Package 'PPtreeregViz'

December 23, 2022

Title Projection Pursuit Regression Tree Visualization

Version 2.0.5

Maintainer HyunSun Cho <sunsmiling@naver.com>

Description

It was developed as a tool for exploring 'PPTreereg' (Projection Pursuit TREE of REGression). It uses various projection pursuit indexes and 'XAI' (eXplainable Artificial Intelligence) methods to help

understand the model by finding connections between the input variables and prediction values of the model.

The 'KernelSHAP' (Aas, Jullum and Løland (2019) <arXiv:1903.10464>) algorithm was modified to fit 'PPTreereg',

and some codes were modified from the 'shapr' package (Sellereite, Nikolai, and Martin Jullum (2020) <doi:10.21105/joss.02027>).

The implemented methods help to explore the model at the single in-

stance level as well as at the whole dataset level.

Users can compare with other machine learning models by applying it to the 'DALEX' package of 'R'.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.1

Depends R (>= 4.0.0)

NeedsCompilation yes

Repository CRAN

Date 2022-12-19

- **Imports** Rcpp, data.table, DALEX, shapr, ggplot2, dplyr, tidyr, tibble, PPtreeViz, reshape2, magrittr, utils
- **Suggests** testthat (>= 3.0.0), gridExtra, grid, ggExtra, partykit, ggparty, progress, tidyselect, ggforce, waterfalls, forcats, RColorBrewer, gtable, knitr, rmarkdown, MASS, covr

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

URL https://github.com/sunsmiling/PPtreeregViz

Author Eun-Kyung Lee [aut, ctb],

HyunSun Cho [aut, cre], Nikolai Sellereite [ctb, cph] (Author of included shapr fragments), Martin Jullum [ctb, cph] (Author of included shapr fragments), Annabelle Redelmeier [ctb, cph] (Author of included shapr fragments), Norsk Regnesentral [cph]

Date/Publication 2022-12-23 19:20:05 UTC

R topics documented:

dataXY	2
decisionplot	3
explain_PP	4
feature_exact	5
insurance	6
plot.PPimportance	7
plot.PPTreereg	8
PPimportance	8
PPregNodeViz	9
PPregVarViz	10
PPshapdependence	11
ppshapr.empirical	12
ppshapr.simple	13
ppshapr_prep	14
PPshapsummary	14
PPTreereg	15
pp_ggparty	17
predict.PPTreereg	18
print.PPTreereg	19
shapley_weights	20
subpick	21
summary.PPTreereg	22
waterfallplot	22
weight_matrix	23
	• -
	25

Index

dataXY

Simulated data

Description

The dataXY dataset is simulated data for running Projection Pursuit Regression Tree Model.

decisionplot

Usage

data(dataXY)

Format

A data frame with 100 rows and 4 variables.

Details

It contains 100 rows and 4 variables.

References

doi:10.3390/app11219885

decisionplot Decision plot

Description

decision plot for PPKernelSHAP

Usage

```
decisionplot(
    PPTreeregOBJ,
    testObs,
    final.rule = 5,
    method = "simple",
    varImp = "shapImp",
    final.leaf = NULL,
    Yrange = FALSE
)
```

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
test0bs	test data observation
final.rule	final rule to assign numerical values in the final nodes. 1: mean value in the final nodes 2: median value in the final nodes 3: using optimal projection 4: using all independent variables 5: using several significant independent variables
method	simple or empirical method to calculate PPKernelSHAP
varImp	<pre>shapImp or treeImp - Sorted by descending order of variance or the variable importance from coefficient values of the nodes inside the PPTreereg.</pre>
final.leaf	location of final leaf
Yrange	show the entire final prediction range of the dependent variable. Default value is FALSE.

Details

Decision plots are mainly used to explain individual predictions that how the model makes decision, by focusing more on how model's predictions reach to their expected y value with PPKernelSHAP values.

Value

An object of the class ggplot

Examples

```
data(dataXY)
testX <- dataXY[1,-1]
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
decisionplot(Model, testX, final.rule =5, method="simple")</pre>
```

```
explain_PP
```

Make explain of PPTreeregObj for DALEX package

Description

Create Model Explainer for PPTreereg

Usage

```
explain_PP(PPTreeregOBJ, data, y, final.rule,...)
```

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
data	data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument).
у	numeric vector with outputs / scores. If provided then it shall have the same size as data
final.rule	rule to calculate the final node value
	arguments to be passed to methods

Details

This function creates a unified representation explain of PPTreereg model for cooperate with DALEX package.

Value

An object of the class explainer.

