
Package ‘date4ts’
February 1, 2026

Title Wrangle and Modify Ts Object with Classic Frequencies and Exact
Dates

Version 0.1.1

Description The ts objects in R are managed using a very specific date for-
mat (in the form c(2022, 9) for September 2022 or c(2021, 2) for the second quarter of 2021, de-
pending on the frequency, for example). We focus solely on monthly and quarterly series to man-
age the dates of ts objects. The general idea is to offer a set of functions to manage this date for-
mat without it being too restrictive or too imprecise depending on the rounding. This is a com-
promise between simplicity, precision and use of the basic 'stats' functions for creating and man-
aging time series (ts(), window()).
Les objets ts en R sont gérés par un format de date très partic-
ulier (sous la forme c(2022, 9) pour septembre 2022 ou c(2021, 2) pour le deux-
ième trimestre 2021 selon la fréquence par exemple). On se concentre unique-
ment sur les séries mensuelles et trimestrielles pour gérer les dates des ob-
jets ts. Lidée générale est de proposer un ensemble de fonctions pour gérer ce for-
mat de date sans que ce soit trop contraignant ou trop imprécis selon les arrondis. Cest un com-
promis entre simplicité, précision et utilisation des fonctions du package 'stats' de créa-
tion et de gestion des séries temporelles (ts(), window()).

License GPL (>= 3)

URL https://github.com/TractorTom/date4ts,

https://tractortom.github.io/date4ts/

BugReports https://github.com/TractorTom/date4ts/issues

Encoding UTF-8

RoxygenNote 7.3.3

Imports stats, checkmate

Depends R (>= 4.1)

LazyData true

Suggests testthat (>= 3.0.0), renv, fuzzr, pkgdown, devtools, usethis,
covr, withr, altdoc

Config/testthat/edition 3

NeedsCompilation no

1

https://github.com/TractorTom/date4ts
https://tractortom.github.io/date4ts/
https://github.com/TractorTom/date4ts/issues


2 Contents

Author Tanguy Barthelemy [aut, cre]

Maintainer Tanguy Barthelemy <tangbarth@hotmail.fr>

Repository CRAN

Date/Publication 2026-02-01 08:00:02 UTC

Contents

as_yyyytt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
check_date_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
check_expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
check_frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
check_scalar_date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
check_scalar_integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
check_scalar_natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
check_timeunits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
check_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
combine2ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
date2date_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
date_ts2date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
date_ts2timeunits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
diff_periode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ev_pib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
extend_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
first_date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
get_value_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
is_before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
last_date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
libelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
na_trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
next_date_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
normalize_date_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
previous_date_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
set_value_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
substr_year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
trim2mens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
ts2df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Index 33



as_yyyytt 3

as_yyyytt Conversion au format date_ts

Description

Les fonctions as_yyyytt et as_yyyymm convertissent une date du format TimeUnits au format
date_ts.

Usage

as_yyyytt(timeunits)

as_yyyymm(timeunits)

Arguments

timeunits une date en année (Par exemple 2015.25 pour le 2ème trimestre 2015 ou 2021.83333333333
pour novembre 2021)

Details

La fonction as_yyyytt retourne la date par trimestre et la fonction as_yyyymm retourne la date par
mois.

Value

En sortie, ces fonctions retournent la date au format date_ts (c’est-à-dire un vecteur d’entiers de
la forme AAAA, c(AAAA, MM) ou c(AAAA, TT))

Examples

as_yyyytt(2019.75) # 4ème trimestre 2019
as_yyyytt(2020) # 1er trimestre 2020
as_yyyytt(2022 + 1 / 4) # 2ème trimestre 2022

as_yyyymm(2019.75) # Octobre 2019
as_yyyymm(2020) # Janvier 2020
as_yyyymm(2020 + 1 / 12) # Février 2020
as_yyyymm(2020 + 12 / 12) # Janvier 2021



4 check_date_ts

check_date_ts Vérifie le format de date

Description

La fonction assert_date_ts vérifie qu’un objet est de type AAAA, c(AAAA, MM) ou c(AAAA, TT)

