bbl: Boltzmann Bayes Learner

Supervised learning using Boltzmann Bayes model inference, which extends naive Bayes model to include interactions. Enables classification of data into multiple response groups based on a large number of discrete predictors that can take factor values of heterogeneous levels. Either pseudo-likelihood or mean field inference can be used with L2 regularization, cross-validation, and prediction on new data. <doi:10.18637/jss.v101.i05>.

Version: 1.0.0
Depends: R (≥ 3.6.0)
Imports: methods, stats, utils, Rcpp (≥ 0.12.16), pROC, RColorBrewer
LinkingTo: Rcpp
Suggests: glmnet, BiocManager, Biostrings
Published: 2022-01-27
DOI: 10.32614/CRAN.package.bbl
Author: Jun Woo ORCID iD [aut, cre]
Maintainer: Jun Woo <junwoo035 at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Citation: bbl citation info
Materials: README
CRAN checks: bbl results

Documentation:

Reference manual: bbl.pdf
Vignettes: bbl: Boltzmann Bayes Learner for High-Dimensional Inference with Discrete Predictors in R

Downloads:

Package source: bbl_1.0.0.tar.gz
Windows binaries: r-devel: bbl_1.0.0.zip, r-release: bbl_1.0.0.zip, r-oldrel: bbl_1.0.0.zip
macOS binaries: r-release (arm64): bbl_1.0.0.tgz, r-oldrel (arm64): bbl_1.0.0.tgz, r-release (x86_64): bbl_1.0.0.tgz, r-oldrel (x86_64): bbl_1.0.0.tgz
Old sources: bbl archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bbl to link to this page.