
Package ‘cregg’
October 12, 2022

Type Package

Title Simple Conjoint Tidying, Analysis, and Visualization

Version 0.4.0

Date 2020-06-28

Description Simple tidying, analysis, and visualization of conjoint (factorial) experiments, includ-
ing estimation and visualization of average marginal component effects ('AM-
CEs') and marginal means ('MMs') for weighted and un-weighted survey data, along with use-
ful reference category diagnostics and statistical tests. Estimation of 'AMCEs' is based upon meth-
ods described by Hainmueller, Hopkins, and Yamamoto (2014) <doi:10.1093/pan/mpt024>.

License MIT + file LICENSE

URL https://github.com/leeper/cregg

BugReports https://github.com/leeper/cregg/issues

Depends R (>= 3.5.0)

Imports stats, sandwich (>= 2.4-0), survey (>= 3.33), lmtest, ggplot2
(>= 2.0), ggstance, scales, utils

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.0.2

NeedsCompilation no

Author Thomas J. Leeper [aut, cre] (<https://orcid.org/0000-0003-4097-6326>),
Matthew Barnfield [ctb]

Maintainer Thomas J. Leeper <thosjleeper@gmail.com>

Repository CRAN

Date/Publication 2020-06-28 21:20:03 UTC

1

https://doi.org/10.1093/pan/mpt024
https://github.com/leeper/cregg
https://github.com/leeper/cregg/issues
https://orcid.org/0000-0003-4097-6326

2 amce

R topics documented:

amce . 2
amce_diffs . 4
cj . 7
cj_df . 11
cj_freqs . 12
cj_tidy . 14
immigration . 17
mm . 19
plot.cj_amce . 21
taxes . 24
wide_conjoint . 26

Index 29

amce Tidy estimation of AMCEs

Description

Estimate AMCEs for a conjoint analysis and return a tidy data frame of results

Usage

amce(
data,
formula,
id = ~0,
weights = NULL,
feature_order = NULL,
feature_labels = NULL,
level_order = c("ascending", "descending"),
alpha = 0.05,
...

)

amce_by_reference(data, formula, variable, ...)

Arguments

data A data frame containing variables specified in formula. All RHS variables
should be factors; the base level for each will be used in estimation and its
reported AMCE will be NA (for printing). Optionally, this can instead be an
object of class “survey.design” returned by svydesign.

amce 3

formula A formula specifying an AMCE model to be estimated. All variables should be
factors; all levels across features should be unique. Two-way constraints can be
specified with an asterisk (*) between RHS features. The specific constrained
level pairs within these features are then detected automatically. Higher-order
constraints are not allowed.

id An RHS formula specifying a variable holding respondent identifiers, to be used
for clustering standard errors. By default, data are unclustered.

weights An (optional) RHS formula specifying a variable holding survey weights.

feature_order An (optional) character vector specifying the names of feature (RHS) variables
in the order they should be encoded in the resulting data frame.

feature_labels A named list of “fancy” feature labels to be used in output. By default, the func-
tion looks for a “label” attribute on each variable in formula and uses that for
pretty printing. This argument overrides those attributes or otherwise provides
fancy labels for this purpose. This should be a list with names equal to variables
on the righthand side of formula and character string values; arguments passed
here override variable attributes.

level_order A character string specifying levels (within each feature) should be ordered in-
creasing or decreasing in the final output. This is mostly only consequential for
plotting via plot.cj_mm, etc.

alpha A numeric value indicating the significance level at which to calculate confi-
dence intervals for the MMs (by default 0.95, meaning 95-percent CIs are re-
turned).

... For amce: additional arguments to glm or svyglm, the latter being used if weights
is non-NULL. For amce_by_reference: additional arguments passed to amce.

variable An RHS formula containing a single factor variable from formula. This will be
used by amce_by_reference to estimate AMCEs relative to each possible factor
level as a reference category. If more than one RHS variables are specified, the
first will be used.

Details

amce provides estimates of AMCEs (or rather, average marginal effects for each feature level). Two-
way constraints can be specified with an asterisk (*) between features. The specific constrained
level pairs within these features are then detected automatically. The function can also be used
for calculating average component interaction effects when combined with interaction, and for
balance testing by specifying a covariate rather outcome on the left-hand side of formula. See
examples.

amce_by_reference provides a tool for quick sensitivity analysis. AMCEs are defined relative to
an arbitrary reference category (i.e., feature level). This function will loop over all feature levels
(for a specified feature) to show how interpretation will be affected by choice of reference category.
The resulting data frame will be a stacked result from amce, containing an additional REFERENCE
column specifying which level of variable was used as the reference category. In unconstrained
conjoint designs, only AMCEs for variable will vary by reference category; in constrained de-
signs, AMCEs for any factor constrained by variable may also vary.

Users may desire to specify a family argument via ..., which should be a “family” object such
as gaussian. Sensible alternatives are binomial (for binary outcomes) and quasibinomial (for

4 amce_diffs

weighted survey data). See family for details. In such cases, effects are always reported on the link
(not outcome) scale.

Value

A data frame of class “cj_amce”

See Also

amce_diffs mm plot.cj_amce

Examples

data("taxes")
estimating AMCEs
amce(taxes, chose_plan ~ taxrate1 + taxrate2 + taxrate3 +

taxrate4 + taxrate5 + taxrate6 + taxrev, id = ~ ID)

data("immigration")
estimating AMCEs with constraints
amce(immigration, ChosenImmigrant ~ Gender + ReasonForApplication * CountryOfOrigin,

id = ~CaseID)

estimating average component interaction effects (AMCEs of feature combinations)
immigration$language_entry <- interaction(immigration$LanguageSkills,

immigration$PriorEntry, sep = "_")
amce(immigration,ChosenImmigrant ~ language_entry, id = ~CaseID)

balance testing example
plot(amce(immigration[!is.na(immigration$ethnocentrism),],

ethnocentrism ~ Gender + Education + LanguageSkills, id = ~ CaseID))

reference category sensitivity
x <- amce_by_reference(immigration, ChosenImmigrant ~ LanguageSkills + Education,

variable = ~ LanguageSkills, id = ~ CaseID)
plot
plot(x)

amce_diffs Preference Heterogeneity Diagnostics

Description

Tests for preference heterogeneity in conjoint experiments

amce_diffs 5

Usage

amce_diffs(
data,
formula,
by,
id = ~0,
weights = NULL,
feature_order = NULL,
feature_labels = NULL,
level_order = c("ascending", "descending"),
alpha = 0.05,
...

