 40 or fewer in the fifth grade, together
with test scores in reading and math. This example is discussed in Chapters 1, 5 and 18 of "Design
of Observational Studies".

Usage

data("angristlavy")

Format

A data frame with 172 observations on the following 9 variables.

scode School ID

numclass Number of classes in the fifth grade, 1 or 2.

cohsize Total number of students in the fifth grade, near 40 for these schools.

avgmath Average grade in math in the fifth grade.

avgverb Average verbal grade in the fifth grade.

tipuach Percent of disadvantaged students. Used to form matched pairs.



antineoplastic 7

clasz Average class size in the fifth grade, equal to cohsize/numclass

z 1 if cohsize<=40, 0 if cohsize>40.

pair pair ID, 1, 2, ..., 86

Details

This example is discussed in Chapters 1, 5, and 18 of the second edition of "Design of Observational
Studies".

As discussed by Angrist and Lavy (1999), Maimonidies rule requires that a class of more than 40
be divided to form two or more classes of at most 40, so there is a large discontinuity in class size
at 40: at 40 students in the 5th grade, there is one class of 40, but at 41 students, there are two
classes of average size 20.5. So the enrolement of one student should cut the class size roughly in
half. Adherence to Maimonidies rule is good but not perfect. Pairs of schools were matched for the
percent of disadvantaged students (tipuach).

References

Angrist, J. D. and Lavy, V. (1999) <doi:10.1162/003355399556061> "Using Maimonides’ rule to
estimate the effect of class size on scholastic achievement". The Quarterly Journal of Economics,
114, 533-575.

Angrist, J. D. and Krueger, A. B. (1999) <doi:10.1016/S1573-4463(99)03004-7> "Empirical strate-
gies in labor economics". In Handbook of Labor Economics (Vol. 3, pp. 1277-1366). Elsevier.

Examples

# Figure 1.1 in Chapter 1 of "Design of Observational Studies", 2nd edition
data(angristlavy)
attach(angristlavy)
grp<-factor(z,levels=c(1,0),labels=c("31-40","41-50"),ordered=TRUE)
oldpar<-par(mfrow=c(2,2))
boxplot(tipuach~grp,main="Disadvantaged",ylab="Percent")
boxplot(clasz~grp,main="Class Size",ylab="Students")
boxplot(avgmath~grp,main="Math",ylab="Average Score")
boxplot(avgverb~grp,main="Verbal",ylab="Average Score")
detach(angristlavy)
par(oldpar)

antineoplastic Biomonitoring of Workers Exposed to Antineoplastic Drugs

Description

Two groups of exposed workers compared to unexposed controls, where exposed workers prepared
antineoplasitic drugs, protected either only by gloves or by gloves and a laminar hood with vertical
air flow. The outcome is the comet assay applied to blood lymphocytes. The comet assay is a
measure of damage to DNA. Data from Kopjar and Garaj-Vrhovac (2001). Illustrates the concept
of evidence factors in Chapter 20 of Design of Observational Studies, second edition.
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Usage

data("antineoplastic")

Format

A data frame with 59 observations on the following 9 variables.

id ID number. See Tables I and III of Kopjar and Garaj-Vrhovac (2001).

age Age in years

str Three age strata, cut at the thirds of age.

grp Gloves = exposed nurses/doctors protected only by gloves, Hood = exposed nurses/doctors
protected by both gloves and a laminar hood with vertical air flow, Control = students and
office workers not exposed to antineoplastic drugs.

tailmoment Tail moment of the comet assay.

taillength Tail length of the comet assay mu-m.

z1 1 if exposed, 0 if control

z2 1 if Gloves, 0 if Hood, NA if control

f2 TRUE if in factor 2, FALSE otherwise

Details

The data set is intended to illustrate evidence factors, comparing exposed workers to controls, and
workers protected only by gloves to workers with the additional protecting of a laminar hood with
vertical air flow..

Source

From Tables I and III of Kopjar and Garaj-Vrhovac (2001).

References

Kopjar, N. and Garaj-Vrhovac, V. (2001) <doi:10.1093/mutage/16.1.71> "Application of the alka-
line comet assay in human biomonitoring for genotoxicity: a study on Croation medical personnel
handling antineoplastic drugs". Mutagenesis 16, 71-78.

Examples

data(antineoplastic)
attach(antineoplastic)
table(str)
table(grp)
oldpar<-par(mfrow=c(1,2))
boxplot(tailmoment~grp,ylab="Tail Moment",

main="3 Groups",ylim=c(8,20))
boxplot(tailmoment~z1,names=c("Control","Exposed"),

main="Factor 1",ylab="Tail Moment",ylim=c(8,20))
boxplot(tailmoment[f2]~z2[f2],names=c("Hood","Gloves"),

ylab="Tail Moment",main="Factor 2",ylim=c(8,20))
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y<-senstrat::hodgeslehmann(tailmoment,z1,str)
# First factor
senstrat::senstrat(y,z1,str,gamma=20)
# Second factor
senstrat::senstrat(y[f2],z2[f2],str[f2],gamma=2.75)
detach(antineoplastic)
par(oldpar)

cohere Sensitivity Analysis for a Coherent Signed Rank Statistic With Multi-
plicity Correction

Description

For multiple outcomes in an observation study, computes a weighted combination of signed rank
statistics, one for each outcome, and performs either a one-sided randomization test or an analysis
of sensitivity to departures from random assignment; see Rosenbaum (1997). Each matched set
contains one treated individual and one control. The signed rank statistics can be either Wilcoxon’s
signed rank statistic or the new U-statistic in Rosenbaum (2011). The Scheffe method is described in
Rosenbaum (2016). For one outcome, use the functions ’senWilcox’ or ’senU’, instead of ’cohere’.
The method is discussed in Sections 5.2.3, 18.2 and 18.3 of "Design of Observational Studies",
second edition.

Usage

cohere(y,z,mpair,w=NULL,gamma=1,m=NULL,m1=NULL,m2=NULL,
apriori=FALSE,Scheffe=FALSE,exact=NULL)

Arguments

y A matrix of responses with no missing data. Different columns of y are different
variables. If present, the column names of y are used to label output.

z Treatment indicators, z=1 for treated, z=0 for control with length(z)==dim(y)[1].

mpair Matched set indicators, 1, 2, ..., sum(z) with length(mset)==dim(y)[1]. The
vector mset may contain integers or may be a factor.

w Vector of weights to be applied to the signed rank statistics for the several out-
comes with length(w)==dim(y)[2]. At least one weight must be nonzero. If w
is NULL, then w=c(1,1,...,1) is used, as in Rosenbaum (1997).

gamma gamma is the sensitivity parameter Γ, where Γ ≥ 1. Setting Γ = 1 is equivalent
to assuming randomized treatment assignment within the matched pairs, and it
performs a randomization test.

m See m2.

m1 See m2.
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m2 The default sets m, m1 and m2 to NULL, and in this case Wilcoxon’s signed
rank statistic is used. Otherwise, the new U-statistic in Rosenbaum (2011) is
used, and the quantities (m,m1,m2) define the U-statistic, as they do for a single
outcome in the senU() function. If (m,m1,m2) are three integers such that 1 <=
m1 <= m2 <= m, then the triple (m,m1,m2) defines a U statistic. If (m,m1,m2)
= (1,1,1), then the U statistic is the sign test statistic. If (m,m1,m2) = (2,2,2),
then it is the U statistic that closely approximates Wilcoxons signed rank test. If
m=m1=m2, then the U statistic is the test of Stephenson (1981). The general U
statistic is discussed in Rosenbaum (2011).

apriori If Scheffe=FALSE and apriori=TRUE, then the weights w are assumed to have
been chosen a priori, and a one-sided, uncorrected P-value is reported for gamma=1
or an upper bound on the one-sided, uncorrected P-value is reported for gamma>1.
In either case, this is a Normal approximation based on the central limit theorem
and equals 1-pnorm(deviate).

Scheffe If Scheffe=TRUE, then the weights w are assumed to have been chosen after
looking at the data. In this case, the P-value or P-value bound is corrected using
Scheffe projections. The approximate corrected P-value or P-value bound is
1-pchisq(max(0,deviate)^2,dim(y)[2]). See Rosenbaum (2016). The Scheffe
correction permits you to look at every possible w, controlling the family-wise
error rate. In particular, a Scheffe correction entitles you to look in both tails,
which you do by considering both w and -w.
See the planScheffe() function and Rosenbaum (2019) for a combination of an
apriori and Scheffe comparisons, as discussed in section 18.3 of "Design of
Observational Studies", second edition.
If Scheffe=FALSE and apriori=FALSE, then the deviate is returned, but no P-
value is given. This is useful with planScheffe() because the one planned com-
parison and the infinitely many discovered comparisons have different critical
values.

exact exact plays no role if m=NULL, m1=NULL, m2=NULL. Otherwise, exact plays
the same role in cohere() that it plays in senU(). In the new U-statistic in Rosen-
baum (2011), there are both exact ranks and approximate ranks, and exact de-
termines which will be used. Approximate ranks are more appropriate if the
sample size is large. The exact ranks use combinatorial coefficients that become
very large when the sample size is large. If exact is NULL, then exact is set to
TRUE if length(z) <= 50, and is set to FALSE if length(z) > 50. The ranks used
by the U statistic involve combinatorial coefficiencts that grow rapidly with in-
creasing sample size. If exact=TRUE, these ranks are computed exactly using
expression (8) in Rosenbaum (2011). If exact=FALSE, the ranks are computed
by an asymptotic approximation that does not involve large combinatorial coef-
ficients, specifically expression (9) in Rosenbaum (2012).

Details

With w=c(1,1,...,1) and apriori=TRUE, this is the coherent Wilcoxon signed rank statistic in Rosen-
baum (1997) and Rosenbaum (2002, Section 9.2). Essentially, the signed rank statistics for several
outcomes are added together. It is a one-sided test, in which the several outcomes need to pointed
in the same direction, so that large values of each column of y signify the expected direction of the
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treatment effect. Setting a non-null value for (m,m1,m2) is the analogous statistic but with the ranks
in Rosenbaum (2011) instead of Wilcoxon’s ranks.

With Scheffe=TRUE, the procedure permits you to test every w that is not (0,0,...,0), yet control the
family-wise error rate. This is essentially the method in Rosenbaum (2016), except the test-statistics
are signed rank statistics rather than M-statistics.

Used in conjunction with the planScheffe() function, you can test one planned w and all possible
w’s controlling the family-wise error rate. The size or alpha for the test is shared equitably between
the one planned w and all the other w’s, so the critical value for the one planned comparison is not
greatly increased. The one-sided critical value for the one planned w is close to the critical value
for a two-sided test, although you do test in the opposite tail when you try -w in place of w, albeit
with a different critical value. See Rosenbaum (2019).

Value

deviate The upper bound on the standardized deviate that is used to approximate P-
values using the Normal or chi-square distribution; see apriori and Scheffe in
the arguments.

aprioriPval If Scheffe=FALSE and apriori=TRUE, the deviate is compared to the upper tail
of the Normal distribution to produce either a P-value for gamma=1 or an upper
bound on the P-value for gamma>1.

ScheffePval If Scheffe=TRUE, the deviate is compared to the upper tail of the chi-square
distribution to produce either a P-value for gamma=1 or an upper bound on the
P-value for gamma>1.

weights The weights possibly relabeled with colnames of y.

Note

This method is discussed in chapters 5 and 18 of the second edition of "Design of Observational
Studies".

For confidence intervals for individual outcomes, use function senWilcox() or senU().

Author(s)

Paul R. Rosenbaum.

References

Rosenbaum, P. R. (1997)<doi:10.2307/2533957> "Signed rank statistics for coherent predictions".
Biometrics, 50, 368-374.