4

feature_exact

References

Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema. drwhy.ai/

Examples

```
library("DALEX")
library("dplyr")
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
new_explainer <- explain_PP(Model, data = dataXY[,-1],y = dataXY[,1],final.rule= 5)
DALEX::model_performance(new_explainer) %>% plot(geom = "ecdf")
```

feature_exact *feature_exact*

Description

The original source for much of this came from 'shapr' package code in github.com/NorskRegnesentral/shapr/blob/master/R/f

Usage

```
feature_exact(m, weight_zero_m = 10^6)
```

Arguments

m	List. Contains vector of integers indicating the feature numbers for the different
	groups.
weight_zero_m	weight_zero_m

Details

Below is the original license statement for 'shapr' package.

MIT License Copyright (c) 2019 Norsk Regnesentral Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Value

A data.table with all feature group combinations, shapley weights etc.

Author(s)

Nikolai Sellereite

References

The shapr package developed by Nikolai Sellereite, Martin Jullum, Annabelle Redelmeier, Norsk Regnesentral. doi:10.1016/j.artint.2021.103502 and modified some codes at https://github.com/NorskRegnesentral/shapr

|--|--|

Description

Dataset insurance is a part of dataset imported from insurance.csv in Kaggle "Medical Cost Personal Dataset". This data source material comes from Machine Learning with R by Brett Lantz book. It is simply come cleaned up and, it contains 1338 rows and 7 variables. These are:

Usage

data(insurance)

Format

a data frame with 1338 rows and 7 columns.

Details

- charges Individual medical costs billed by health insurance.
- age age of primary beneficiary.
- sex insurance contractor gender, female, male.
- bmi Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9.
- children Number of children covered by health insurance / Number of dependents.
- smoker Smoking.
- region the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.

Source: https://www.kaggle.com/mirichoi0218/insurance

Source

The insurance.csv dataset was downloaded from the Kaggle site. The dataset was obtained from https://www.kaggle.com/mirichoi0218/insurance on May 11, 2021.

plot.PPimportance Variable importance plot of PPTreereg

Description

Visualize importance measure of trained PPTreereg model.

Usage

```
## S3 method for class 'PPimportance'
plot(x, marginal = FALSE, num_var = 5, ...)
```

Arguments

x	an importance object of the class PPimpobj, created with PPimportance func- tion
marginal	plot global importance. Default value is FALSE.
num_var	number of variables to show.
	arguments to be passed to methods

Details

To visualize the variable importance values of PPTreereg model, two types of plots are provided - importance of variables for each final node and global variable importance.

Value

An object of the class ggplot

```
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
Tree.Imp <- PPimportance(Model)
plot(Tree.Imp)
plot(Tree.Imp, marginal = TRUE)</pre>
```

plot.PPTreereg plot

Description

projection pursuit regression tree plot

Usage

```
## S3 method for class 'PPTreereg'
plot(x, font.size = 17, width.size = 1, ...)
```

Arguments

х	PPTreereg class object
font.size	font size of plot
width.size	size of eclipse in each node.
	arguments to be passed to methods

Details

Draw projection pursuit regression tree with tree structure. It is modified from a function in party library.

Value

plot object

Examples

```
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
plot(Model)</pre>
```

PPimportance Calculate variable importance

Description

Calculate the importance of variables in the PPTreereg model. For local importance, weighted sum of projection coefficients with the number of data corresponding to each node as the weighted value in each node is used. The global importance is absolute sum of local importance.

PPregNodeViz

Usage

PPimportance(PPTreeregOBJ,...)

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
	arguments to be passed to methods

Node visualization

Value

An object of the class PPimpobj

Examples

```
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
PPimportance(Model)</pre>
```

PPregNodeViz

Description

Visualize node in projection pursuit regression tree.

Usage

PPregNodeViz(PPTreeregOBJ,node.id,Rule=5)

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
node.id	node ID of inner or final node
Rule	split rule 1: mean of two group means 2: weighted mean of two group means - weight with group size 3: weighted mean of two group means - weight with group sd 4: weighted mean of two group means - weight with group se 5: mean of two group medians 6: weighted mean of two group medians - weight with group size 7: weighted mean of two group median - weight with group IQR 8: weighted mean of two group median - weight with group size

Details

This function is developed for the visualization of inner and final nodes. Visual representation of the projection coefficient value of each node and the result of projected data help understand growth process of the projection pursuit regression tree. For the inner node, two plots are provided - the bar chart style plot with projection pursuit coefficients of each variable, the histogram of the projected data. For the final node, scatter plot of observed Y vs. fitted Y according to the final rules.