)

cj_anova(data, formula, id = NULL, weights = NULL, by = NULL, ...)

mm_diffs(
data,
formula,
by,
id = ~0,
weights = NULL,
feature_order = NULL,
feature_labels = NULL,
level_order = c("ascending", "descending"),
alpha = 0.05,
h0 = 0,
...

)

Arguments

data A data frame containing variables specified in formula. All RHS variables
should be factors; the base level for each will be used in estimation and for
AMCEs the base level’s AMCE will be NA. Optionally, this can instead be an
object of class “survey.design” returned by svydesign.

formula A formula specifying a model to be estimated. All variables should be factors;
all levels across features should be unique.

by A formula containing only RHS variables, specifying grouping factors over
which to perform estimation. For amce_diffs, this can be a factor or some-
thing coercable to factor. For mm_diffs, differences are calculated against the
base level of this variable.

id Ignored.

weights An (optional) RHS formula specifying a variable holding survey weights.

feature_order An (optional) character vector specifying the names of feature (RHS) variables
in the order they should be encoded in the resulting data frame.

6 amce_diffs

feature_labels A named list of “fancy” feature labels to be used in output. By default, the func-
tion looks for a “label” attribute on each variable in formula and uses that for
pretty printing. This argument overrides those attributes or otherwise provides
fancy labels for this purpose. This should be a list with names equal to variables
on the righthand side of formula and character string values; arguments passed
here override variable attributes.

level_order A character string specifying levels (within each feature) should be ordered in-
creasing or decreasing in the final output. This is mostly only consequential for
plotting via plot.cj_mm, etc.

alpha A numeric value indicating the significance level at which to calculate confi-
dence intervals for the MMs (by default 0.95, meaning 95-percent CIs are re-
turned).

... Additional arguments to amce, cj_freqs, or mm.

h0 A numeric value specifying a null hypothesis value to use when generating z-
statistics and p-values (only used for mm_diffs).

Details

cj_anova takes a model formula (“reduced” model) and generates a “full” model with two-way
interactions between the variables specified in by and all RHS variables in formula, then computes
an F-test comparing the two models, providing a test for whether preferences vary across levels of
by. This is, in essence, a test of whether all such interaction coefficients are distinguishable from
zero. (Because the test depends on overall model fit, not the coefficient variances, clustering is
irrelevant.)

mm_diffs provides a data frame of differences in marginal means (literally differencing the results
from mm across levels of by. This provides the clearest direct measure of preference differences
from a conjoint design.

amce_diffs provides a data frame of differences in AMCEs (the coefficient on an interaction be-
tween each RHS factor and the variable in by). This provides an estimate of the difference in causal
effects of each factor level relative to the baseline level (i.e., the difference in conditional AMCEs).
This quantity is easily misinterpreted as the difference in preferences, which it is not. Rather it is a
difference in the effect of the factor on preferences relative to the baseline/reference category of that
feature. If preferences in the reference category differ across levels of by, the the difference in con-
ditional AMCEs will have an unpredictable sign and significance, making differences in marginal
means a more sensible quantity of interest. See amce_by_reference for a diagnostic.

Note: amce_diffs does not work with constrained designs. To obtain such differences, subset the
design by constraints and calculate differences within each subset.

Value

amce_diffs and mm_diffs return a data frame similar to the one returned by cj, including a BY
column (with the value “Difference”) for easy merging with results returned by that function.

cj_anova returns an anova object.

Author(s)

Thomas J. Leeper <thosjleeper@gmail.com>

cj 7

See Also

amce mm cj_freqs plot.cj_amce

Examples

data("immigration")
immigration$contest_no <- factor(immigration$contest_no)
Test for heterogeneity by profile order
cj_anova(immigration, ChosenImmigrant ~ Gender + Education + LanguageSkills, by = ~ contest_no)

Test for heterogeneity by CountryOfOrigin feature
cj_anova(immigration, ChosenImmigrant ~ Gender + Education, by = ~ CountryOfOrigin)

Differences in MMs by Gender feature
mm_diffs(immigration, ChosenImmigrant ~ LanguageSkills + Education, ~ Gender, id = ~ CaseID)

Differences in AMCEs by Gender feature (i.e., feature interactions)
amce_diffs(immigration, ChosenImmigrant ~ LanguageSkills + Education, ~ Gender, id = ~ CaseID)

preferences differ for Male and Female immigrants with 'Broken English' ability
(m1 <- mm_diffs(immigration, ChosenImmigrant ~ LanguageSkills, ~ Gender, id = ~ CaseID))

yet differences in conditional AMCEs depend on the reference category
amce_diffs(immigration, ChosenImmigrant ~ LanguageSkills, ~ Gender, id = ~ CaseID)
immigration$LanguageSkills2 <- relevel(immigration$LanguageSkills, "Used Interpreter")
amce_diffs(immigration, ChosenImmigrant ~ LanguageSkills2, ~ Gender, id = ~ CaseID)

while differences in MMs do not depend on the reference cateory
(m2 <- mm_diffs(immigration, ChosenImmigrant ~ LanguageSkills2, ~ Gender, id = ~ CaseID))

cj Simple Conjoint Analyses and Visualization

Description

Simple analyses of conjoint (factorial) experiments and visualization of results.

Usage

cj(
data,
formula,
id = ~0,
weights = NULL,
estimate = c("amce", "frequencies", "mm", "amce_differences", "mm_differences"),
feature_order = NULL,

8 cj

feature_labels = NULL,
level_order = c("ascending", "descending"),
by = NULL,
...