Rosenbaum, P. R. (2002) <doi:10.1007/978-1-4757-3692-2_3> "Observational Studies" (2nd Edi-
tion). New York: Springer. See section 9.2.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> "A new U-statistic with supe-
rior design sensitivity in matched observational studies". Biometrics, 67(3), 1017-1027.

Rosenbaum, P. R. (2016) <doi:10.1214/16-AOAS942> "Using Scheffe projections for multiple out-
comes in an observational study of smoking and periondontal disease". Annals of Applied Statistics,
10, 1447-1471.
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Rosenbaum, P. R. (2019) <doi:10.1093/biostatistics/kxy055> "Combining planned and discovered
comparisons in observational studies". Biostatistics, to appear.

Scheffe, H. (1953) <doi:10.1093/biomet/40.1-2.87> "A method for judging all contrasts in the anal-
ysis of variance". Biometrika, 40, 87-104.

Examples

# Reproduces parts of Table 5.3 from Design of Observational Studies
data(angristlavy)
attach(angristlavy)
cohere(cbind(avgmath,avgverb),1-z,pair,w=c(1,1),apriori=TRUE)
cohere(cbind(avgmath,avgverb),1-z,pair,w=c(1,0),apriori=TRUE)
cohere(cbind(avgmath,avgverb),1-z,pair,w=c(0,1),apriori=TRUE)
cohere(cbind(avgmath,avgverb),1-z,pair,w=c(1,1),gamma=1.65,apriori=TRUE)

# Uses the technique in Rosenbaum (2019)
# Rejection occurs at gamma=1.5 as 2.054>1.895
cohere(cbind(avgmath,avgverb),1-z,pair,w=c(1,1),gamma=1.5)
planScheffe(2)

detach(angristlavy)

data(teeth)
attach(teeth)
# Coherent Wilcoxon signed rank test
cohere(cbind(either4up,either4low),smoker,mset,apriori=TRUE)

# Sensitivity analysis, gamma=2
cohere(cbind(either4up,either4low),smoker,mset,

gamma=2,apriori=TRUE)

# Upper teeth only
cohere(cbind(either4up,either4low),smoker,mset,

w=c(1,0),gamma=2,apriori=TRUE)
# This is the same as the univariate test
y<-either4up[smoker==1]-either4up[smoker==0]
senWilcox(y,gamma=2)

# Try various weights, correcting by Scheffe's method
cohere(cbind(either4up,either4low),smoker,mset,

w=c(1,2),gamma=2,Scheffe=TRUE)

# Replace Wilcoxon's ranks with the new U-statistic
cohere(cbind(either4up,either4low),smoker,mset,

w=c(1,2),gamma=2,Scheffe=TRUE,m=8,m1=6,m2=8)
detach(teeth)

costa Welding and DNA-Protein Crosslinks
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Description

This data set is from Costa et al. (1993) and it describes 21 welders and 26 potential controls. All
are men. The outcome is a measure of genetic damage; specifically, dpc is a measure of DNA-
protein cross-links. There are 3 covariates, age, race and smoking. This tiny example is used to
illustrate the concepts of multivariate matching in Chapter 9 of "Design of Observational Studies",
second edition. The example is useful because its tiny size permits close inspection of the details
of multivariate matching, but its small sample size and limited number of covariates make it highly
atypical of matching in observational studies.

Usage

data("costa")

Format

A data frame with 47 observations on the following 6 variables.

subject Within group ID number.

age Age in years.

race AA=African-American, C=Caucasian

smoker Y=yes, N=no

welder Y=yes/treated, N=no/control

dpc DNA-Protein Cross-links (percent)

Source

The data are from Costa et al. (1993). The data are used as a tiny example in Chapter 9 of "Design
of Observational Studies", second edition.

References

Costa, M., Zhitkovich, A. and Toniolo, P. (1993) <https://cancerres.aacrjournals.org/content/53/3/460>
"DNA-protein cross-links in welders: molecular implications". Cancer research, 53(3), 460-463.

Examples

data(costa)
boxplot(costa$dpc~costa$welder,

xlab="Control (N) or Welder (Y)",
ylab="DNA-Protein Cross-links Percent")
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crosscut Crosscut Test and its Sensitivity Analysis

Description

Computes the cross-cut test and its sensitivity analysis. The cross-cut test is a nonparametric test of
dose-response correlation with good design sensitivity when used for causal inference in observa-
tional studies.

Usage

crosscut(x, y, ct = 0.25, gamma = 1, LS=FALSE)

Arguments

x Doses of treatment.

y Response.

ct The quantile that defines the cross-cut. By default, the cross-cut is at the outer
.25 of the data, the lower 25 percent and the upper 75 percent.

gamma Sensitivity parameter, gamma>=1.

LS If LS=TRUE, a large sample test is performed. If LS=FALSE, an exact test is
performed. For LS=FALSE, the mh function in the ’sensitivity2x2xk’ package
is used. For LS=TRUE, the mhLS function in the ’sensitivity2x2xk’ package is
used.

Details

Performs a one-sided test of no association against positive association, together with a sensitivity
analysis. The method is described in Rosenbaum (2016), used in Rosenbaum (2017). An adaptive
cross-cut statistic is discussed in Rosenbaum and Small (2017); it cuts at several quantiles and picks
the best. See Section 19.4 of "Design of Observational Studies"", second edition.

Value

quantiles Quantiles that define the crosscut

table A 2x2 table

output Output from mh or mhLS when applied to table. The functions mh and mhLS
are from the sensitivity2x2xk package. The output includes a one-sided P-value.

Note

The ’crosscut’ function makes use of ’mh’ and ’mhLS’ from the ’sensitivity2x2xk’ package.

Author(s)

Paul R. Rosenbaum
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References

Rosenbaum, P. R. (2016) <doi:10.1111/biom.12373> "The crosscut statistic and its sensitivity to
bias in observational studies with ordered doses of treatment". Biometrics, 72(1), 175-183.

Rosenbaum, P. R. (2017) <doi:10.1214/17-STS621> "The general structure of evidence factors in
observational studies". Statist Sci 32, 514-530.

Rosenbaum, P. R. and Small, D. S. (2017) <doi:10.1111/biom.12591> "An adaptive Mantel–Haenszel
test for sensitivity analysis in observational studies". Biometrics, 73(2), 422-430.

Examples

data(periodontal)
attach(periodontal)
crosscut(cigsperday[z==1],pcteither[z==1]-pcteither[z==0],ct=.2)
crosscut(cigsperday[z==1],pcteither[z==1]-pcteither[z==0],ct=.2,gamma=1.25)
crosscut(cigsperday[z==1],pcteither[z==1]-pcteither[z==0],ct=.2,gamma=1.25,LS=TRUE)
crosscut(cigsperday[z==1],pcteither[z==1]-pcteither[z==0],ct=1/3)
detach(periodontal)

crosscutplot Scatterplot Associated with the Cross-Cut Test

Description

A scatterplot of y against x, with the points used by the cross-cut test in black, and the remaining
points in grey. See Figure 19.2 in "Design of Observational Studies", second edition.

Usage

crosscutplot(x, y, ct = 0.25, xlab = "", ylab = "", main = "", ylim = NULL)

Arguments

x Variable to be plotted on the horizontal axis.

y Variable to be plotted on the vertical axis.

ct The quantile that defines the crosscut. By default, the crosscut is at the outer .25
of the data, the lower 25 percent and the upper 75 percent.

xlab Label for the x axis.

ylab Label for the y axis.

main Title of the plot.

ylim Limits for the y axis. See example.

Value

A scatter plot.
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Author(s)

Paul R. Rosenbaum

References

Rosenbaum, P. R. (2016) <doi:10.1111/biom.12373> "The crosscut statistic and its sensitivity to
bias in observational studies with ordered doses of treatment". Biometrics, 72(1), 175-183.

Rosenbaum, P. R. (2017) <doi:10.1214/17-STS621> "The general structure of evidence factors in
observational studies". Statistical Science 32, 514-530.

Examples

# Figure 1 in Rosenbaum (2017)
data(periodontal)
attach(periodontal)
m<-matrix(1:2,1,2)
layout(m,widths=c(1,2))
boxplot(pcteither[z==1]-pcteither[z==0],ylab="Smoker-Control Difference",

main="(i)",xlab="Matched Pairs",ylim=c(-100,100))
abline(h=0,lty=2)
crosscutplot(cigsperday[z==1],pcteither[z==1]-pcteither[z==0],

ct=.2,ylab="Smoker-Control Difference",
xlab="Cigarettes per Day",main="(ii)",ylim=c(-100,100))

abline(h=0,lty=2)
detach(periodontal)
layout(1)

dynarski A Natural Experiment Concerning Subsidized College Education

Description

The data are from Susan Dynarski (2003)’s study of the effects of a subsidy for college education
provided Social Security to children whose fathers had died. The subsidy was eliminated in 1982.
As presented here, the data are only a portion of the data used in Dynarski (2003), specifically the
period from 1979-1981 when the subsidy was available. The data set here is Table 14.1 of "Design
of Observational Studies" (2nd edition), where it was used with the limited goal of illustrating
matching techniques.

Usage

data("dynarski")
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Format

A data frame with 2820 observations on the following 10 variables.

id identification number

zb treatment indicator, zb=1 if 1979-1981 with father deceased, or zb=0 if 1979-1981 with father
alive

faminc family income, in units of tens of thousands of dollars

incmiss indicator for missing family income

black 1 if black, 0 otherwise

hisp 1 if hispanic, 0 otherwise

afqtpct test score percentile, Armed Forces Qualifications Test

edmissm indicator for missing education of mother

edm education of mother, 1 is <high school, 2 is high school, 3 is some college, 4 is a BA degree or
higher

female 1 if female, 0 if male

Details

The examples reproduce steps in Chapter 14 of "Design of Observational Studies" (2nd edition).
Portions of the examples require you to load Ben Hansen’s ’optmatch’ package and accept its aca-
demic license; these portions of the examples do not run automatically. Hansen’s ’optmatch’ pack-
age uses the Fortran code of Bertsekas and Tseng (1988).

Source

Dynarski (2003).

References

Bertsekas, D. P. and Tseng, P. (1988) <doi:10.1007/BF02288322> "The relax codes for linear min-
imum cost network flow problems". Annals of Operations Research, 13(1), 125-190.

Dynarski, S. M. (2003) <doi:10.1257/000282803321455287> "Does aid matter? Measuring the
effect of student aid on college attendance and completion". American Economic Review, 93(1),
279-288.

Hansen, B. B. (2007) <https://www.r-project.org/conferences/useR-2007/program/presentations/hansen.pdf>
"Flexible, optimal matching for observational studies". R News, 7, 18-24.

Hansen, B. B. and Klopfer, S. O. (2006) <doi:10.1198/106186006X137047> "Optimal full match-
ing and related designs via network flows". Journal of Computational and Graphical Statistics,
15(3), 609-627.

Rosenbaum, P. R. (1989). "Optimal matching for observational studies" <doi:10.1080/01621459.1989.10478868>
Journal of the American Statistical Association, 84(408), 1024-1032.