Usage

check_date_ts(x, frequency_ts, .var.name = checkmate::vname(x), warn = TRUE)

assert_date_ts(
x,
frequency_ts,
add = NULL,
.var.name = checkmate::vname(x),
warn = TRUE

)

Arguments

x un vecteur numérique, de préférence integer au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

.var.name Nom de l’objet à vérifier pour afficher dans les messages

warn un booleen

add Collection pour stocker les messages d’erreurs (Default is NULL)

Details

Les fonctions du package date4ts sont faites pour fonctionner avec des times-series de fréquence
mensuelle ou trimestrielle et basés sur le système des mois, trimestres et années classiques. On
cherche donc à favoriser l’utilisation de vecteur c(AAAA, MM) pour désigner la date choisie. Lorsque
l’objet x en entrée est au mauvais format, il est corrigé pendant la checks et l’objet en sortie est au
bon format. Si l’argument warn est FALSE, alors la fonction ne retournera pas de warning lors de
l’évaluation.

Ici, l’argument frequency_ts est nécessaire car une date sous la forme c(AAAA, PP), avec PP le
nombre de période, ne désigne pas une date absolue. Par exemple, c(2020L 5L) désigne mai 2020
pour une fréquence mensuelle et le 1er trimestre 2021 pour une fréquence trimestrielle.

Selon le préfixe de la fonction :

• si le check réussi :

– la fonction assert_date_ts retourne l’objet x de manière invisible;
– la fonction check_date_ts retourne le booléen TRUE.



check_expression 5

• si le check échoue :

– la fonction assert_date_ts retourne un message d’erreur;
– la fonction check_date_ts retourne une chaîne de caractère signalant le problème.

Value

En sortie la fonction retourne l’objet x de manière invisible ou une erreur.

Examples

# De bons formats de date
assert_date_ts(c(2020L, 8L), frequency_ts = 12L)
assert_date_ts(c(2020L, 2L), frequency_ts = 4L)
check_date_ts(2022L, frequency_ts = 12L)

# Format double --> génération d'un warning
assert_date_ts(c(2020., 4.0), frequency_ts = 4L)
assert_date_ts(2022., frequency_ts = 12L)
check_date_ts(2022., frequency_ts = 12L)

# Fréquence au format double --> génération d'un warning
assert_date_ts(c(2020L, 6L), frequency_ts = 4.0)
assert_date_ts(c(2020L, 42L), frequency_ts = 12.0)

# Dépassement la fréquence --> génération d'un warning
assert_date_ts(c(2020L, 6L), frequency_ts = 4L)
assert_date_ts(c(2020L, 42L), frequency_ts = 12L)
assert_date_ts(c(2020L, -4L), frequency_ts = 12L)

# Avec des erreurs
check_date_ts(1:10, frequency_ts = 12L)

check_expression Vérifie la conformité d’une expression

Description

Vérifie la conformité d’une expression

Usage

check_expression(expr)

assert_expression(expr)

Arguments

expr une expression à évaluer



6 check_frequency

Details

La fonction évalue l’expression expr. Le check vérifie si la fonction génère une erreur ou un
warning. Si elle ne génère aucun message particulier, on retourne alors l’objet x (le résultat de
l’évaluation de l’expression expr), sans erreur.

Selon le préfixe de la fonction :

• si le check réussi :

– la fonction assert_expression retourne l’objet x de manière invisible;
– la fonction check_expression retourne le booléen TRUE.

• si le check échoue :

– la fonction assert_expression retourne un message d’erreur;
– la fonction check_expression retourne la chaîne de caractère "Invalid expression".

Value

En sortie la fonction retourne l’objet x (le résultat de l’évaluation de l’expression expr) de manière
invisible ou une erreur.