)

Arguments

data A data frame containing variables specified in formula. All RHS variables
should be factors; the base level for each will be used in estimation and for
AMCEs the base level’s AMCE will be zero. Optionally, this can instead be an
object of class “survey.design” returned by svydesign.

formula A formula specifying a model to be estimated. ; all levels across features should
be unique. For estimate = "amce" in a constrained conjoint design, two-way
interactions can be specified to handle constraints between factors in the design.
These are detected automatically. Higher-order constraints are not allowed and
interactions are ignored for all other values of estimate as constraints are irrel-
evant to those statistics.

id An RHS formula specifying a variable holding respondent identifiers, to be used
for clustering standard errors.

weights An (optional) RHS formula specifying a variable holding survey weights.

estimate A character string specifying an estimate type. Current options are average
marginal component effects (or AMCEs, “amce”, estimated via amce), dis-
play frequencies (“frequncies”, estimated via cj_freqs), marginal means (or
AMMs, “mm”, estimated via mm), differences in MMs (“mm_differences”, via
mm_diffs), or differences in AMCEs (“amce_differences”, via amce_diffs).
Additional options may be made available in the future. Non-ambiguous abbre-
viations are allowed.

feature_order An (optional) character vector specifying the names of feature (RHS) variables
in the order they should be encoded in the resulting data frame.

feature_labels A named list of “fancy” feature labels to be used in output. By default, the func-
tion looks for a “label” attribute on each variable in formula and uses that for
pretty printing. This argument overrides those attributes or otherwise provides
fancy labels for this purpose. This should be a list with names equal to variables
on the righthand side of formula and character string values; arguments passed
here override variable attributes.

level_order A character string specifying levels (within each feature) should be ordered in-
creasing or decreasing in the final output. This is mostly only consequential for
plotting via plot.cj_mm, etc.

by A formula containing only RHS variables, specifying grouping factors over
which to perform estimation.

... Additional arguments to amce, cj_freqs, mm, mm_diffs, or amce_diffs.

Details

The main function cj is a convenience function wrapper around the underlying estimation functions
that provide for average marginal component effects (AMCEs), by default, via the amce function,

cj 9

marginal means (MMs) via the mm function, and display frequencies via cj_freqs and cj_props.
Additional estimands may be supported in the future through their own functions and through the
cj interface. Plotting is provided via ggplot2 for all types of estimates.

The only additional functionality provided by cj over the underlying functions is the by argument,
which will perform operations on subsets of data, returning a single data frame. This can be useful,
for example, for evaluating profile spillover effects and subgroup results, or in any situation where
one might be inclined to use a for loop or lapply, calling cj repeatedly on subgroups.

Note: Some features of cregg (namely, the amce_diffs) function, or estimate = "amce_diff"
here) only work with full factorial conjoint experiments. Designs involving two-way constraints
between features are supported simply by expressing interactions between constrained terms in
formula (again, except for amce_diffs). Higher-order constraints may be supported in the future.

Value

A data frame with special class to facilitate plotting (e.g., “cj_amce”, “cj_mm”, etc.)

Author(s)

Thomas J. Leeper <thosjleeper@gmail.com>

See Also

Functions: amce, mm, cj_freqs, mm_diffs, plot.cj_amce, cj_tidy Data: immigration, taxes

Examples

load data
requireNamespace("ggplot2")
data("immigration")
immigration$contest_no <- factor(immigration$contest_no)
data("taxes")

calculate MMs
f1 <- ChosenImmigrant ~ Gender + Education +

LanguageSkills + CountryOfOrigin + Job + JobExperience +
JobPlans + ReasonForApplication + PriorEntry

d1 <- cj(immigration, f1, id = ~ CaseID, estimate = "mm", h0 = 0.5)
plot MMs
plot(d1, vline = 0.5)

calculate MMs for survey-weighted data
d1 <- cj(taxes, chose_plan ~ taxrate1 + taxrate2 + taxrate3 +

taxrate4 + taxrate5 + taxrate6 + taxrev, id = ~ ID,
weights = ~ weight, estimate = "mm", h0 = 0.5)

plot MMs
plot(d1, vline = 0.5)

MMs split by profile number
stacked <- cj(immigration, f1, id = ~ CaseID,

estimate = "mm", by = ~ contest_no)

10 cj

plot with grouping
plot(stacked, group = "contest_no", vline = 0.5, feature_headers = FALSE)

plot with facetting
plot(stacked) + ggplot2::facet_wrap(~ contest_no, nrow = 1L)

estimate AMCEs
d2 <- cj(immigration, f1, id = ~ CaseID)

plot AMCEs
plot(d2)

subgroup analysis
immigration$ethnosplit <- cut(immigration$ethnocentrism, 2)
x <- cj(na.omit(immigration), ChosenImmigrant ~ Gender + Education + LanguageSkills,

id = ~ CaseID, estimate = "mm", h0 = 0.5, by = ~ ethnosplit)
plot(x, group = "ethnosplit", vline = 0.5)

combinations of/interactions between features
immigration$language_entry <-

interaction(immigration$LanguageSkills, immigration$PriorEntry, sep = "_")

higher-order MMs for feature combinations
cj(immigration, ChosenImmigrant ~ language_entry,

id = ~CaseID, estimate = "mm", h0 = 0.5)

constrained designs
in a constrained design, some cells are unobserved:
subset(cj_props(immigration, ~ Job + Education), Proportion == 0)
MMs and AMCEs only use data from observed cells
In `immigraation`, this means while the MM for `Job == "Janitor"` is an average
across all levels of Education:
mm(subset(immigration, Job == "Janitor"), ChosenImmigrant ~ Education)
the MM for `Job == "Doctor"` is an average across only 3 levels of education:
mm(subset(immigration, Job == "Doctor"), ChosenImmigrant ~ Education)
Use `cj_props()` to see constraints:
subset(cj_props(immigration, ~ Job + Education), Job == "Doctor" & Proportion != 0)

Substantively, the MM of "Doctor" might be higher than other levels of `Job`
this could be due to the feature itself or due to the fact that it is constrained
with a different subset of other feature levels than alternative levels of `Job`
this may mean analysts want to report MMs (or AMCEs) only for the unconstrained levels:
elev <- c("Two-Year College", "College Degree", "Graduate Degree")
jlev <- c("Financial Analyst", "Computer Programmer", "Research Scientist", "Doctor")
mm(subset(immigration, Education %in% elev), ChosenImmigrant ~ Job)
mm(subset(immigration, Job %in% jlev), ChosenImmigrant ~ Education)
or, present estimates excluding constrained levels:
mm(subset(immigration, !Education %in% elev), ChosenImmigrant ~ Job)
mm(subset(immigration, !Job %in% jlev), ChosenImmigrant ~ Education)

cj_df 11

cj_df Create a “cj_df” data frame

Description

A simple data frame extension that preserves attributes during subsetting operations.

Usage

cj_df(x)

S3 method for class 'data.frame'
cj_df(x)

S3 method for class 'cj_df'
x[i, j, drop = FALSE]

Arguments

x A data frame

i See [.data.frame

j See [.data.frame

drop Ignored.

Value

An data frame with additional “cj_df” class, which has subsetting methods that preserve variables
attributes.