Rosenbaum, P. R. (1991) <doi:10.1111/j.2517-6161.1991.tb01848.x> A characterization of optimal
designs for observational studies. Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 53(3), 597-610.
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Examples

#
data(dynarski)
# Table 14.1 of "Design of Observational Studies" (2nd edition)
head(dynarski)
# Table 14.2 of "Design of Observational Studies" (2nd edition)
zb<-dynarski$zb
zbf<-factor(zb,levels=c(1,0),labels=c("Father deceased",

"Father not deceased"))
table(zbf)
Xb<-dynarski[,3:10]

# Estimate the propensity score, Rosenbaum (2010, Section 14.3)
p<-glm(zb~Xb$faminc+Xb$incmiss+Xb$black+Xb$hisp

+Xb$afqtpct+Xb$edmissm+Xb$edm+Xb$female,
family=binomial)$fitted.values

# Figure 14.1 in "Design of Observational Studies" (2nd edition)
boxplot(p~zbf,ylab="Propensity score",main="1979-1981 Cohort")

# Read about missing covariate values in section 14.4
# of "Design of Observational Studies" (2nd edition)

# Robust Mahalanobis distance matrix, treated x control
dmat<-smahal(zb,Xb)
dim(dmat)
# Table 14.3 in "Design of Observational Studies" (2nd edition)
round(dmat[1:5,1:5],2)

# Add a caliper on the propensity score using a penalty function
dmat<-addcaliper(dmat,zb,p,caliper=.2)
dim(dmat)
# Table 14.4 in "Design of Observational Studies" (2nd edition)
round(dmat[1:5,1:5],2)
## Not run:
# YOU MUST LOAD the 'optmatch' package and accept its license to continue.
# Note that the 'optmatch' package has changed since 2010. It now suggests
# that you indicate the data explicitly as data=dynarski.

# Creating a 1-to-10 match, as in section 14.6 of
# "Design of Observational Studies" (2nd edition)
# This may take a few minutes.
m<-fullmatch(dmat,data=dynarski,min.controls = 10,max.controls = 10,

omit.fraction = 1379/2689)
length(m)
sum(matched(m))
1441/11 # There are 131 matched sets, 1 treated, 10 controls

# Alternative, simpler code to do the same thing
m2<-pairmatch(dmat,controls=10,data=dynarski)
# Results are the same:
sum(m[matched(m)]!=m2[matched(m2)])
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# Housekeeping
im<-as.integer(m)
dynarski<-cbind(dynarski,im)
dm<-dynarski[matched(m),]
dm<-dm[order(dm$im,1-dm$zb),]

# Table 14.5 in "Design of Observational Studies" (2nd edition)
which(dm$id==10)
dm[188:198,]
which(dm$id==396)
dm[23:33,]
which(dm$id==3051)
dm[1068:1078,]
# In principle, there can be a tie, in which several different
# matched samples all minimize the total distance. On my
# computer, this calculation reproduces Table 14.5, but were
# there a tie, 'optmatch' should return one of the tied optimal
# matches, but not any particular one.

## End(Not run)

fine Expand a Distance Matrix for Matching with Fine Balance.

Description

In optimal pair matching with fine balance, expand a distance matrix to become a square matrix to
enforce fine balance. The method is discussed in Chapter 11 of "Design of Observational Studies",
second edition, and it is conceptually the simplest way to implement fine balance; therefore, it
remains very useful for teaching and for self-study. See details.

Usage

fine(dmat, z, f, mult = 100)

Arguments

dmat A distance matrix with one row for each treated individual and one column for
each control. Often, this is either the Mahalanobis distance based on covariates,
’mahal’, or else a robust variant produced by ’smahal’. The distance matrix
dmat may have been penalized by ’addalmostexact’ or ’addcaliper’. An error
will result unless dmat has more columns than rows.

z z is a vector that is 1 for a treated individual and 0 for a control. The number
of treated subjects, sum(z), must equal the number of rows of dmat, and the
number of potential controls, sum(1-z), must equal the number of columns of
dmat.

f A factor or vector to be finely balanced. Must have length(f)=length(z).
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mult A positive number, mult>0. Determines the penalty used to enforce fine balance
as max(dmat)*mult. The distance matrix dmat may have been penalized by
’addalmostexact’ or ’addcaliper’, and in this case it makes sense to set mult=1
or mult=2, rather than the default, mult=100. If dmat is already penalized, taking
mult>1 creates a larger penalty for deviations from fine balance than the exisiting
penalties.

Details

The method is discussed in Chapter 11 of "Design of Observational Studies", second edition, and
it is conceptually the simplest way to implement fine balance. However, the expanded distance
matrix can become quite large, so this simplest method is not the most efficient method in its
use of computer storage. A more compact implementation uses minimum cost flow in a network
(Rosenbaum 1989, Section 3.2). Additionally, there are several extensions of fine balance, including
near-fine balance (Yang et al. 2012, in Yu’s ’DiPs’ package), fine balance for several covariates via
integer programming (Zubizarreta 2012, ’designmatch’ R-package), and refined balance (Pimentel
et al. 2015, ’rcbalance’ R-package). Ruoqi Yu’s ’bigmatch’ R-package implements fine balance
and near-fine balance in very large matching problems.

Value

An expanded, square distance matrix with "extra" treated units for use in optimal pair matching.
Any control paired with an "extra" treated unit is discarded, as are the "extra" treated units.

Note

Fine balance is discussed in chapter 11 of "Design of Observational Studie", second edition.

The matching functions in the ’DOS2’ package are aids to instruction or self-instruction while read-
ing "Design of Observational Studies". As in the book, these functions break the task of matching
into small steps so they are easy to understand in depth. In practice, matching entails a fair amount
of book-keeping best done by a package that automates these tasks. For fine balance and simi-
lar methods, use R packages ’rcbalance’, ’DiPs’, ’designmatch’ or ’bigmatch’. Section 14.10 of
"Design of Observational Studies", second edition, discusses and compares several R packages for
optimal matching.

Author(s)

Paul R. Rosenbaum

References

Hansen, B. B. and Klopfer, S. O. (2006) <doi:10.1198/106186006X137047> "Optimal full match-
ing and related designs via network flows". Journal of Computational and Graphical Statistics,
15(3), 609-627. The method implemented in Hansen’s ’optmatch’ package.

Hansen, B. B. (2007) <https://www.r-project.org/conferences/useR-2007/program/presentations/hansen.pdf>
"Flexible, optimal matching for observational studies". R News, 7, 18-24. Discusses Hansen’s ’opt-
match’ package.

Pimentel, S. D., Kelz, R. R., Silber, J. H. and Rosenbaum, P. R. (2015) <doi:10.1080/01621459.2014.997879>
"Large, sparse optimal matching with refined covariate balance in an observational study of the
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health outcomes produced by new surgeons". Journal of the American Statistical Association, 110,
515-527. Introduces an extension of fine balance called refined balance that is implemented in
Pimentel’s package ’rcbalance’.

Pimentel, S. D. (2016) "Large, Sparse Optimal Matching with R Package rcbalance" <https://obsstudies.org/large-
sparse-optimal-matching-with-r-package-rcbalance/> Observational Studies, 2, 4-23. Discusses
and illustrates the use of Pimentel’s ’rcbalance’ package.

Rosenbaum, P. R. (1989). "Optimal matching for observational studies" <doi:10.1080/01621459.1989.10478868>
Journal of the American Statistical Association, 84(408), 1024-1032. Discusses and illustrates fine
balance using minimum cost flow in a network in section 3.2.

Rosenbaum, P. R., Ross, R. N. and Silber, J. H. (2007) <doi:10.1198/016214506000001059> "Mini-
mum distance matched sampling with fine balance in an observational study of treatment for ovarian
cancer". Journal of the American Statistical Association, 102, 75-83. Discusses and illustrates fine
balance using optimal assignment.

Yang, D., Small, D. S., Silber, J. H. and Rosenbaum, P. R. (2012) <doi:10.1111/j.1541-0420.2011.01691.x>
"Optimal matching with minimal deviation from fine balance in a study of obesity and surgical out-
comes". Biometrics, 68, 628-636. Extension of fine balance useful when fine balance is infeasible.
Comes as close as possible to fine balance. Implemented as part of the ’rcbalance’ and ’DiPs’
packages.

Yu, Ruoqi and Rosenbaum, P.R., (2019a) <doi:10.1111/biom.13098> "Directional penalties for
optimal matching in observational studies". Biometrics, to appear, Describes the method in Yu’s
’DiPs’ package.

Yu, Ruoqi, Silber, J.H. and Rosenbaum, P.R. (2019b) <https://www.imstat.org/journals-and-publications/statistical-
science/statistical-science-future-papers/> "Matching methods for observational studies derived from
large administrative databases". Stat Sci., to appear. Describes the method in Yu’s ’bigmatch’ pack-
age.

Zubizarreta, J. R., Reinke, C. E., Kelz, R. R., Silber, J. H. and Rosenbaum, P. R. (2011) <doi:10.1198/tas.2011.11072>
"Matching for several sparse nominal variables in a case-control study of readmission following
surgery". The American Statistician, 65(4), 229-238. Combines near-exact matching with fine
balance for the same covariate.

Zubizarreta, J. R. (2012) <doi:10.1080/01621459.2012.703874> "Using mixed integer program-
ming for matching in an observational study of kidney failure after surgery". Journal of the Amer-
ican Statistical Association, 107, 1360-1371. Extends the concept of fine balance using integer
programming. Implemented in R in the ’designmatch’ package.

Examples

data(costa)
z<-1*(costa$welder=="Y")
aa<-1*(costa$race=="A")
smoker=1*(costa$smoker=="Y")
age<-costa$age
x<-cbind(age,aa,smoker)
dmat<-mahal(z,x)
# Mahalanobis distances
round(dmat[,1:6],2) # Compare with Table 9.5 in "Design of Observational Studies"
# Impose propensity score calipers
prop<-glm(z~age+aa+smoker,family=binomial)$fitted.values # propensity score



22 frontseat

# Mahalanobis distanced penalized for violations of a propensity score caliper.
# This version is used for numerical work.
dmat<-addcaliper(dmat,z,prop,caliper=.5)
round(dmat[,1:6],2) # Compare with Table 9.5 in "Design of Observational Studies"
# Because dmat already contains large penalties, we set mult=1.
dmat<-fine(dmat,z,aa,mult=1)
dmat[,1:6] # Compare with Table 11.1 in "Design of Observational Studies"
dim(dmat) # dmat has been expanded to be square by adding 5 extras, here numbered 48:52
# Any control matched to an extra is discarded.
## Not run:
# Find the minimum distance match within propensity score calipers.
optmatch::pairmatch(dmat)
# Any control matched to an extra is discarded. For instance, the optimal match paired
# extra row 48 with the real control in column 7 to form matched set 1.22, so that control
# is not part of the matched sample. The harmless warning message from pairmatch
# reflects the divergence between the costa data.frame and expanded distance matrix.

## End(Not run)
# Conceptual versions with infinite distances for violations of propensity caliper.
dmat[dmat>20]<-Inf
round(dmat[,1:6],2) # Compare with Table 11.1 in "Design of Observational Studies"

frontseat Safety Belts in Vehicle Crashes

Description

Data from the US Fatality Analysis Reporting System (FARS) in 2010-2011, as discussed in Rosen-
baum (2015) and in the "Design of Observational Studies", second edition, Chapter 7. The data
concern crashes in which a driver and a right front passenger were present, following Evans (1986).
The data compare the injuries of the driver and passenger, and are particularly interesting when their
safety belt use is different. The example illustrates the analysis of a counterclaim.

Usage

data("frontseat")

Format

A data frame with 17014 observations on the following 7 variables.

restraint Saftey belt use by (Driver,Passenger), where n=unbelted, ls=lap-shoulder belt. A factor
with levels ls.ls ls.n n.ls n.n. Here, ls.n means the driver was belted and the passenger
was not.

injury Injury of (Driver,Passenger).

injurydif Difference in injury scores, driver-minus-passenger, from -4 to 4. A score of -4 means
the driver was uninjured, but the passenger died.

ejection Ejection from the vehicle of the (Driver,Passenger).
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ejectiondif 1 if the driver was ejected but the passenger was not, -1 if the passenger was ejected
but the driver was not, 0 if their fates were the same.

gender Genders of the (Driver,Passenger).

agedif Difference in ages, driver-minus-passenger.

Details

This example is discussed in "Design of Observational Studies", second edition, Chapter 7.