Value

An object of the class ggplot

Examples

```
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
PPregNodeViz(Model,node.id=1)
PPregNodeViz(Model,node.id=4)</pre>
```

PPregVarViz	Visualize independent variable action in projection pursuit regression	
	tree.	

Description

This function is developed to see the influence of independent variables on the range of dependent variable.

Usage

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
var.id	independent variable name
indiv	TRUE: individual group plot, FALSE: combined one plot
DEPTH	depth for exploration
smoothMethod	method in geom_smooth function
var.factor	TRUE when indepedent variable is a categorical variable (as factor)

Value

An object of the class ggplot

Examples

```
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
PPregVarViz(Model,"X1")
PPregVarViz(Model,"X1",indiv = TRUE)</pre>
```

10

PPshapdependence Dependency plot

Description

Dependency plot using PPKernelSHAP

Usage

```
PPshapdependence(data_long, x, y=NULL, color_feature=NULL, smooth=TRUE)
```

Arguments

data_long	ppshapr_prep class object.
x	the independent variable to see
У	the interaction effect by putting the values of the independent variables in dif- ferent colors.
color_feature	display other variables with color. Default value is NULL.
smooth	geom_smooth option. Default value is TRUE.

Details

Dependency plots are designed to show the effect of one independent variable on the model's prediction. Each point corresponds to each row of the training data, and the y axis corresponds the PPKernelSHAP value of the variable, indicating how much knowing the value of the variable changes the output of the model for the prediction of the data.

Value

An object of the class ggplot

```
data(dataXY)
testX <- dataXY[1,-1]
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
shap_long <- ppshapr_prep(Model, final.rule =5, method="simple")
PPshapdependence(shap_long, x = "X1")</pre>
```

ppshapr.empirical

Description

This function should only be called internally, and not be used as a stand-alone function. The original source for much of this came from 'shapr' package code in github.com/NorskRegnesentral/shapr/blob/master/R/prediction

Usage

```
ppshapr.empirical(PPTreeregOBJ, testObs, final.rule, final.leaf = NULL)
```

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
test0bs	test data observation
final.rule	final rule to assign numerical values in the final nodes. 1: mean value in the final nodes 2: median value in the final nodes 3: using optimal projection 4: using all independent variables 5: using several significant independent variables
final.leaf	location of final leaf

Details

Below is the original license statement for 'shapr' package.

MIT License Copyright (c) 2019 Norsk Regnesentral Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Value

List of empirical methods and model values

ppshapr.simple

Description

This function should only be called internally, and not be used as a stand-alone function. The original source for much of this came from 'shapr' package code in github.com/NorskRegnesentral/shapr/blob/master/R/prediction/

Usage

```
ppshapr.simple(PPTreeregOBJ, testObs, final.rule, final.leaf = NULL)
```

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
test0bs	test data observation
final.rule	final rule to assign numerical values in the final nodes. 1: mean value in the final nodes 2: median value in the final nodes 3: using optimal projection 4: using all independent variables 5: using several significant independent variables
final.leaf	location of final leaf

Details

Below is the original license statement for 'shapr' package.

MIT License Copyright (c) 2019 Norsk Regnesentral Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Value

List of simple methods and model values

ppshapr_prep

Description

All train data set to calculate PPKernelSHAP

Usage

```
ppshapr_prep(PPTreeregOBJ = NULL, final.rule = 5, method = "simple")
```

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
final.rule	final rule to assign numerical values in the final nodes. 1: mean value in the final nodes 2: median value in the final nodes 3: using optimal projection 4: using all independent variables 5: using several significant independent variables
method	simple or empirical method to calculate PPKernelSHAP

Value

ppshapr_prep class object

Examples

```
data(dataXY)
testX <- dataXY[1,-1]
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
shap_long <- ppshapr_prep(Model, final.rule =5, method="simple")</pre>
```

PPshapsummary Summary plot

Description

Summary plot using PPKernelSHAP

Usage

PPshapsummary(data_long,...)

Arguments

data_long	ppshapr_prep class object.
	arguments to be passed to methods

PPTreereg

Details

A summary plot is used to see the aspects of important variables for each final node. The summary plot summarizes information about the independent variables that contributed the most to the model's prediction in the training data in the form of a density plot.

Value

An object of the class ggplot

Examples

```
data(dataXY)
testX <- dataXY[1,-1]
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
shap_long <- ppshapr_prep(Model, final.rule =5, method="simple")
PPshapsummary(shap_long)</pre>
```

PPTreereg

Construct the projection pursuit regression tree

Description

Find regression tree structure using various projection pursuit indices in each split.