Examples

x1 <- data.frame(a = 1:3, b = 4:6)
attr(x1$a, "label") <- "Variable A"

cj_df() returns a data frame
inherits(x1, "data.frame")
class(x1)

attributes dropped for data frames
attr(x1[1:2,]$a, "label")

attributes preserved with a cj_df
attr(cj_df(x1)[1:2,]$a, "label")

12 cj_freqs

cj_freqs Conjoint feature frequencies

Description

Tabulate and visualize conjoint features, and their display frequencies and proportions

Usage

cj_freqs(
data,
formula,
id = NULL,
weights = NULL,
feature_order = NULL,
feature_labels = NULL,
level_order = c("ascending", "descending"),
...

)

cj_props(data, formula, id, weights = NULL, margin = NULL, ...)

cj_table(
data,
formula,
feature_order = NULL,
feature_labels = NULL,
level_order = c("ascending", "descending"),
include_reference = FALSE,
...

)

Arguments

data A data frame containing variables specified in formula. All RHS variables
should be factors; all levels across features should be unique.

formula An RHS formula specifying conjoint features to tabulate. All RHS variables
should be factors; all levels across features should be unique.

id An RHS formula specifying a variable holding respondent identifiers, to be used
for clustering standard errors. By default, data are unclustered.

weights An (optional) RHS formula specifying a variable holding survey weights.

feature_order An (optional) character vector specifying the names of feature (RHS) variables
in the order they should be encoded in the resulting data frame.

feature_labels A named list of “fancy” feature labels to be used in output. By default, the func-
tion looks for a “label” attribute on each variable in formula and uses that for

cj_freqs 13

pretty printing. This argument overrides those attributes or otherwise provides
fancy labels for this purpose. This should be a list with names equal to variables
on the righthand side of formula and character string values; arguments passed
here override variable attributes.

level_order A character string specifying levels (within each feature) should be ordered in-
creasing or decreasing in the final output. This is mostly only consequential for
plotting via plot.cj_mm, etc.

... Ignored.

margin A numeric value passed to prop.table. If NULL overall proportions are calcu-
lated.

include_reference

A logical indicating whether to include a “reference” column that indicates
whether a feature level is the reference category for that feature. Default is
FALSE.

Details

These functions provide related but slightly different functionality. cj_table simply creates a data
frame of features and their levels, which is useful for printing. cj_props provides tidy proportion
tables to examine cross-feature restrictions in conjoint designs that are not equally randomized. This
enables, for example, tabulation and visualization of complete restrictions (where combinations of
two or more features are not permitted), as well as calculation of AMCEs for constrained designs
appropriately weighted by the display proportions for particular combinations of features.

cj_freqs provides marginal display frequencies, which are a descriptive check on the presentation
of individual conjoint features (for example, to ensure equal or intentionally unequal appearance of
levels). This is mostly useful for plotting functionality provided in plot.cj_freqs, which provides
barcharts for the frequency with which each level of each feature was presented.

Value

A data frame of class “cj_freqs”, “cj_props”, etc.

See Also

plot.cj_mm

Examples

data(immigration)
identify all levels
cj_table(immigration, ~ Gender + Education + LanguageSkills)
cj_table(immigration, ~ Gender + Education + LanguageSkills, include_ref = TRUE)

display frequencies
(f <- cj_freqs(immigration, ~ Gender + Education + LanguageSkills, id = ~ CaseID))

restrictions
check display proportions
cj_props(immigration, ~ Job, id = ~ CaseID)

14 cj_tidy

check which combinations were not allowed
subset(cj_props(immigration, ~ Job + Education, id = ~ CaseID), Proportion == 0)

plotting
(p <- plot(f))

change ggplot2 theme
p + ggplot2::theme_bw()

monochrome bars
p + ggplot2::scale_fill_manual(values = rep("black", 9)) +

ggplot2::theme(legend.position = "none")

cj_tidy Tidy a conjoint dataset

Description

Coerce a “wide” conjoint dataset into a “long”/“tidy” one for use with cregg

Usage

cj_tidy(data, profile_variables, task_variables, id)

Arguments

data A data frame containing a conjoint dataset in “wide” format (see Details).

profile_variables

A named list of two-element lists capturing profile-specific variables (either fea-
tures, or profile-specific outcomes, like rating scales). For each element in the
list, the first element contains vectors of feature variable names for the first pro-
file in each decision task (hereafter, profile “A”) and the second element con-
tains vectors of feature variable names for the second profile in each decision
task (hereafter, profile “B”). Variables can be specified as character strings or an
RHS formula. The names at the highest level are used to name variables in the
long/tidy output.

task_variables A named list of vectors of variables constituting task-level variables (i.e., vari-
ables that differ by task but not across profiles within a task). Variables can
be specified as character strings or an RHS formula. These could be outcome
variables, response times, etc.

id An RHS formula specifying a variable holding respondent identifiers.

cj_tidy 15

Details

A conjoint survey typically comes to the analyst in a “wide” form, where the number of rows is
equal to the number of survey respondents and columns represent choices and features for each
choice task and task profile. For example, a design with 1000 respondents and five forced-choice
decision tasks, with 6 features each, will have 1000 rows and 5x2x6 feature columns, plus five
forced-choice outcome variable columns recording which alternative was selected for each task. To
analyse these data, the data frame needs to be reshaped to “long” or “tidy” format, with 1000x5x2
rows, six feature columns, and one outcome column. Multiple outcomes or other task-specific vari-
ables would increase the number of columns in the result, as will respondent-varying characteristics
which need to be replicated across each decision task and profile.

This a complex operation because variables vary at three levels: respondent, task, and profile. Thus
the reshape is not a simple wide-to-long transformation. It instead requires two reshaping steps, one
to create a task-level dataset and a further one to create a profile-level dataset. cj_tidy performs
this tidying in two steps, through a single function with an easy-to-use API. Users can specify
variable names in the wide format using either character vectors of righthand-side (RHS) formulae.
They are equivalent but depending on the naming of variables, character vectors can be easier to
specify (e.g., using regular expressions for pattern matching).

Particular care is needed to decide whether a particular set of “wide” columns belong in profile_variables
or task_variables. This especially applies to outcomes variables. If a variable in the origi-
nal format records which of the two profiles was chosen (e.g., “left” and “right”), it should go
in task_variables. If it records whether a profile was chosen (e.g., for each task there is a
“left_chosen” and “right_chosen” variable), then both variables should go in profile_variables
as they vary at the profile level. Similarly, one needs to be careful with the output of cj_tidy to
ensure that a task-level variable is further recoded to encode which alternative was selected (see
examples).