Details are given in Rosenbaum (2015). A crash, perhaps involving several vehicles, is recorded in
FARS only if there is at least one fatality, creating issues of ascertainment (Fisher 1934) that do not
affect tests of the hypothesis of no effect, but that do affect estimation. Only tests of no effect are
considered in this example.

Source

Rosenbaum (2015)

References

Evans, L. (1986) <doi:10.1016/0001-4575(86)90007-2> "The Effectiveness of Safety Belts in Pre-
venting Fatalities". Accident Analysis and Prevention, 18, 229–241.

Fisher, R.A. (1934) <doi:10.1111/j.1469-1809.1934.tb02105.x> "The Effect of Methods of Ascer-
tainment Upon the Estimation of Frequencies". Annals of Eugenics, 6(1), 13-25.

Imai, K., Keele, L., Yamamoto, T. (2010) <doi:10.1214/10-STS321> "Identification, Inference and
Sensitivity Analysis for Causal Mediation Effects". Statistical Science, 25, 51–71.

Rosenbaum, P.R. (2015) <doi:10.1080/01621459.2015.1054489> "Some Counterclaims Undermine
Themselves in Observational Studies". Journal of the American Statistical Association, 110:512,
1389-1398.

Examples

data(frontseat)
attach(frontseat)
use<-(!is.na(injurydif))
# Compare with Table 1 in Rosenbaum (2015), case ls.n
table(restraint[use])
use<-use&(restraint=="ls.n")
2*sensitivitymv::senmv(-injurydif[use],gamma=5,

trim=1,lambda=.99)$pval
2*sensitivitymv::senmv(-injurydif[use],gamma=5.5,

trim=1,lambda=.99)$pval
2*sensitivitymv::senmv(-injurydif[use],gamma=6,

trim=1,lambda=.99,inner=.25)$pval
2*sensitivitymv::senmv(-injurydif[use],gamma=6.5,

trim=1,lambda=.99,inner=.25)$pval

# Counterclaim analysis, one ejected individual
# Compare with Table 2 in Rosenbaum (2015), case ls.n
table(ejection,ejectiondif)
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use<-use&(!is.na(ejectiondif))&(ejectiondif!=0)
sum(use)
2*sensitivitymv::senmv(-injurydif[use],gamma=9,

trim=1,lambda=.99)$pval
2*sensitivitymv::senmv(-injurydif[use],gamma=11,

trim=1,lambda=.99,inner=.25)$pval
detach(frontseat)

hcyst Homocysteine and Smoking

Description

NHANES 2005-2006 data on smoking and homocysteine levels in adults. Matched triples, one
daily smoker matched to two never smokers in 548 matched sets of size 3.

Usage

data("hcyst")

Format

A data frame with 1644 observations on the following 13 variables.

SEQN NHANES identification number

z Smoking status, 1 = daily smoker, 0 = never smoker

female 1 = female, 0 = male

age Age in years, >=20, capped at 85

black 1=black race, 0=other

education Level of education, 3=HS or equivalent

povertyr Ratio of family income to the poverty level, capped at 5 times poverty

bmi BMI or body-mass-index

cigsperday30 Cigarettes smoked per day, 0 for never smokers

cotinine Blood cotinine level, a biomarker of recent exposure to tobacco. Serum cotinine in
ng/mL

homocysteine Level of homocysteine. Total homocysteine in blood plasma in umol/L

p An estimated propensity score

mset Matched set indicator, 1, 1, 1, 2, 2, 2, ..., 548, 548, 548
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Details

The matching controlled for female, age, black, education, income, and BMI. The outcome is ho-
mocysteine. The treatment is daily smoking versus never smoking.

Bazzano et al. (2003) noted higher homocysteine levels in smokers than in nonsmokers. The
NHANES data have been used several times to illustrate statistical methods; see Pimental et al
(2016), Rosenbaum (2018), Yu and Rosenbaum (2019).

This is Match 4 in Yu and Rosenbaum (2019). The match used a propensity score estimated from
these covariates, and it was finely balanced for education. It used a rank-based Mahalanobis dis-
tance, directional penalties, and a constraint on the maximum distance. The larger data set before
matching is contained in the DiPs package as nh0506homocysteine.

The two controls for each smoker have been randomly ordered, so that, for illustration, a matched
pair analysis using just the first control may be compared with an analysis of a 2-1 match. See
Rosenbaum (2013) and Rosenbaum (2017b, p222-223) for discussion of multiple controls and de-
sign sensitivity.

Source

From the NHANES web page, for NHANES 2005-2006. US National Health and Nutrition Exam-
ination Survey, 2005-2006. From the US National Center for Health Statistics.

References

Bazzano, L. A., He, J., Muntner, P., Vupputuri, S. and Whelton, P. K. (2003) <doi:10.7326/0003-
4819-138-11-200306030-00010> "Relationship between cigarette smoking and novel risk factors
for cardiovascular disease in the United States". Annals of Internal Medicine, 138, 891-897.

Pimentel, S. D., Small, D. S. and Rosenbaum, P. R. (2016) <doi:10.1080/01621459.2015.1076342>
"Constructed second control groups and attenuation of unmeasured biases". Journal of the Ameri-
can Statistical Association, 111, 1157-1167.

Rosenbaum, P. R. (2007) <doi:10.1111/j.1541-0420.2006.00717.x> "Sensitivity analysis for m-
estimates, tests and confidence intervals in matched observational studies". Biometrics, 2007, 63,
456-464.

Rosenbaum, P. R. and Silber, J. H. (2009) <doi:10.1198/jasa.2009.tm08470> "Amplification of
sensitivity analysis in observational studies". Journal of the American Statistical Association, 104,
1398-1405.

Rosenbaum, P. R. (2013) <doi:10.1111/j.1541-0420.2012.01821.x> "Impact of multiple matched
controls on design sensitivity in observational studies". Biometrics, 2013, 69, 118-127.

Rosenbaum, P. R. (2015) <https://obsstudies.org/two-r-packages-for-sensitivity-analysis-in-observational-
studies/> "Two R packages for sensitivity analysis in observational studies". Observational Studies,
v. 1.

Rosenbaum, P. R. (2016) <doi:10.1111/biom.12373> "The crosscut statistic and its sensitivity to
bias in observational studies with ordered doses of treatment". Biometrics, 72(1), 175-183.

Rosenbaum, P. R. (2017a) <doi.org/10.1214/18-AOAS1153> "Sensitivity analysis for stratified
comparisons in an observational study of the effect of smoking on homocysteine levels". Annals of
Applied Statistics, 12, 2312–2334
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Rosenbaum, P. R. (2017b) <https://www.hup.harvard.edu/catalog.php?isbn=9780674975576> "Ob-
servation and Experiment: An Introduction to Causal Inference". Cambridge, MA: Harvard Uni-
veristy Press, pp 222-223.

Yu, Ruoqi. and Rosenbaum, P. R. (2019) <doi.org/10.1111/biom.13098> "Directional penalties for
optimal matching in observational studies". Biometrics, to appear. See Yu’s ’DiPs’ package.

Examples

data(hcyst)
attach(hcyst)
tapply(female,z,mean)
tapply(age,z,mean)
tapply(black,z,mean)
tapply(education,z,mean)
table(z,education)
tapply(povertyr,z,mean)
tapply(bmi,z,mean)
tapply(p,z,mean)
ind<-rep(1:3,548)
hcyst<-cbind(hcyst,ind)
hcystpair<-hcyst[ind!=3,]
rm(ind)
detach(hcyst)

# Analysis of paired data, excluding second control
attach(hcystpair)
y<-log(homocysteine)[z==1]-log(homocysteine)[z==0]
x<-cotinine[z==1]-cotinine[z==0]

senWilcox(y,gamma=1)
senWilcox(y,gamma=1.53)
senU(y,m1=4,m2=5,m=5,gamma=1.53)
senU(y,m1=7,m2=8,m=8,gamma=1.53)
senU(y,m1=7,m2=8,m=8,gamma=1.7)
# Interpretation/amplification of gamma=1.53 and gamma=1.7
# See Rosenbaum and Silber (2009)
sensitivitymult::amplify(1.53,c(2,3))
sensitivitymult::amplify(1.7,c(2,3))

crosscutplot(x,y,ylab="Difference in log(homocysteine)",
xlab="Difference in Cotinine, Smoker-minus-Control",main="Homocysteine and Smoking")

text(600,1.8,"n=41")
text(600,-1,"n=31")
text(-500,-1,"n=43")
text(-500,1.8,"n=21")

crosscut(x,y)
crosscut(x,y,gamma=1.25)
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# Comparison of pairs and matched triples
# Triples increase power and design sensitivity; see Rosenbaum (2013)
# and Rosenbaum (2017b, p222-223)
library(sensitivitymult)
sensitivitymult::senm(log(homocysteine),z,mset,gamma=1.75)$pval
detach(hcystpair)
attach(hcyst)
sensitivitymult::senm(log(homocysteine),z,mset,gamma=1.75)$pval
# Inner trimming improves design sensitivity; see Rosenbaum (2013)
sensitivitymult::senm(log(homocysteine),z,mset,inner=.5,gamma=1.75)$pval

# Interpretation/amplification of gamma = 1.75
# See Rosenbaum and Silber (2009)
sensitivitymult::amplify(1.75,c(2,3,10))

# Confidence interval and point estimate
# sensitivitymult::senmCI(log(homocysteine),z,mset,inner=.5,gamma=1.5)
detach(hcyst)

lead Lead in Children

Description

Data from Morton et al. (1982) concerning exposed children whose fathers worked in a battery plant
where lead was used in the manufacture of batteries. Exposed children were matched to controls for
age and neighborhood. For exposed children, also given are the father’s level of exposure to lead
at work (level) and the father’s hygiene upon leaving the battery plant at the end of the day. This
example is used in Chapters 7 and 9 of Rosenbaum (2017).

Usage

data("lead")

Format

A data frame with 33 observations on the following 6 variables.

control Blood lead level for the control, micrograms of lead per decaliter of whole blood.

exposed Blood lead level for the exposed/treated child, micrograms of lead per decaliter of whole
blood.

level Father’s level of exposure to lead: a factor with levels high low medium

hyg Father’s hygiene before going home: a factor with levels good mod poor

both A factor built from level and hyg: a factor with levels high.ok high.poor low medium

dif Exposed-minus-control pair difference in blood lead levels.
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Details

The data were assembled from two published tables in Morton et al. (1982). One matched pair with
no control is omitted here. Small ambiguities in assembling a complete data set from two tables
were resolved by a throw of the dice; however, it is a reasonable example to illustrate statistical
methods. One table described the exposed-versus-control matched pairs, and these are as in the
paper. The second table described the exposed individuals, their level of exposure and their hygiene,
and again these are as in the paper. The two tables were linked using the blood lead level of the
exposed children, and a couple of ties in these lead levels made for small ambiguities about which
control responses belong with which hygienes and exposure levels for the exposed children. See,
for instance, rows 18 and 22, where both exposed children have blood lead level 34.

Source

Data are from Morton et al. (1982). They were used as an example in Rosenbaum (1991, 2002,
2011, 2017).

References

Morton, D. E., Saah, A. J., Silberg, S. L., Owens, W. L., Roberts, M. A., & Saah, M. D. (1982)
<doi:10.1093/oxfordjournals.aje.a113336> "Lead absorption in children of employees in a lead-
related industry". American Journal of Epidemiology, 115(4), 549-555.

Rosenbaum, P. R. (1991) <doi:10.1214/aos/1176348141> "Some poset statistics". The Annals of
Statistics, 19(2), 1091-1097.

Rosenbaum, P. R. (2002) <doi:10.1007/978-1-4757-3692-2_3> "Observational Studies" (2nd edi-
tion). New York: Springer. Section 4.3.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> "A new U statistic with supe-
rior design sensitivity in matched observational studies". Biometrics, 67(3), 1017-1027.