Usage

Arguments

formula	an object of class "formula"
data	data frame
DEPTH	depth of the projection pursuit regression tree
Rr	cutoff rule in each node
PPmethod	method for projection pursuit; "LDA", "PDA", "Lr", "GINI", and "ENTROPY".
weight	weight flag in LDA, PDA and Lr index
lambda	lambda in PDA index
r	r in Lr index
TOL.CV	CV limit for the final node

selP	number of variables for the final node in Method 5
energy	energy parameter
maxiter	number of maximum iteration
standardized	standardize each X variable before fitting the tree structure. Default value is \ensuremath{TRUE}
even	divide evenly at each node. Default value is TRUE
space	space between two groups of dependent variable
maxFinalNode	maximum number of final node
maxNodeN	maximum number of observations in the final node
	arguments to be passed to methods

Value

Tree.result projection pursuit regression tree result with PPtreeclass object format

MSE mean squared error of the final tree

mean. G means of the observations in the final node

sd.G standard deviations of the observations in the final node.

coef.G regression coefficients for Method 3, 4 and 5

origY original dependent variable vector

 $\verb"origX.mean mean of original X"$

origX.sd standard deviation of original X

class.origX.mean means of the each independent variables in the final node

References

•••

```
data(mtcars)
Tree.result <- PPTreereg(mpg~.,mtcars,DEPTH=2,PPmethod="LDA")
Tree.result</pre>
```

pp_ggparty

Description

projection pursuit regression tree plot with independent variable

Usage

```
pp_ggparty(PPTreeregOBJ,ind_variable,final.rule=5,Rule=1, ...)
```

Arguments

PPTreeregOBJ	PPTreereg class object
ind_variable	independent variable to show
final.rule	final rule to assign numerical values in the final nodes. 1: mean value in the final nodes 2: median value in the final nodes 3: using optimal projection 4: using all independent variables 5: using several significant independent variables
Rule	split rule 1: mean of two group means 2: weighted mean of two group means - weight with group size 3: weighted mean of two group means - weight with group sd 4: weighted mean of two group means - weight with group se 5: mean of two group medians 6: weighted mean of two group medians - weight with group size 7: weighted mean of two group median - weight with group IQR 8: weighted mean of two group median - weight with group size
	arguments to be passed to methods

Details

Draw projection pursuit regression tree with independent variable. It is modified from a function in partykit library.

Value

An object of the class ggplot

```
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
pp_ggparty(Model, "X1", final.rule=5)</pre>
```

predict.PPTreereg *predict* PPTreereg

Description

predict projection pursuit regression tree

Usage

```
## S3 method for class 'PPTreereg'
predict(
   object,
   newdata = NULL,
   Rule = 1,
   final.rule = 1,
   classinfo = FALSE,
   ...
)
```

Arguments

object	a fitted object of class inheriting from PPTreereg
newdata	the test data set
Rule	split rule 1: mean of two group means 2: weighted mean of two group means - weight with group size 3: weighted mean of two group means - weight with group sd 4: weighted mean of two group means - weight with group se 5: mean of two group medians 6: weighted mean of two group medians - weight with group size 7: weighted mean of two group median - weight with group IQR 8: weighted mean of two group median - weight with group size 9: cutoff that minimize error rates in each node
final.rule	final rule to assign numerical values in the final nodes. 1: mean value in the final nodes 2: median value in the final nodes 3: using optimal projection 4: using all independent variables 5: using several significant independent variables
classinfo	return final node information. Default value is FALSE
	arguments to be passed to methods

Details

Predict class for the test set with the fitted projection pursuit regression tree and calculate prediction error.

Value

Numeric

print.PPTreereg

Examples

```
data(dataXY)
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
predict(Model)</pre>
```

print.PPTreereg Print PPTreereg result

Description

Print PP.Tree.reg result

Usage

```
## S3 method for class 'PPTreereg'
print(
    x,
    tree.print = TRUE,
    coef.print = FALSE,
    cutoff.print = FALSE,
    verbose = TRUE,
    final.rule = 1,
    ...
)
```

Arguments

x	PPTreereg object
tree.print	print the tree structure when TRUE
coef.print	print the projection coefficient in each node when TRUE
cutoff.print	print the cutoff values in each node when TRUE
verbose	print if TRUE, no output if FALSE
final.rule	rule to calculate the final node value
	arguments to be passed to methods

Details

Print the projection pursuit regression tree result

Value

tree print

shapley_weights shapley_weights

Description

The original source for much of this came from 'shapr' package code in github.com/NorskRegnesentral/shapr/blob/master/R/s Below is the original license statement for 'shapr' package.