Users may find that it is easier to recode features after using cj_tidy rather than before, as it
requires recoding only a number of variables equal to the number of features in the design, rather
than recoding all “wide” feature columns before reshaping. Again, however, care should be taken
that these variables encode information in the same way so that stacking does not produce a loss of
information.

Finally, data should not use the variable names “task”, “pair”, or “profile”, which are the names of
metadata columns created by reshaping.

Value

A data frame with rows equal to the number of respondents times the number of tasks times the
number of profiles (fixed at 2), to be fed into any other function in the package. The columns will
include the names of elements in profile_variables and task_variables, and id, along with
an indicator task (from 1 to the number of tasks), pair (an indicator for each task pair from 1
to the number of pairs), profile (a fator indicator for profile, either “A” or “B”), and any other
respondent-varying covariates not specified. As such, respondent-varying variables do not need to
be specified to cj_tidy at all.

The returned data frame carries an additional S3 class (“cj_df”) with methods that preserve column
attributes. See cj_df.

16 cj_tidy

See Also

cj, cj_df

Examples

Not run:
data("wide_conjoint")

character string interface
profile_variables
list1 <- list(
feature1 = list(

names(wide_conjoint)[grep("^feature1.{1}1", names(wide_conjoint))],
names(wide_conjoint)[grep("^feature1.{1}2", names(wide_conjoint))]

),
feature2 = list(

names(wide_conjoint)[grep("^feature2.{1}1", names(wide_conjoint))],
names(wide_conjoint)[grep("^feature2.{1}2", names(wide_conjoint))]

),
feature3 = list(

names(wide_conjoint)[grep("^feature3.{1}1", names(wide_conjoint))],
names(wide_conjoint)[grep("^feature3.{1}2", names(wide_conjoint))]

),
rating = list(

names(wide_conjoint)[grep("^rating.+1", names(wide_conjoint))],
names(wide_conjoint)[grep("^rating.+2", names(wide_conjoint))]

)
)
task variables
list2 <- list(choice = paste0("choice_", letters[1:4]),

timing = paste0("timing_", letters[1:4]))

formula interface
profile_variables
list1 <- list(

feature1 = list(
~ feature1a1 + feature1b1 + feature1c1 + feature1d1,
~ feature1a2 + feature1b2 + feature1c2 + feature1d2

),
feature2 = list(

~ feature2a1 + feature2b1 + feature2c1 + feature2d1,
~ feature2a2 + feature2b2 + feature2c2 + feature2d2

),
feature3 = list(

~ feature3a1 + feature3b1 + feature3c1 + feature3d1,
~ feature3a2 + feature3b2 + feature3c2 + feature3d2

),
rating = list(

~ rating_a1 + rating_b1 + rating_c1 + rating_d1,
~ rating_a2 + rating_b2 + rating_c2 + rating_d2

)
)

immigration 17

task variables
list2 <- list(choice = ~ choice_a + choice_b + choice_c + choice_d,

timing = ~ timing_a + timing_b + timing_c + timing_d)

perform reshape
str(long <- cj_tidy(wide_conjoint,

profile_variables = list1,
task_variables = list2,
id = ~ respondent))

stopifnot(nrow(long) == nrow(wide_conjoint)*4*2)

recode outcome so it is coded sensibly
long$chosen <- ifelse((long$profile == "A" & long$choice == 1) |

(long$profile == "B" & long$choice == 2), 1, 0)
use for analysis
cj(long, chosen ~ feature1 + feature2 + feature3, id = ~ respondent)

End(Not run)

immigration Immigration Conjoint Experiment Dataset from Hainmueller et. al.
(2014)

Description

A dataset containing the results of a conjoint survey of a representative sample of American adults
who were asked to choose which hypothetical immigrants they think should be admitted into the
United States. Each row corresponds to a single profile presented to the respondent. The dataset re-
sults from a mostly full factorial design with restrictions on two combinations of features. (1) Profile
immigrants from ‘CountryOfOrigin’ “India”, “Germany”, “France”, “Mexico”, “Philippines”, and
“Poland” could be paired only with ‘ReasonForApplication’ “Seek better job” or “Reunite with
family”; profiles from the remaining countries could be paired with any ‘ReasonForApplication’.
(2) Profile immigrants with ‘Job’ “Financial Analyst”, “Computer Programmer”, “Research Sci-
entist”, or “Doctor” could not be paired with ‘Education’ levels “No Formal”, “4th Grade”, “8th
Grade”, or “High School”. All other features were fully randomized against all other features.

Usage

data(immigration)

Format

A data frame (with additional “cj_df” class) with 13960 observations on the following 16 variables.

‘CaseID’ a numeric vector indicating the respondent to which the particular profile corresponds

‘contest_no’ a numeric vector indicating the number of the task to which the profile corresponds

‘Education’ a factor with levels “No formal”, “4th grade”, “8th grade”, “High school”, “Two-year
college”, “college Degree”, “Graduate degree”

18 immigration

‘Gender’ a factor with levels “Female”, “Male”

‘CountryOfOrigin’ a factor with levels “India”, “Germany”, “France”, “Mexico”, “Philippines”,
“Poland”, “China”, “Sudan”, “Somalia”, “Iraq”

‘ReasonForApplication’ a factor with levels “Reunite with family”, “Seek better job”, “Escape
persecution”

‘Job’ a factor with levels “Janitor”, “Waiter”, “Child care provider”, “Gardener”, “Financial ana-
lyst”, “Construction worker”, “Teacher”, “Computer programmer”, “Nurse”, “Research sci-
entist”, “Doctor”

‘JobExperience’ a factor with levels “None”, “1-2 years”, “3-5 years”, “5+ years”

‘JobPlans’ a factor with levels “Will look for work”, “Contract with employer”, “Interviews with
employer”, “No plans to look for work”

‘PriorEntry’ a factor with levels “Never”, “Once as tourist”, “Many times as tourist”, “Six months
with family”, “Once w/o authorization”

‘LanguageSkills’ a factor with levels “Fluent English”, “Broken English”, “Tried English but
unable”, “Used interpreter”

‘ChosenImmigrant’ a numeric vector denoting whether the immigrant profile was selected

‘ethnocentrism’ a numeric vector

‘profile’ a numeric vector giving the profile number

‘LangPos’ a numeric vector

‘PriorPos’ a numeric vector

Note

This is a modified version of the ‘hainmueller’ dataset available from the cjoint package.