Rosenbaum, P. R. (2017) <https://www.hup.harvard.edu/catalog.php?isbn=9780674975576> "Ob-
servation and Experiment: An Introduction to Causal Inference". Cambridge, MA: Harvard Uni-
versity Press. Chapters 7 and 9.

Examples

data(lead)
# Reproduces parts of Table 2 in Rosenbaum (2011)
senU(lead$dif,gamma=5.8,m=8,m1=5,m2=8)
senU(lead$dif,gamma=5,m=5,m1=4,m2=5)

# m=2, m1=2, m2=2 is the U-statistic that closely
# resembles Wilcoxon's signed rank test. Note
# that the results are almost the same.
senWilcox(lead$dif,gamma=5) # In Table 2
senU(lead$dif,gamma=5,m=2,m1=2,m2=2)
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mahal Mahalanobis Distance Matrix for Optimal Matching

Description

Computes a Mahalanobis distance matrix between treated individuals and potential controls; see
Rubin (1980) and Rosenbaum and Rubin (1985). The method is discussed in Section 9.3 of "Design
of Observational Studies", second edition.

Usage

mahal(z, X)

Arguments

z z is a vector that is 1 for a treated individual and 0 for a control.

X A matrix of continuous or binary covariates. The number of rows of X must
equal the length of z.

Value

The distance matrix has one row for each treated individual (z=1) and one column for each potential
control (z=0). The row and column names of the distance matrix refer to the position in z, 1, 2, ...,
length(z).

Note

The method is discussed in Section 9.3 of "Design of Observational Studies", second edition.

The matching functions in the ’DOS2’ package are aids to instruction or self-instruction while
reading "Design of Observational Studies". As in the book, these functions break the task of match-
ing into small steps so they are easy to understand in depth. In practice, matching entails a fair
amount of book-keeping best done by a package that automates these tasks. Consider R packages
’optmatch’, ’rcbalance’, ’DiPs’, ’designmatch’ or ’bigmatch’. Section 14.10 of "Design of Obser-
vational Studies", second edition, discusses and compares several R packages for optimal matching.

Author(s)

Paul R. Rosenbaum

References

Hansen, B. B. and Klopfer, S. O. (2006) <doi:10.1198/106186006X137047> "Optimal full match-
ing and related designs via network flows". Journal of computational and Graphical Statistics, 15(3),
609-627. (’optmatch’ package)

Hansen, B. B. (2007) <https://www.r-project.org/conferences/useR-2007/program/presentations/hansen.pdf>
"Flexible, optimal matching for observational studies". R News, 7, 18-24. (’optmatch’ package)
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Rosenbaum, P. R. and Rubin, D. B. (1985) <doi:10.1080/00031305.1985.10479383> "Construct-
ing a control group using multivariate matched sampling methods that incorporate the propensity
score". The American Statistician, 39, 33-38.

Rubin, D. B. (1980) <doi:10.2307/2529981> "Bias reduction using Mahalanobis-metric matching".
Biometrics, 36, 293-298.

Examples

data(costa)
z<-1*(costa$welder=="Y")
aa<-1*(costa$race=="A")
smoker=1*(costa$smoker=="Y")
age<-costa$age
x<-cbind(age,aa,smoker)
dmat<-mahal(z,x)
# Mahalanobis distances
round(dmat[,1:6],2)
# Compare with Table 9.5 in "Design of Observational Studies", 2nd ed.
# Impose propensity score calipers
prop<-glm(z~age+aa+smoker,family=binomial)$fitted.values # propensity score
# Mahalanobis distanced penalized for violations of a propensity score caliper.
# This version is used for numerical work.
dmat<-addcaliper(dmat,z,prop,caliper=.5)
round(dmat[,1:6],2)
# Compare with Table 9.5 in "Design of Observational Studies", 2nd ed.
## Not run:
# Find the minimum distance match within propensity score calipers.
# You must load the 'optmatch' package to try this example
optmatch::pairmatch(dmat,data=costa)

## End(Not run)
# Conceptual versions with infinite distances for violations of propensity caliper.
dmat[dmat>20]<-Inf
round(dmat[,1:6],2)
# Compare with Table 9.5 in "Design of Observational Studies", 2nd ed.

NSW National Supported Work Randomized Experiment

Description

National Supported Work (NSW) randomized experiment in 185 matched pairs. Used as an example
in Chapter 2 of Design of Observational Studies.

Usage

data("NSW")
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Format

A data frame with 370 observations on the following 11 variables.

id Matched pair id, 1, 1, 2, 2, ..., 185, 185.

z z=1 for treated, z=0 for control

age Age in years

edu Education in years

black 1=black, 0=other

hisp 1=Hispanic, 0=other

married 1=married, 0=other

nodegree 1=no High School degree, 0=other

re74 Earnings in 1974, a covariate

re75 Earnings in 1975, a covariate

re78 Earnings in 1978, an outcome

Details

Compare with Table 2.2 of Design of Observational Studies.

Source

Dehejia and Wahba (1999).

References

Couch, K.A. (1992) <doi:10.1086/298292> "New evidence on the long-term effects of employment
training programs". Journal of Labor Economics 10, 380-388.

Dehejia, R.H., Wahba, W. (1999) <doi:10.1080/01621459.1999.10473858> "Causal effects in non-
experimental studies: Reevaluating the evaluation of training programs". Journal of the American
Statistical Association 94, 1053-1062.

LaLonde, R.J. (1986) <https://www.jstor.org/stable/1806062> "Evaluating the econometric evalua-
tions of training programs with experimental data". American Economic Review 76, 604-620.

Examples

data(NSW)
fivepairs<-c(15,37,46,151,181)
# Table 2.2 in Design of Observational Studies (DOS)
NSW[is.element(NSW$id,fivepairs),]
# Pair differences in earnings after treatment
dif<-NSW$re78[NSW$z==1]-NSW$re78[NSW$z==0]
# Chapter 2, footnote 7 of
stats::wilcox.test(dif,conf.int=TRUE)
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periodontal Smoking and Periodontal Disease

Description

Data from NHANES 2011-2012 containing 441 matched pairs of a daily cigarette smoker and a
never smoker, recording the extent of periodontal disease. See Rosenbaum (2017) and Chapter 20
of "Design of Observational Studies", second edition.

Usage

data("periodontal")

Format

A data frame with 882 observations on the following 12 variables.

SEQN NHANES 2011-2012 sequence number

female =1 for female, 0 for male

age Age in years

black =1 for black, 0 for other

educf Education, in five categories. An ordered factor with levels <9 for less than 9th grade, 9 to
11 for 9th to 11th grade, HS/GED for high school or GED degree, SomeCol for some college,
College for college degree.

income Ratio of family income to the poverty level, capped at 5 times the poverty level.

cigsperday Cigarettes smoked per day for daily smokers, 0 for never smokers

either Number of periodonal measurements indicative of periodontal disease.

neither Number of periodonal measurements

pcteither Percent indicative of periodontal disease, =100*either/neither.

z Treatment indicator, 1=daily smoker, 0=never smoker

mset Matched set indicator, 1 to 441.

Details

Excluding wisdom teeth, 6 measurements are taken for each tooth that is present, up to 28 teeth.
Following Tomar and Asma (2000), a measurement indicates periodontal disease if either there
is a loss of attachment of at least 4mm or a pocket depth of at least 4mm. The first individual
has 11 measurements indicative of periodontal disease, out of 106 measurements, so pcteither is
100*11/106 = 10.38 percent. A related data set in DOS2 with bivariate outcome is teeth.

Source

Data are from the National Health and Nutrition Examination Survey 2011-2012 and were used as
an example in Rosenbaum (2017). In the second edition of Design of Observational Studies, these
data are discussed in Chapter 20, Evidence Factors.
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References

Rosenbaum, P. R. (2015) <https://obsstudies.org/two-r-packages-for-sensitivity-analysis-in-observational-
studies/> "Two R packages for sensitivity analysis in observational studies". Observational Studies,
1(1), 1-17.

Rosenbaum, P. R. (2017) <doi:10.1214/17-STS621> "The general structure of evidence factors in
observational studies". Statistical Science 32, 514-530.

Tomar, S. L. and Asma, S. (2000) <doi:10.1902/jop.2000.71.5.743> "Smoking attributable peri-
odontitis in the US: Findings from NHANES III". J Periodont 71, 743-751.

"US National Health and Nutrition Examination Survey 2011-2012". www.cdc.gov/nchs/nhanes/index.htm

Examples

# Figure 1 in Rosenbaum (2017)
data(periodontal)
attach(periodontal)
oldpar<-par()
m<-matrix(1:2,1,2)
layout(m,widths=c(1,2))
boxplot(pcteither[z==1]-pcteither[z==0],ylab="Smoker-Control Difference",

main="(i)",xlab="Matched Pairs",ylim=c(-100,100))
abline(h=0,lty=2)
crosscutplot(cigsperday[z==1],pcteither[z==1]-pcteither[z==0],ylab="Smoker-Control Difference",

xlab="Cigarettes per Day",main="(ii)",ylim=c(-100,100))
abline(h=0,lty=2)

# Sensitivity analysis in Section 2.3 of Rosenbaum (2017)
y<-pcteither[z==1]-pcteither[z==0]
x<-cigsperday[z==1]
senWilcox(y,gamma=2.76)
# The following is the same as sensitivitymw::senmw(y,gamma=2.77,method="p")
sensitivitymult::senm(pcteither,z,mset,gamma=2.77,inner=.5,trim=2)
# The following is the same as sensitivitymw::senmw(y,gamma=3.5,method="p")
sensitivitymult::senm(pcteither,z,mset,gamma=3.5,inner=.5,trim=2)
# Second evidence factor
crosscut(x,y)
crosscut(x,y,gamma=1.6)

# Note, however, that other statistics report greater insensitivity to
# bias by virtue of having larger design sensitivity:
sensitivitymult::senm(pcteither,z,mset,gamma=3.5,inner=1,trim=4)
sensitivitymult::senm(pcteither,z,mset,gamma=4.2,inner=1,trim=4)
senU(y,m1=4,m2=5,m=5,gamma=2.77)
senU(y,m1=6,m2=8,m=8,gamma=2.77)
senU(y,m1=6,m2=8,m=8,gamma=3.5)
detach(periodontal)
par(oldpar)
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pinto Welding and DNA-Protein Crosslinks

Description

This data set is from Pinto et al. (2000) and it describes 22 professional painters and 22 controls
matched for age. All are men. The outcome is a measure of genetic damage, namely the frequency
of micronuclei in 3000 oral epithelial cells scraped from the cheek, recorded as micronuclei per
1000 cells. The data are used as an example in Chapter 5 and 18 of "Design of Observational
Studies", where the data illustrate the subtle relationship between doses of treatment and sensitivity
to unmeasured biases. The dose of treatment is years of work as a professional painter, from 1.6
years to 40 years for painters, and it is highly correlated with age for painters, but it is zero for
controls of all ages.

Usage

data("pinto")

Format

A data frame with 44 observations on the following 6 variables.

id ID number from Pinto et al. (2000).

pair Pair number, 1 to 22. The pair numbers are different from "Design of Observational Studies",
where pairs were sorted by doses.

group painter or control

age age in years

years years of work as a professional painter, 0 for controls

longEx Painter in this pair had long exposure, TRUE if years>=4 years.

mn Micronuclei per 1000 cells

Source

The data are from Pinto et al. (2000). The data are used as an example in Chapter 5 of Design of
Observational Studies. Chapter 18 shows that the pattern seen in this example is expected in theory,
namely focusing on high-dose pairs makes the study more insensitive to unmeasured biases, despite
the loss of sample size.