Usage

shapley_weights(m, N, n_components, weight_zero_m = 10^6)

Arguments

m m m N N n_components n_components weight_zero_m weight_zero_m

Details

MIT License Copyright (c) 2019 Norsk Regnesentral Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Value

Numeric

Author(s)

Nikolai Sellereite

References

The shapr package developed by Nikolai Sellereite, Martin Jullum, Annabelle Redelmeier, Norsk Regnesentral. doi:10.1016/j.artint.2021.103502 and modified some codes at https://github.com/NorskRegnesentral/shapr

subpick

Description

Pick several data containing various information for each final node for PPTreereg submodular Pick (SP-LIME) was developed (Ribeiro et al., 2016) to selects representative data with important information to determine the reliability of model based on the LIME algorithm. In order to extract data for each final node in the PPTreereg model, PP SP-LIME was proposed based on SP-LIME.

Usage

subpick(data_long, final.leaf, obsnum = 5)

Arguments

data_long	ppshapr_prep class object.
final.leaf	location of final leaf
obsnum	The number of budgets (instance to be selected). Default value is 1

Value

Observation names and their original values as data

References

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. doi:10.1145/2939672.2939778 https://github.com/marcotcr/lime/blob/master/lime/submodular_pick.py

```
data("dataXY")
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
shap_long=ppshapr_prep(Model,final.rule =3,method="simple")
subpick(shap_long,final.leaf = 1, obsnum = 5)
```

summary.PPTreereg Summary PPTreereg result

Description

summary PPTreereg result

Usage

```
## S3 method for class 'PPTreereg'
summary(object, c = NA, ...)
```

Arguments

object	a fitted object of class inheriting from PPTreereg
с	choose node id to summary. Default value is FALSE.
	arguments to be passed to methods

Details

summary the projection pursuit regression tree result

Value

coefficient results of tree

waterfallplot Waterfall plot

Description

waterfall plot for PPKernelSHAP

Usage

```
waterfallplot(
   PPTreeregOBJ,
   testObs,
   final.rule = 5,
   method = "simple",
   final.leaf = NULL
)
```

weight_matrix

Arguments

PPTreereg0BJ	PPTreereg class object - a model to be explained
test0bs	test data observation
final.rule	final rule to assign numerical values in the final nodes. 1: mean value in the final nodes 2: median value in the final nodes 3: using optimal projection 4: using all independent variables 5: using several significant independent variables
method	simple or empirical method to calculate PPKernelSHAP
final.leaf	location of final leaf

Details

Waterfall plot is mainly used to explain individual predictions, and is suitable for showing an explanation when a single piece of data is entered as an input using PPKernelSHAP values.

Value

An object of the class ggplot

Examples

```
data(dataXY)
testX <- dataXY[1,-1]
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
waterfallplot(Model, testX, final.rule =5, method="simple")</pre>
```

weight_matrix weight_matrix

Description

The original source for much of this came from 'shapr' package code in github.com/NorskRegnesentral/shapr/blob/master/R/s Below is the original license statement for 'shapr' package.

Usage

```
weight_matrix(X, normalize_W_weights = TRUE)
```

Arguments

X X normalize_W_weights default is TRUE

Details

MIT License Copyright (c) 2019 Norsk Regnesentral Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Value

Numeric matrix

Author(s)

Nikolai Sellereite

References

The shapr package developed by Nikolai Sellereite, Martin Jullum, Annabelle Redelmeier, Norsk Regnesentral. doi:10.1016/j.artint.2021.103502 and modified some codes at https://github.com/NorskRegnesentral/shapr

24

Index

* dataXY dataXY, 2 * insurance insurance, 6 * submodular subpick, 21 * tree plot.PPimportance,7 plot.PPTreereg, 8 pp_ggparty, 17 PPregNodeViz, 9 PPregVarViz, 10 PPTreereg, 15 predict.PPTreereg, 18 print.PPTreereg, 19 dataXY, 2 decisionplot, 3explain_PP, 4 feature_exact, 5 insurance, 6 plot (plot.PPTreereg), 8 plot.PPimportance, 7 plot.PPTreereg, 8 pp_ggparty, 17 PPimportance, 7, 8 PPregNodeViz,9 PPregVarViz, 10 PPshapdependence, 11 ppshapr.empirical, 12 ppshapr.simple, 13 ppshapr_prep, 14 PPshapsummary, 14 PPTreereg, 15 predict(predict.PPTreereg), 18 predict.PPTreereg, 18 print.PPTreereg, 19

shapley_weights, 20
subpick, 21
summary.PPTreereg, 22

waterfallplot, 22
weight_matrix, 23