Source

Hainmueller, J., Hopkins, D., and Yamamoto T. 2014. “Causal Inference in Conjoint Analysis:
Understanding Multi-Dimensional Choices via Stated Preference Experiments.” Political Analysis
22(1): 1-30. http://doi.org/10.1093/pan/mpt024

See Also

cj taxes cj_df

Examples

data("immigration")

view constraints between features
subset(cj_props(immigration, ~ Job + Education, id = ~ CaseID), Proportion == 0)
subset(cj_props(immigration, ~ ReasonForApplication + CountryOfOrigin,

id = ~ CaseID), Proportion == 0)

AMCEs with interactions for constraints

https://cran.r-project.org/package=cjoint
http://doi.org/10.1093/pan/mpt024

mm 19

f1 <- ChosenImmigrant ~ Gender + Education * Job +
LanguageSkills + CountryOfOrigin * ReasonForApplication +
JobExperience + JobPlans + PriorEntry

cj(immigration, f1, id = ~ CaseID)

mm Marginal Means

Description

Calculate (descriptive) marginal means (MMs) from a conjoint design

Usage

mm(
data,
formula,
id = ~0,
weights = NULL,
feature_order = NULL,
feature_labels = NULL,
level_order = c("ascending", "descending"),
alpha = 0.05,
h0 = 0,
...

)

Arguments

data A data frame containing variables specified in formula. All RHS variables
should be factors.

formula A formula specifying an outcome (LHS) and conjoint features (RHS) to de-
scribe. All variables should be factors; all levels across features should be
unique, with constraints specified with an asterisk (*) between features, as in
amce.

id An RHS formula specifying a variable holding respondent identifiers, to be used
for clustering standard errors. By default, data are unclustered.

weights An (optional) RHS formula specifying a variable holding survey weights.

feature_order An (optional) character vector specifying the names of feature (RHS) variables
in the order they should be encoded in the resulting data frame.

feature_labels A named list of “fancy” feature labels to be used in output. By default, the func-
tion looks for a “label” attribute on each variable in formula and uses that for
pretty printing. This argument overrides those attributes or otherwise provides
fancy labels for this purpose. This should be a list with names equal to variables
on the righthand side of formula and character string values; arguments passed
here override variable attributes.

20 mm

level_order A character string specifying levels (within each feature) should be ordered in-
creasing or decreasing in the final output. This is mostly only consequential for
plotting via plot.cj_mm, etc.

alpha A numeric value indicating the significance level at which to calculate confi-
dence intervals for the MMs (by default 0.95, meaning 95-percent CIs are re-
turned).

h0 A numeric value specifying a null hypothesis value to use when generating z-
statistics and p-values.

... Ignored.

Details

mm provides descriptive representations of conjoint data as marginal means (MMs), which represent
the mean outcome across all appearances of a particular conjoint feature level, averaging across
all other features. In forced choice conjoint designs with two profiles per choice task, MMs by
definition average 0.5 with values above 0.5 indicating features that increase profile favorability
and values below 0.5 indicating features that decrease profile favorability. For continuous outcomes,
MMs can take any value in the full range of the outcome.

But note that if feature levels can co-occur, such that both alternatives share a feature level, then
the MMs on forced choice outcomes are bounded by the probability of co-occurrence (as a lower
bound) and 1 minus that probability as an upper bound.

Plotting functionality is provided in plot.cj_mm.

Value

A data frame of class “cj_mm”

See Also

mm_diffs plot.cj_mm

Examples

data(immigration)
marginal means
mm(immigration, ChosenImmigrant ~ Gender + Education + LanguageSkills,

id = ~ CaseID, h0 = 0.5)

higher-order marginal means with feature interactions
immigration$language_entry <-

interaction(immigration$LanguageSkills, immigration$PriorEntry, sep = "_")
mm(immigration, ChosenImmigrant ~ language_entry,

id = ~CaseID)

plot.cj_amce 21

plot.cj_amce Plot AMCE estimates, MM descriptives, and frequency plots

Description

ggplot2-based plotting of conjoint AMCEs estimates and MMs, and differences

Usage

S3 method for class 'cj_amce'
plot(
x,
group = attr(x, "by"),
feature_headers = TRUE,
header_fmt = "(%s)",
size = 1,
xlab = "Estimated AMCE",
ylab = "",
legend_title = if (is.null(group)) "Feature" else group,
legend_pos = "bottom",
xlim = NULL,
vline = 0,
vline_color = "gray",
theme = ggplot2::theme_bw(),
...

)

S3 method for class 'cj_diffs'
plot(
x,
group = attr(x, "by"),
feature_headers = TRUE,
header_fmt = "(%s)",
size = 1,
xlab = "Estimated Difference",
ylab = "",
legend_title = if (is.null(group)) "Feature" else group,
legend_pos = "bottom",
xlim = NULL,
vline = 0,
vline_color = "gray",
theme = ggplot2::theme_bw(),
...

)

S3 method for class 'cj_freqs'
plot(

22 plot.cj_amce

x,
group = attr(x, "by"),
feature_headers = TRUE,
header_fmt = "(%s)",
xlab = "",
ylab = "Frequency",
legend_title = if (is.null(group)) "Feature" else group,
legend_pos = "bottom",
theme = ggplot2::theme_bw(),
...

)

S3 method for class 'cj_mm'
plot(
x,
group = attr(x, "by"),
feature_headers = TRUE,
header_fmt = "(%s)",
size = 1,
xlab = "Marginal Mean",
ylab = "",
legend_title = if (is.null(group)) "Feature" else group,
legend_pos = "bottom",
xlim = NULL,
vline = 0,
vline_color = "gray",
theme = ggplot2::theme_bw(),
...