References

Pinto, D., J. M. Ceballos, G. Garcia, P. Guzman, L. M. Del Razo, E. Vera, H. Gomez, A. Garcia, and
M. E. Gonsebatt (2000) <doi:10.1016/S1383-5718(00)00024-3> "Increased cytogenetic damage in
outdoor painters". Mutation Research/Genetic Toxicology and Environmental Mutagenesis 467,
105-111.

Rosenbaum, P. R. (2003) <doi:10.1093/biostatistics/4.1.1> "Does a dose response relationship re-
duce sensitivity to hidden bias?". Biostatistics, 4, 1-10.
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Rosenbaum, P. R. (2004) <doi:10.1093/biomet/91.1.153> "Design sensitivity in observational stud-
ies". Biometrika, 91, 153-164. Does design sensitivity calculations with doses of treatment.

Examples

data(pinto)
oldpar<-par(mfrow=c(1,3))
attach(pinto)
boxplot(mn~group,ylim=c(0,6),main="All",ylab="Micronuclei")
boxplot(mn[!longEx]~group[!longEx],ylim=c(0,6),main="Short Ex",ylab="Micronuclei")
boxplot(mn[longEx]~group[longEx],ylim=c(0,6),main="Long Ex",ylab="Micronuclei")

# Calculations in Table 5.5 of Design of Observational Studies (2010)
d<-mn[group=="painter"]-mn[group=="control"] # 22 pair differences
senWilcox(d,gamma=1)
senWilcox(d,gamma=2) # sensitive to gamma=2
senWilcox(d,gamma=3.3)
dLong<-d[longEx[group=="painter"]] # 12 pairs with long exposure
senWilcox(dLong,gamma=3.3) # insensitive to gamma=3.3
par(oldpar)

planScheffe Combining One Planned Comparison and a Scheffe Correction For
All Comparisons.

Description

The function planScheffe() computes the critical values for a level alpha test that combines one
planned linear combination of a K-dimensional multivariate Normal outcome and consideration of
all possible combinations correcting for multiple testing using a Scheffe projection. The function is
the same as the planScheffe() function in the sensitivitymult package, but the examples are different.
The method is discussed in Section 18.3 of "Design of Observational Studies", second edition, and
in Rosenbaum (2019).

Usage

planScheffe(K, alpha = 0.05)

Arguments

K An integer >=2 giving the number of outcomes to be compared.
alpha The level of the test, with 0 < alpha < 1.

Details

This method is discussed in section 18.3 of the second edition of "Design of Observational Studies".

Although the calculation uses the multivariate Normal distribution, a typical application uses K test
statistics that are asymptotically Normal.

The method is based on Rosenbaum (2019). The example below reproduces some of the compar-
isons in that manuscript.
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Value

critical critical is a vector with two elements, a and c. The null hypothesis is rejected
at level alpha if either the Normal deviate for the planned comparison is >= a
or if the square of the Normal deviate for any comparison is >= b. Then the
probability of a false rejection is <= alpha.

alpha alpha is a vector with three elements, a, c and joint. The value of joint should
equal the input value of alpha aside from numerical errors of computation: it is
the probability of a false rejection using the joint test that rejects if either of the
two critical values in critical is exceeded. In contrast, a is the probability that
the planned deviate will be >= critical[1] when the null hypothesis is true. Also,
c is the probability that at least one comparison will have a squared deviate >=
critical[2] when the null hypothesis is true.

Note

The method is based on Rosenbaum (2019).

The functions "cohere" may be used to calculate the standardized deviates that are compared to the
critical values from ’planScheffe’. The function "cohere" has options for an a priori comparison
or consideration of all possible comparisons with a Scheffe correction. The function "planScheffe"
provides a third option: one planned comparison plus all possible comparisons.

See also ’planScheffe’ in the ’sensitivitymult’ package.

Author(s)

Paul R. Rosenbaum.

References

Rosenbaum, P. R. (2016) <doi:10.1214/16-AOAS942> "Using Scheffe projections for multiple out-
comes in an observational study of smoking and periondontal disease". Annals of Applied Statistics,
10, 1447-1471.

Rosenbaum, P. R. (2019) <doi:10.1093/biostatistics/kxy055> "Combining planned and discovered
comparisons in observational studies". Biostatistics, to appear.

Scheffe, H. (1953) <doi:10.1093/biomet/40.1-2.87> "A method for judging all contrasts in the anal-
ysis of variance". Biometrika, 40, 87-104.

Examples

data(teeth)
attach(teeth)

planScheffe(2,alpha=0.05)

# Planned comparison w=c(1,1)
cohere(cbind(either4up,either4low),smoker,mset,

w=c(1,1),gamma=2,m=8,m1=6,m2=8)

# Discovered comparison emphasizing upper teeth
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cohere(cbind(either4up,either4low),smoker,mset,
w=c(1,3),gamma=2,m=8,m1=6,m2=8)

3.465038^2 #squared deviate

# Both deviates lead to rejection, because
# 3.291909 >= 1.894915
# and 3.465038^2 = 12.00649 >= 7.077349

detach(teeth)

schoket DNA Damage in Aluminum Production Workers

Description

This data set is from Schoket et al. (1991) and is discussed in Chapter 17 of "Design of Obser-
vational Studies", second edition. The data describe 25 aluminum production workers (w) and 25
controls (c) matched for age and smoking. The outcome is a measure of genetic damage, namely
DNA adducts per 10^8 nucleotides. The data are used as an example in Chapter 17 of "Design of
Observational Studies", where the data illustrate the possibility that some treated individuals are
strongly affected by treatment, while others are unaffected, so the average treatment effect may be
small, but the effect on affected individuals may be large and evident in data.

Usage

data("schoket")

Format

A data frame with 25 observations on the following 9 variables.

pair Pair number, 1 to 25.

idw Worker ID from Schoket et al. (1991).

agew Worker age in years

smokingw Worker cigarettes per day

adductsw Worker DNA adducts

idc Control ID from Schoket et al. (1991).

agec Control age in years

smokingc Control cigarettes per day

adductsc Control DNA adducts

Source

The data are from Schoket et al. (1991). The data are used as an example in Chapter 17 of "Design
of Observational Studies"", second edition.
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References

Conover, W. J. and Salsburg, D. S. (1988) <doi:10.2307/2531906> "Locally most powerful tests for
detecting treatment effects when only a subset of patients can be expected to respond to treatment".
Biometrics, 189-196.

Rosenbaum, P. R. (2007) <doi:10.1111/j.1541-0420.2007.00783.x> "Confidence intervals for un-
common but dramatic responses to treatment". Biometrics, 63(4), 1164-1171.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> "A new U statistic with supe-
rior design sensitivity in matched observational studies". Biometrics, 67(3), 1017-1027.

Schoket, B., Phillips, D. H., Hewer, A. and Vincze, I. (1991) <doi:10.1016/0165-1218(91)90084-
Y> "32P-postlabelling detection of aromatic DNA adducts in peripheral blood lymphocytes from
aluminium production plant workers". Mutation Research/Genetic Toxicology, 260(1), 89-98.

Stephenson, W. R. (1981) <doi:10.1080/01621459.1981.10477749> "A general class of one-sample
nonparametric test statistics based on subsamples". Journal of the American Statistical Association,
76(376), 960-966.

Examples

data(schoket)
attach(schoket)
plot(sort(adductsc),sort(adductsw),ylim=c(0,6.4),xlim=c(0,6.4),

xlab="DNA adducts for controls",ylab="DNA adducts for workers",
main="Quantile-Quantile Plot") # Compare with Chapter 17

abline(0,1) # line of equality
legend(4,1,lty=1,"x=y")
boxplot(adductsw,adductsc,ylim=c(0,6.4),ylab="DNA adducts",names=c("Worker","Control"))
d<-adductsw-adductsc
senWilcox(d,gamma=1)
senWilcox(d,gamma=1.5) # sensitive to gamma=1.5
senU(d,gamma=1) # U-statistic version of Wilcoxon's statistic
senU(d,gamma=1.8)
# Stephenson's statistic is obtained from senU()
# by setting m1=m2=m
senU(d,m1=5,m2=5,m=5,gamma=1) # Stephenson's statistic, m=5
senU(d,m1=5,m2=5,m=5,gamma=1.8)
# U-statistic from Rosenbaum (2011) and
# Section 19.2 of Design of Observational Studies, 2nd ed.
senU(d,m1=4,m2=5,m=5,gamma=1.8)
detach(schoket)

senU Sensitivity Analysis for a New U Statistic

Description

Sensitivity analysis for the new U statistic of Rosenbaum (2011). For m=m1=m2, this is the test
of Stephenson (1981). The ranks proposed by Stephenson closely approximate the optimal ranks
proposed by Conover and Salzburg (1988) for detecting a treatment that has a large effect on a
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small subpopulation and no effect on most of the population; see Rosenbaum (2007). The example
reproduces some results from Chapter 17 of "Design of Observational Studies", second edition, and
the method is discusssed in Section 19.2.

Usage

senU(d, gamma = 1, m = 2, m1 = 2, m2 = 2, conf.int = FALSE,
alpha = 0.05, alternative = "greater", exact = NULL)

Arguments

d A vector of treated-minus-control matched pair differences in outcomes.

gamma gamma >= 1 is the value of the sensitivity parameter.

m See m2.

m1 See m2.

m2 If (m,m1,m2) are three integers such that 1 <= m1 <= m2 <= m, then the triple
(m,m1,m2) defines a U statistic. If (m,m1,m2) = (1,1,1), then the U statistic is
the sign test statistic. If (m,m1,m2) = (2,2,2), then it is the U statistic that closely
approximates Wilcoxons signed rank test. If m=m1=m2, then the U statistic is
the test of Stephenson (1981). The general U statistic is discussed in Rosenbaum
(2011).

conf.int If conf.int=TRUE, the a 1-alpha confidence interval and an interval of point
estimates is returned in addition to the P-value testing no treatment effect.

alpha Coverage rate of the confidence interval. With probability at least 1-alpha, the
confidence interval will cover the treatment effect providing the bias in treatment
assignment is at most gamma.

alternative If alternative = "greater" or alternative = "less", then one-sided tests and intervals
are returned. If alternative = "twosided", then both one sided tests are done,
with the smaller P-value doubled to yield a two-sided P-value. If alternative =
"twosided", the confidence interval is the intersection of two one-sided 1-alpha/2
confidence intervals.

exact If exact is NULL, then exact is set to TRUE if length(d) <= 50, and is set to
FALSE if length(d) > 50. The ranks used by the U statistic involve combinatorial
coefficiencts that grow rapidly with increasing sample size. If exact=TRUE,
these ranks are computed exactly using expression (8) in Rosenbaum (2011).
If exact=FALSE, the ranks are computed by an asymptotic approximation that
does not involve large combinatorial coefficients, specifically expression (9) in
Rosenbaum (2012).

Details

This method is discussed in Chapter 17 and Section 19.2 of the second edition of "Design of Ob-
servational Studies".

The general method is developed in Rosenbaum (2011).
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Value

pval The upper bound on the P-value testing no effect in the presence of a bias in
treatment assignment of at most gamma. If the bias in treatment assignment is
at most gamma, and if there is no treatment effect, then there is at most an alpah
chance that the P-value is less than alpha, this being true for all 0<alpha<1.

estimate If conf.int=TRUE, the interval of point estimates of an additive treatment effect
in the presence of a bias in treatment assigment of at most gamma. If gamma=1,
then you are assuming ignorable treatment assignment or equivalently no un-
measured confounding, so the interval collapses to a point, and that point is the
usual Hodges-Lehmann point estimate.

conf.int If conf.int=TRUE, the a 1-alpha confidence interval for an additive treatment
effect in the presence of a bias in treatment assignment of at most gamma. If
gamma=1, then this is the usual confidence interval obtained by inverting the
Wilcoxon test, and it would be appropriate in a paired randomized experiment.

Note

The test of Stephenson (1981) uses ranks similar to those of Conover and Salzburg (1988) which
were designed to have high power when most people are unaffected by treatment, but a small sub-
population is strongly affected; see Rosenbaum (2007). This is the situation discussed in Chapter
17 of "Design of Observational Studies", second edition; see also Section 19.2. Even for pair dif-
ferences d that are Normal with expectation tau and constant variance, the Wilcoxon test tends to
exaggerate the degree of sensitivity to unmeasured bias. Compare the Wilcoxon test and the U statis-
tic with (m,m1,m2) = (5,4,5) in the Normal situation. In a randomized experiment (gamma=1), the
two tests have the same Pitman efficiency. However, as the number of pairs increases with tau=0.5,
the Wilcoxon test has limiting sensitivity to bias of gamma=3.2 while (m,m1,m2) = (5,4,5) has lim-
iting sensitivity 3.9, and (m,m1,m2) = (8,7,8) has limiting sensitivity 5.1. See Rosenbaum (2011)
for specifics.

Author(s)

Paul R. Rosenbaum
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88(424), 1250-1253.
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Schoket, B., Phillips, D. H., Hewer, A. and Vincze, I. (1991) <doi:10.1016/0165-1218(91)90084-
Y> "32P-postlabelling detection of aromatic DNA adducts in peripheral blood lymphocytes from
aluminium production plant workers". Mutation Research/Genetic Toxicology, 260(1), 89-98.

Stephenson, W. R. (1981) <doi:10.1080/01621459.1981.10477749> "A general class of one-sample
nonparametric test statistics based on subsamples". Journal of the American Statistical Association,
76(376), 960-966.

Examples

data("schoket")
d<-schoket$adductsw-schoket$adductsc

# With the defaults, m=2, m1=2, m2=2, the U-statistic is very
# similar to Wilcoxon's signed rank statistic
senWilcox(d,gamma=1)
senU(d,gamma=1)

# With m=1, m1=1, m2=1, the U-statistic is the sign test
senU(d,gamma=1,m=1,m1=1,m2=1)
prop.test(sum(d>0),length(d),p=.5,

alternative="greater",correct=FALSE)$p.value

# With m=m1=m2, this is the test of Stephenson (1981) whose ranks are similar to
# those of Conover and Salzburg (1988); see Rosenbaum (2007).

# The calculations that follow reproduce the sensitivity analysis for the
# data of Schoket et al. (1991) in Chapter 17 of "Design of
# Observational Studies", second edition.
senU(d,gamma=1,m=2,m1=2,m2=2)
senU(d,gamma=1,m=5,m1=5,m2=5)

senU(d,gamma=1.5,m=2,m1=2,m2=2)
senU(d,gamma=1.5,m=5,m1=5,m2=5)

senU(d,gamma=1.8,m=2,m1=2,m2=2)
senU(d,gamma=1.8,m=5,m1=5,m2=5)

senU(d,gamma=2,m=2,m1=2,m2=2)
senU(d,gamma=2,m=5,m1=5,m2=5)

data(lead)
# Reproduces parts of Table 2 in Rosenbaum (2011)
senU(lead$dif,gamma=5.8,m=8,m1=5,m2=8)
senU(lead$dif,gamma=5,m=5,m1=4,m2=5)

# m=2, m1=2, m2=2 is the U-statistic that closely
# resembles Wilcoxon's signed rank test. Note
# that the results are almost the same.
senWilcox(lead$dif,gamma=5) # In Table 2
senU(lead$dif,gamma=5,m=2,m1=2,m2=2)
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senWilcox Sensitivity Analysis for Wilcoxon’s Signed-rank Statistic

Description

Sensitivity analysis for Wilcoxon’s signed rank statistic in observational studies. Performs a sen-
sitivity analysis for the P-value, the Hodges-Lehmann estimate of an additive treatment effect, and
the confidence interval for the effect. The example is from Section 3.5 of "Design of Observational
Studies", 2nd ed., and it also illustrates the amplification in Section 3.6 using the ’amplify’ function
from the ’sensitivitymult’ package.

Usage

senWilcox(d, gamma = 1, conf.int = FALSE, alpha = 0.05, alternative = "greater")

Arguments

d A vector of treated-minus-control matched pair differences in outcomes.

gamma gamma >= 1 is the value of the sensitivity parameter.

conf.int If conf.int=TRUE, the a 1-alpha confidence interval and an interval of point
estimates is returned in addition to the P-value testing no treatment effect.

alpha Coverage rate of the confidence interval. With probability at least 1-alpha, the
confidence interval will cover the treatment effect providing the bias in treatment
assignment is at most gamma.

alternative If alternative = "greater" or alternative = "less", then one-sided tests and intervals
are returned. If alternative = "twosided", then both one sided tests are done,
with the smaller P-value doubled to yield a two-sided P-value. If alternative =
"twosided", the confidence interval is the intersection of two one-sided 1-alpha/2
confidence intervals.

Details

The senWilcox function uses a large sample Normal approximation to the distribution of Wilcoxon’s
signed rank statistic. When gamma=1, it should agree with the wilcox.test() function in the stats
package with exact=FALSE and correct=FALSE.

The example reproduces the example of the large-sample approximation in Section 3.5 of "Design
of Observational Studies". Note that the confidence intervals in Table 3.3 of that book are exact, not
approximate, so they are slightly different.

Value

pval The upper bound on the P-value testing no effect in the presence of a bias in
treatment assignment of at most gamma. If the bias in treatment assignment is
at most gamma, and if there is no treatment effect, then there is at most an alpha
chance that the P-value is less than alpha, this being true for all 0<alpha<1.
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estimate If conf.int=TRUE, the interval of point estimates of an additive treatment effect
in the presence of a bias in treatment assigment of at most gamma. If gamma=1,
then you are assuming ignorable treatment assignment or equivalently no un-
measured confounding, so the interval collapses to a point, and that point is the
usual Hodges-Lehmann point estimate.

conf.int If conf.int=TRUE, the a 1-alpha confidence interval for an additive treatment
effect in the presence of a bias in treatment assignment of at most gamma. If
gamma=1, then this is the usual confidence interval obtained by inverting the
Wilcoxon test, and it would be appropriate in a paired randomized experiment.

Note

The Wilcoxon test is not the best test for use in sensitivity analyses – it tends to exaggerate how
sensitive a study is to bias, saying it is more sensitive than it truly is. Other, less familiar, test
statistics avoid this issue; see Rosenbaum (2010, 2011, 2013, 2014, 2015). Learn about this using a
’shinyapp’, at rosenbap.shinyapps.io/learnsenShiny/

Author(s)

Paul R. Rosenbaum
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Examples

data(werfel)
d<-werfel$serpc_p-werfel$cerpc_p

# Reproduces the approximate one-sided P-value computed
# in Section 3.5 of "Design of Observational Studies".
senWilcox(d,gamma=3)

# Amplification in Section 3.6
sensitivitymult::amplify(3,5)
sensitivitymult::amplify(3,c(5,5.8,7))

# Reproduces parts of Tables 4.3 and 4.4 in Rosenbaum (2002)
data(lead)
senWilcox(lead$dif,gamma=1,conf.int=TRUE,alternative="twosided")
senWilcox(lead$dif,gamma=2,conf.int=TRUE,alternative="twosided")

# Agrees with the usual Wilcoxon procedures when gamma=1.
senWilcox(d,gamma=1,conf.int=TRUE,alternative="twosided")
stats::wilcox.test(d,conf.int=TRUE,exact=FALSE,correct=FALSE)

senWilcoxExact Exact Sensitivity Analysis for Wilcoxon’s Signed-rank Statistic

Description

Exact sensitivity analysis for Wilcoxon’s signed rank statistic in observational studies. Performs a
sensitivity analysis for the one-sided P-value. The method can be used in small samples without ties;
however, it is primarily of theoretical interest, as the large sample approximation in ’senWilcox’ is
fine for most samples of practical size.

Usage

senWilcoxExact(d, gamma = 1)

Arguments

d A vector of treated-minus-control matched pair differences in outcomes. There
must be no ties in |d| when computing the exact distribution. If ties are present,
use ’senWilcox’ instead.

gamma gamma >= 1 is the value of the sensitivity parameter.
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Details

The exact method is discussed in Section 3.12 of "Design of Observational Studies", second edition.
Tables 3.2 and 3.3 of Section 3.5 use these exact calculations.

Value

The upper bound on the one-sided, upper-tailed P-value testing no treatment effect in the presence
of a bias in treatment assignment of at most gamma.

Note

The ’senWilcox’ function uses a large-sample approximation, adding confidence intervals and point
estimates.

Author(s)

Paul R. Rosenbaum

References

Pagano, M. and Tritchler, D. (1983) <doi:10.1080/01621459.1983.10477990> "On obtaining per-
mutation distributions in polynomial time". Journal of the American Statistical Association, 78,
435-440.

Rosenbaum, P. R. (1987) <doi:10.1093/biomet/74.1.13> "Sensitivity analysis for certain permuta-
tion inferences in matched observational studies". Biometrika, 74(1), 13-26.

Examples

data(werfel)
d<-werfel$serpc_p-werfel$cerpc_p

# Reproduces the exact one-sided P-value computed in Section 3.9 of
# "Design of Observational Studies".
senWilcoxExact(d,gamma=2)

# Agrees with the usual Wilcoxon procedures when gamma=1.
senWilcoxExact(d,gamma=1)
stats::wilcox.test(d,alternative="greater")

# Reproduces the one-sided confidence interval for gamma=3 in Table 3.3
# of "Design of Observational Studies".
senWilcoxExact(d-0.0935,gamma=3)
senWilcoxExact(d-0.0936,gamma=3)
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smahal Robust Mahalanobis Distance Matrix for Optimal Matching

Description

Computes a robust Mahalanobis distance matrix between treated individuals and potential controls.
The usual Mahalnaobis distance may ignore a variable because it contains one extreme outlier, and
it pays too much attention to rare binary variables, but smahal addresses both issues. See Section
9.3 of "Design of Observational Studies", second edition.

Usage

smahal(z, X)

Arguments

z z is a vector that is 1 for a treated individual and 0 for a control.

X A matrix of continuous or binary covariates. The number of rows of X must
equal the length of z.

Details

The usual Mahalnaobis distance may ignore a variable because it contains one extreme outlier, and
it pays too much attention to rare binary variables, but smahal addresses both issues.

To address outliers, each column of x is replaced by a column of ranks, with average ranks used for
ties. This prevents one outlier from inflating the variance for a column.

Rare binary variables have very small variances, p(1-p) for small p, so in the usual Mahalanobis
distance, a mismatch for a rare binary variable is counted as very important. If you were matching
for US states as binary variables for individual states, mismatching for California would not be very
important, because p(1-p) is not so small, but mismatching for Wyoming is very important because
p(1-p) is very small. To combat this, the variances of the ranked columns are rescaled so they are
all the same, all equal to the variance of untied ranks. See Chapter 9 of Design of Observational
Studies, second edition.

Value

The robust distance matrix has one row for each treated individual (z=1) and one column for each
potential control (z=0). The row and column names of the distance matrix refer to the position in z,
1, 2, ..., length(z).

Note

The matching functions in the ’DOS2’ package are aids to instruction or self-instruction while
reading "Design of Observational Studies". As in the book, these functions break the task of match-
ing into small steps so they are easy to understand in depth. In practice, matching entails a fair
amount of book-keeping best done by a package that automates these tasks. Consider R packages
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’optmatch’, ’rcbalance’, ’DiPs’, ’designmatch’ or ’bigmatch’. Section 14.10 of "Design of Obser-
vational Studies", second edition, discusses and compares several R packages for optimal matching.
Ruoqi Yu’s ’DiPs’ package computes robust distances.