)

Arguments

x A data frame returned from cj or mm.

group Optionally a character string specifying a grouping factor. This is useful when,
for example, subgroup analyses or comparing AMCEs for different outcomes.
An alternative is to use facet_wrap for faceted graphics.

feature_headers

A logical indicating whether to include headers for each feature to visually sep-
arate levels for each feature (beyond the color palette).

header_fmt A character string specifying a fmt argument to sprintf, which will be used
when generating the feature headers (if feature_headers = TRUE).

size A numeric value specifying point size in geom_point.

xlab A label for the x-axis

ylab A label for the y-axis

legend_title A character string specifying a label for the legend.

legend_pos An argument forwarded to the legend.position argument in theme.

plot.cj_amce 23

xlim A two-element number vector specifying limits for the x-axis. If NULL, a default
value is calculated from the data.

vline Optionally, a numeric value specifying an x-intercept for a vertical line. This
can be useful in distinguishing the midpoint of the estimates (e.g., a zero line for
AMCEs).

vline_color A character string specifying a color for the vline.

theme A ggplot2 theme object

... Ignored.

Details

These are convenience functions for quickly plotting results from cregg. Because plot returns
ggplot2 objects, these are easily manipulated using standard ggplot2 operations.

Note that ggplot2, by default, sorts factors (like feature names here) in what might be the opposite
order of what you would expect and in the opposite order that cregg functions sort their output.

Value

A ggplot2 object

See Also

amce, mm

Examples

require("ggplot2")
load data
data("immigration")
immigration$contest_no <- factor(immigration$contest_no)

calculate MMs
d1 <- mm(immigration, ChosenImmigrant ~ Gender + Education +

LanguageSkills + CountryOfOrigin + Job + JobExperience +
JobPlans + ReasonForApplication + PriorEntry, id = ~ CaseID)

plot MMs
simple plot
(p <- plot(d1, vline = 0.5))

gridlines to aid interpretation
p + ggplot2::theme_grey()

monochrome bars
p + scale_color_manual(values = rep("black", 9))

plot with estimates shown as text labels
p + ggplot2::geom_text(

aes(label = sprintf("%0.2f (%0.2f)", estimate, std.error)),

24 taxes

colour = "black", position = position_nudge(y = .5)
)

plot with facetting by feature
plot(d1, feature_headers = FALSE) +

ggplot2::facet_wrap(~feature, ncol = 1L,
scales = "free_y", strip.position = "right")

MMs split by profile number
stacked <- cj(immigration, ChosenImmigrant ~ Gender +

Education + LanguageSkills + CountryOfOrigin + Job + JobExperience +
JobPlans + ReasonForApplication + PriorEntry, id = ~ CaseID,
estimate = "mm", by = ~ contest_no)

plot with grouping
plot(stacked, group = "contest_no", feature_headers = FALSE)

plot with facetting
plot(stacked) + ggplot2::facet_wrap(~contest_no, nrow = 1L)

plot with shapes instead of colors for groups
plot(stacked, group = "contest_no", vline = 0.5) +
aes(shape = contest_no) + # map group to `shape` aesthetic
scale_shape_manual(values=c(1, 2, 3, 4, 5)) +
scale_colour_manual(values=rep("black", 5))

estimate AMCEs over different subsets of data
reasons12 <- subset(

immigration, ReasonForApplication %in% levels(ReasonForApplication)[1:2]
)
d2_1 <- cj(immigration, ChosenImmigrant ~ CountryOfOrigin, id = ~ CaseID)
d2_2 <- cj(reasons12, ChosenImmigrant ~ CountryOfOrigin, id = ~ CaseID,

feature_labels = list(CountryOfOrigin = "Country Of Origin"))
d2_1$reasons <- "1,2,3"
d2_2$reasons <- "1,2"
plot(rbind(d2_1, d2_2), group = "reasons")

taxes Tax Preference Conjoint Experiment Dataset from Ballard-Rosa et al.
(2016)

Description

A dataset containing the results of a fully randomized conjoint survey of a representative sample
of 2000 American adults who were asked to choose between alternative tax rate policies. Variables
‘taxrate1’-‘taxrate6’ refer to tax rates for different income brackets and ‘taxrev’ refers to levels
of total tax revenue.

taxes 25

Usage

data(taxes)

Format

A data frame (with additional “cj_df” class) with 32000 observations on the following 13 variables.
Each row corresponds to a single profile presented to a respondent.

‘chose_plan’ A numeric vector denoting whether the immigrant profile was selected (=1) or not
(=0).

‘taxrate1’ An experimental factor with levels “<10k: 0%”, “<10k: 5%”, “<10k: 15%”, “<10k:
25%”.

‘taxrate2’ An experimental factor with levels “10-35k: 5%”, “10-35k: 15%”, “10-35k: 25%”,
“10-35k: 35%”.

‘taxrate3’ An experimental factor with levels “35-85k: 5%”, “35-85k: 15%”, “35-85k: 25%”,
“35-85k: 35%”.

‘taxrate4’ An experimental factor with levels “85-175k: 5%”, “85-175k: 15%”, “85-175k: 25%”,
“85-175k: 35%”.

‘taxrate5’ An experimental factor with levels “175-375k: 5%”, “175-375k: 15%”, “175-375k:
25%”, “175-375k: 35%”, “175-375k: 45%”.

‘taxrate6’ An experimental factor with levels “>375k: 5%”, “>375k: 15%”, “>375k: 25%”,
“>375k: 35%”, “>375k: 45%”, “>375k: 55%”.

‘taxrev’ An experimental factor with levels “<75%”, “75-95%”, “95-105%”, “105-125%”, “>125%”.

‘inequality_aversion’ A covariate specifying whether respondent is inequality averse (=1) or
not (=0).

‘taxes_harm_economy’ A covariate specifying whether respondent believes taxes harm the econ-
omy (=1) or not (=0).

‘partyid’ A factor specifying the respondent’s party identification; one of “Independent”, “Demo-
crat”, “Republican”.

‘ID’ A numeric vector indicating the respondent to which the profile corresponds.

‘weight’ A numeric vector containing survey weights.

Source

Ballard-Rosa, Cameron, Lucy Martin, and Kenneth Scheve. 2016. “The Structure of American
Income Tax Policy Preferences.” The Journal of Politics 79(1): 1-16. http://doi.org/10.1086/
687324

See Also

cj immigration cj_df

http://doi.org/10.1086/687324
http://doi.org/10.1086/687324

26 wide_conjoint

Examples

data("taxes")
f1 <- chose_plan ~ taxrate1 + taxrate2 + taxrate3 +

taxrate4 + taxrate5 + taxrate6 + taxrev
cj(taxes, f1, id = ~ ID, weights = ~ weight)

wide_conjoint Example of a raw, “wide” conjoint dataset to demonstrate functional-
ity of cj_tidy

Description

A simulated dataset containing 100 respondents’ responses to four decision tasks (a,b,c,d) involving
a forced choice between two alternative profiles, described by three features (1,2,3), as well as a
secondary rating-scale outcome and a response time measure, along with two respondent-varying
covariates. This is used in testing and examples within the package.