Author(s)

Paul R. Rosenbaum

Examples

data(costa)
z<-1*(costa$welder=="Y")
aa<-1*(costa$race=="A")
smoker=1*(costa$smoker=="Y")
age<-costa$age
x<-cbind(age,aa,smoker)
dmat<-smahal(z,x)
# Mahalanobis distances
round(dmat[,1:6],2)
# Compare with Table 9.6 in "Design of
# Observational Studies", second edition
# Impose propensity score calipers
prop<-glm(z~age+aa+smoker,family=binomial)$fitted.values # propensity score
# Mahalanobis distanced penalized for violations of a propensity score caliper.
# This version is used for numerical work.
dmat<-addcaliper(dmat,z,prop,caliper=.5)
round(dmat[,1:6],2)
# Compare with Table 9.6 in "Design of
# Observational Studies", second edition

## Not run:
# You must load 'optmatch' to produce the match.
# Find the minimum distance match within propensity score calipers.
optmatch::pairmatch(dmat,data=costa)

## End(Not run)
# Conceptual versions with infinite distances
# for violations of propensity caliper.
dmat[dmat>20]<-Inf
round(dmat[,1:6],2)

tannery DNA Damage Among Tannery Workers

Description

Data are from Zhang et al. (2008, Table 2) who studied DNA damage among tannery workers often
exposed to trivalent chromium. The outcome is the mean tail moment (mtm) of the comet assay,
a standard measure of DNA damage, with higher values signifying greater damage. The study
describes 90 males in 30 blocks of 3 individuals. There are three groups, each with 30 individuals.



48 tannery

The three groups had a simlar distribution of ages, and the blocks control for smoking as closely
as possible. Group e1 consists of 30 exposed workers at the tannery who worked in the tannery
department, where the highest exposures to trivalent chromium are expected. Group e2 consists
of 30 workers at the tannery who worked in the finishing department, where exposure to trivalent
chromium is expected to be much lower. Group c consists of 30 controls who did not work at the
tannery. This example is discussed in Chapter 20 of "Design of Observational Studies", 2nd ed.

Usage

data("tannery")

Format

A data frame with 30 observations on the following 4 variables.

block Block indicator, 1 to 30.

e1mtm mtm for the tannery worker from the tannery department.

e2mtm mtm for the tannery worker from the finishing department.

cmtm mtm for the control who did not work in the tannery

Details

The comet assay is described by Collins (2004). It is thought to measure DNA strand breaks,
producing an image that resembles the tail of a comet, a larger, longer tail suggesting more extensive
strand breaks. This example was discussed in Rosenbaum (2011).

Source

Data from Zhang et al. (2008, Table 2).
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"Investigating DNA damage in tannery workers occupationally exposed to trivalent chromium us-
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Examples

data(tannery)
boxplot(tannery[,2:4],names=c("Tannery E1","Finishing E2",

"Control C"),ylab="Mean Tail Moment")
oldpar<-par(mfrow=c(1,2))
boxplot(tannery[,2:3],names=c("E1","E2"),ylab="Mean Tail Moment",

main="Tannery vs. Finishing",ylim=c(0,12))
boxplot(as.vector(unlist(tannery[,2:3])),tannery[,4],

names=c("E1+E2","C"),ylab="Mean Tail Moment",
main="Exposed vs. Control",ylim=c(0,12))

# Stratified Wilcoxon analysis from the chapter Evidence Factors
# of Design of Observational Studies, Second Edition
# Also reproduces the F1, F2 example in Rosenbaum (2011, sec 6).
y<-tannery[,2:4]
rkc<-t(apply(y,1,rank)) # Ranks for (E1,E2,C)
sum(rkc[,3]) # Stratified rank sum for C in (E1, E2, C)
(35-60)/sqrt(20)

y<-tannery[,2:3]
rkc<-t(apply(y,1,rank)) # Ranks for (E1,E2)
sum(rkc[,2]) # Stratified rank sum for E2 in (E1, E2)

# Reorganize y for input to 'separable1v' from 'sensitivitymult'
# 'separable1v' is one-sided, looking for a large rank sum

# Factor 1
y<-tannery[,4:2]*(-1)
rkc<-t(apply(y,1,rank)) # Ranks for -y for (C,E2,E1)
sensitivitymult::separable1v(rkc,gamma=1)
# Test for C in (E1, E2, C)
(85-60)/sqrt(20)
(35-60)/sqrt(20)
sensitivitymult::separable1v(rkc,gamma=6)
# Test for C in (E1, E2, C)
p1<-sensitivitymult::separable1v(rkc,gamma=7)$pval

#Factor 2
y<-tannery[,3:2]*(-1)
rkc<-t(apply(y,1,rank)) # Ranks for -y for (E2,E1)
sensitivitymult::separable1v(rkc,gamma=1)
# Test for E2 in (E2, E1)
# Combine P-values using Fisher's method
sensitivitymv::truncatedP(c(1.134237e-08,0.001743502),trunc=1)

# Larger gammas
sensitivitymult::separable1v(rkc,gamma=1.7)
p2<-sensitivitymult::separable1v(rkc,gamma=2)$pval
# Combine P-values using Fisher's method
c(p1,p2)
sensitivitymv::truncatedP(c(p1,p2),trunc=1)



50 teeth

# Nearly reproduces calculations from Section 6 of Rosenbaum (2011)
# However, in Rosenbaum (2011), the second factor
# uses a pooled scale factor, whereas senm does not,
# so the result is very slightly different.
attach(tannery)
mset<-rep(block,3)
zC<-c(rep(0,60),rep(1,30))
z12<-c(rep(1,30),rep(0,30),rep(NA,30))
y<-c(e1mtm,e2mtm,cmtm)
detach(tannery)
use<-!is.na(z12)
# Factor 1
sensitivitymult::senm(y,zC,mset,gamma=1,

alternative="less",trim=1)
sensitivitymult::senm(y,zC,mset,gamma=11.7,

alternative="less",trim=1)
# Factor 2
sensitivitymult::senm(y[use],z12[use],mset[use],

gamma=2,alternative="greater",trim=1)

# Combine two evidence factors
p1<-sensitivitymult::senm(y,zC,mset,gamma=12,

alternative="less",trim=1)$pval
p2<-sensitivitymult::senm(y[use],z12[use],mset[use],gamma=3,

alternative="greater",trim=1)$pval
c(p1,p2)
sensitivitymv::truncatedP(c(p1,p2),trunc=1)
# Combine p-values using Fisher's method

# Other psi-functions often have higher design
# sensitivity; see Rosenbaum (2013)
par(oldpar)

teeth Smoking and Periodontal Disease.

Description

Data from NHANES 2011-2012 concerning periodonal disease in 441 matched pairs of smokers
and nonsmokers.

Usage

data("teeth")

Format

A data frame with 882 observations on the following 4 variables.

mset Matched pair indicator: 1, 2, ..., 441.
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smoker Treatment indicator: 1 if current smoker, 0 if never smoker

either4up Measure of periodontal disease for upper teeth; see Details.

either4low Measure of periodontal disease for lower teeth; see Details.

cigsperday Cigarettes smoked per day. Zero for nonsmokers.

Details

Smoking is believed to cause periodontal disease; see Tomar and Asma (2000). Using more recent
data from NHANES 2011-2012, the data describe 441 matched pairs of a daily smoker and a never
smoker. Daily smokers smoked every day of the last 30 days. Never smokers smoked fewer than
100 cigarettes in their lives, do not smoke now, and had no tobacco use in the previous five days.

Pairs are matched for education, income, age, gender and black race.

Measurements were made for up to 28 teeth, 14 upper, 14 lower, excluding 4 wisdom teeth. Pocket
depth and loss of attachment are two complementary measures of the degree to which the gums
have separated from the teeth. Pocket depth and loss of attachment are measured at six locations on
each tooth, providing the tooth is present. A measurement at a location was taken to exhibit disease
if it had either a loss of attachement >=4mm or a pocked depth >=4mm, so each tooth contributes
a score from 0 to 6. Upper and lower are the number of measurements exhibiting disease for upper
and lower teeth.

This example is from Rosenbaum (2016) where more information may be found.

The data are closely related to the periodontal data set, where the outcome is univariate. The teeth
data are mentioned in Section 18.9 of "Design of Observational Studies", second edition.

Source

"National Health and Nutrition Examination Survey" (NHANES), 2011-2012. cdc.gov/nchs/nhanes

References

Rosenbaum, P. R. (2016) <doi:10.1214/16-AOAS942> "Using Scheffe projections for multiple out-
comes in an observational study of smoking and periondontal disease". Annals of Applied Statistics,
10, 1447-1471.

Tomar, S. L. and Asma, S. (2000) <doi:10.1902/jop.2000.71.5.743> "Smoking attributable peri-
odontitis in the United States: Findings from NHANES III". J. Periodont. 71, 743-751.

Examples

data(teeth)
summary(teeth)
# See also the examples in the documentation for 'cohere'.
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werfel Welding Fumes and DNA Damage

Description

This data set from Werfel et al. (1998) describes 39 electric arc welders and 39 controls matched
for age and smoking. All are men. The outcome is a measure of genetic damage; specifically,
erpcp_p is a measure of DNA single strand breakage and DNA-protein cross-links using elution
rates through polycarbonate filters with proteinase K. The data are used as an example in Chapter 3
of Design of Observational Studies.

Usage

data("werfel")

Format

A data frame with 39 observations on the following 6 variables.

cage Age in years of the control in a matched pair.
csmoke NS=nonsmoker, S=smoker for the control in a pair
cerpc_p erpcp_p for the control in a pair
sage Age in years of the welder in a matched pair.
ssmoke NS=nonsmoker, S=smoker for the welder in a pair
serpc_p erpcp_p for the welder in a pair

Source

The data are from Werfel et al. (1998). It is used as an example in Section 3.5 of "Design of
Observational Studies". It is also discussed in Fogarty (2019) and Rosenbaum (2007, 2015).

References

Fogarty, C. B. (2019) <doi:10.1080/01621459.2019.1632072> "Studentized Sensitivity Analysis
for the Sample Average Treatment Effect in Paired Observational Studies". Journal of the American
Statistical Association, to appear.

Rosenbaum, P. R. (1987) <doi:10.1093/biomet/74.1.13> "Sensitivity analysis for certain permuta-
tion inferences in matched observational studies". Biometrika, 74(1), 13-26.

Rosenbaum, P. R. (2007) <doi:10.1111/j.1541-0420.2006.00717.x> "Sensitivity analysis for M es-
timates, tests, and confidence intervals in matched observational studies". Biometrics, 63(2), 456-
464.

Rosenbaum, P. R. (2015) <https://obsstudies.org/two-r-packages-for-sensitivity-analysis-in-observational-
studies/> "Two R packages for sensitivity analysis in observational studies". Observational Studies,
1(1), 1-17.

Werfel, U., Langen, V., Eickhoff, I., Schoonbrood, J., Vahrenholz, C., Brauksiepe, A., Popp, W. and
Norpoth, K. (1998) <doi:10.1093/carcin/19.3.413> "Elevated DNA single-strand breakage frequen-
cies in lymphocytes of welders exposed to chromium and nickel". Carcinogenesis, 19(3), 413-418.
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Examples

data(werfel)
d<-werfel$serpc_p-werfel$cerpc_p

# Reproduces the approximate one-sided P-value computed in Section 3.5
senWilcox(d,gamma=3)

# Amplification in Section 3.6
sensitivitymult::amplify(3,5)
sensitivitymult::amplify(3,c(5,5.8,7))

# Agrees with the usual large sample Wilcoxon procedures when gamma=1.
senWilcox(d,gamma=1,conf.int=TRUE,alternative="twosided")
stats::wilcox.test(d,conf.int=TRUE,exact=FALSE,correct=FALSE)
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