Usage

data(wide_conjoint)

Format

A data frame with 100 observations on the following variables:

‘respondent’ a numeric vector indicating the respondent identifier

‘feature1a1’ Feature 1 for task A left profile, a factor

‘feature1b1’ Feature 1 for task B left profile, a factor

‘feature1c1’ Feature 1 for task C left profile, a factor

‘feature1d1’ Feature 1 for task D left profile, a factor

‘feature1a2’ Feature 1 for task A right profile, a factor

‘feature1b2’ Feature 1 for task B right profile, a factor

‘feature1c2’ Feature 1 for task C right profile, a factor

‘feature1d2’ Feature 1 for task D right profile, a factor

‘feature2a1’ Feature 2 for task A left profile, a factor

‘feature2b1’ Feature 2 for task B left profile, a factor

‘feature2c1’ Feature 2 for task C left profile, a factor

‘feature2d1’ Feature 2 for task D left profile, a factor

‘feature2a2’ Feature 2 for task A right profile, a factor

‘feature2b2’ Feature 2 for task B right profile, a factor

‘feature2c2’ Feature 2 for task C right profile, a factor

wide_conjoint 27

‘feature2d2’ Feature 2 for task D right profile, a factor

‘feature3a1’ Feature 3 for task A left profile, a factor

‘feature3b1’ Feature 3 for task B left profile, a factor

‘feature3c1’ Feature 3 for task C left profile, a factor

‘feature3d1’ Feature 3 for task D left profile, a factor

‘feature3a2’ Feature 3 for task A right profile, a factor

‘feature3b2’ Feature 3 for task B right profile, a factor

‘feature3c2’ Feature 3 for task C right profile, a factor

‘feature3d2’ Feature 3 for task D right profile, a factor

‘choice_a’ outcome for task A indicating which profile was chosen, randomly 1 or 2, each equally
probable

‘choice_b’ outcome for task B indicating which profile was chosen, randomly 1 or 2, each equally
probable

‘choice_c’ outcome for task C indicating which profile was chosen, randomly 1 or 2, each equally
probable

‘choice_d’ outcome for task D indicating which profile was chosen, randomly 1 or 2, each equally
probable

‘rating_a1’ rating for task A left profile, random variable between 1 and 7, uniformly distributed

‘rating_a2’ rating for task A right profile, random variable between 1 and 7, uniformly distributed

‘rating_b1’ rating for task B left profile, random variable between 1 and 7, uniformly distributed

‘rating_b2’ rating for task B right profile, random variable between 1 and 7, uniformly distributed

‘rating_c1’ rating for task C left profile, random variable between 1 and 7, uniformly distributed

‘rating_c2’ rating for task C right profile, random variable between 1 and 7, uniformly distributed

‘rating_d1’ rating for task D left profile, random variable between 1 and 7, uniformly distributed

‘rating_d2’ rating for task D right profile, random variable between 1 and 7, uniformly distributed

‘timing_a’ timing for task A in seconds, random draws from a beta distribution (2,5) times 10

‘timing_b’ timing for task A in seconds, random draws from a beta distribution (2,5) times 10

‘timing_c’ timing for task A in seconds, random draws from a beta distribution (2,5) times 10

‘timing_d’ timing for task A in seconds, random draws from a beta distribution (2,5) times 10

‘covariate1’ random draws from a uniform distribution between -1 and 1

‘covariate2’ random draws from the set of 1 and 2

See Also

cj_tidy cj

28 wide_conjoint

Examples

Not run:
data("wide_conjoint")
feature_variables
list1 <- list(
feature1 = list(

names(wide_conjoint)[grep("^feature1.{1}1", names(wide_conjoint))],
names(wide_conjoint)[grep("^feature1.{1}2", names(wide_conjoint))]

),
feature2 = list(

names(wide_conjoint)[grep("^feature2.{1}1", names(wide_conjoint))],
names(wide_conjoint)[grep("^feature2.{1}2", names(wide_conjoint))]

),
feature3 = list(

names(wide_conjoint)[grep("^feature3.{1}1", names(wide_conjoint))],
names(wide_conjoint)[grep("^feature3.{1}2", names(wide_conjoint))]

),
rating = list(

names(wide_conjoint)[grep("^rating.+1", names(wide_conjoint))],
names(wide_conjoint)[grep("^rating.+2", names(wide_conjoint))]

)
)
task variables
list2 <- list(choice = paste0("choice_", letters[1:4]),

timing = paste0("timing_", letters[1:4]))
str(cj_tidy(wide_conjoint, profile_variables = list1, task_variables = list2, id = ~ respondent))

End(Not run)

Index

∗ datasets
immigration, 17
taxes, 24
wide_conjoint, 26

∗ package
cj, 7

[.cj_df (cj_df), 11
[.data.frame, 11

amce, 2, 6–9, 23
amce_by_reference, 6
amce_by_reference (amce), 2
amce_diffs, 4, 4, 8, 9
anova, 6

cj, 6, 7, 16, 18, 22, 25, 27
cj_anova (amce_diffs), 4
cj_df, 11, 15, 16, 18, 25
cj_freqs, 6–9, 12
cj_props, 9
cj_props (cj_freqs), 12
cj_table (cj_freqs), 12
cj_tidy, 9, 14, 26, 27
cregg (cj), 7
cregg-package (cj), 7

facet_wrap, 22
family, 4

geom_point, 22
glm, 3

immigration, 9, 17, 25

mm, 4, 6–9, 19, 22, 23
mm_diffs, 8, 9, 20
mm_diffs (amce_diffs), 4

plot.cj_amce, 4, 7, 9, 21
plot.cj_diffs (plot.cj_amce), 21
plot.cj_freqs, 13

plot.cj_freqs (plot.cj_amce), 21
plot.cj_mm, 3, 6, 8, 13, 20
plot.cj_mm (plot.cj_amce), 21

sprintf, 22
svydesign, 2, 5, 8
svyglm, 3

taxes, 9, 18, 24
theme, 22

wide_conjoint, 26

29

	amce
	amce_diffs
	cj
	cj_df
	cj_freqs
	cj_tidy
	immigration
	mm
	plot.cj_amce
	taxes
	wide_conjoint
	Index