Examples

assert_expression(expr = {2 + 2})
assert_expression(expr = {is.integer(1L)})
try(assert_expression(expr = {log("a")}), silent = TRUE)

check_expression(expr = {2 + 2})
check_expression(expr = {is.integer(1L)})
check_expression(expr = {log("a")})

check_frequency Vérifie la conformité d’une fréquence

Description

Vérifie la conformité d’une fréquence

Usage

check_frequency(x, .var.name = checkmate::vname(x), warn = TRUE)

assert_frequency(x, add = NULL, .var.name = checkmate::vname(x), warn = TRUE)



check_frequency 7

Arguments

x un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

.var.name Nom de l’objet à vérifier pour afficher dans les messages

warn un booleen

add Collection pour stocker les messages d’erreurs (Default is NULL)

Details

La fréquence d’une série temporelle est soit mensuelle (12L ou 12.0) soit trimestrielle (4L ou 4.0).
Les autres fréquences ne sont pas acceptées. Cette fonction s’appuie essentiellement sur les fonc-
tions checkmate::check_numeric, checkmate::check_int et checkmate::check_choice. Il y
a néanmoins une petite subtilité : on vérifie si l’objet x est de type double ou integer. Dans le
premier cas, on affichera un warning et on corrigera l’objet au format integer pour les traitements
ultérieurs. En sortie, x est retourné de manière invisible. Si l’argument warn est FALSE, alors la
fonction ne retournera pas de warning lors de l’évaluation.

Selon le préfixe de la fonction :

• si le check réussi :

– la fonction assert_frequency retourne l’objet x de manière invisible;
– la fonction check_frequency retourne le booléen TRUE.

• si le check échoue :

– la fonction assert_frequency retourne un message d’erreur;
– la fonction check_frequency retourne une chaîne de caractère signalant le problème.

Value

En sortie la fonction retourne l’objet x de manière invisible ou une erreur.

Examples

assert_frequency(4L)
assert_frequency(12L)

check_frequency(4L)
check_frequency(12L)

# Avec des erreurs,

check_frequency(Inf, warn = FALSE)
check_frequency(1:10)
check_frequency(1L)



8 check_scalar_date

check_scalar_date Vérifie la conformité d’une date scalaire

Description

Vérifie la conformité d’une date scalaire

Usage

check_scalar_date(x)

assert_scalar_date(x, add = NULL, .var.name = checkmate::vname(x))

Arguments

x un objet de type Date.

add Collection pour stocker les messages d’erreurs (Default is NULL)

.var.name Nom de l’objet à vérifier pour afficher dans les messages

Details

On vérifie que l’objet x en entrée est bien au format Date et qu’il s’agit d’un scalaire (vecteur de
taille 1). Cette fonction s’appuie essentiellement sur la fonction checkmate::assert_date.

Selon le préfixe de la fonction :

• si le check réussi :

– la fonction assert_scalar_date retourne l’objet x de manière invisible;
– la fonction check_scalar_date retourne le booléen TRUE.

• si le check échoue :

– la fonction assert_scalar_date retourne un message d’erreur;
– la fonction check_scalar_date retourne la chaîne de caractère correspondante à l’erreur

du check.

Value

En sortie la fonction retourne l’objet x de manière invisible ou une erreur.

Examples

assert_scalar_date(as.Date("2018-01-24"))
assert_scalar_date(as.Date("2000-02-29"))
assert_scalar_date(Sys.Date())

check_scalar_date(as.Date("2018-01-24"))
check_scalar_date(as.Date("2000-02-29"))
check_scalar_date(Sys.Date())



check_scalar_integer 9

# Avec des erreurs

check_scalar_date(2L)
check_scalar_date(seq(from = as.Date("2000-01-01"), to = Sys.Date(), by =
"year"))

check_scalar_integer Vérifie la conformité d’un entier scalaire

Description

Vérifie la conformité d’un entier scalaire

Usage

check_scalar_integer(x, warn = TRUE)

assert_scalar_integer(
x,
add = NULL,
.var.name = checkmate::vname(x),
warn = TRUE

)

Arguments

x un entier relatif (positif, négatif ou nul)

warn un booleen

add Collection pour stocker les messages d’erreurs (Default is NULL)

.var.name Nom de l’objet à vérifier pour afficher dans les messages

Details

On vérifie que l’objet x en entrée est bien un entier. Cette fonction s’appuie essentiellement sur la
fonction checkmate::assert_int. Il y a néanmoins une petite subtilité : on vérifie si l’objet x est
de type double ou integer. Si l’objet est de type double (et non integer), la fonction retournera aussi
un warning. Dans le premier cas, on affichera un warning et on corrigera l’objet au format integer
pour les traitements ultérieurs. En sortie, x est retourné de manière invisible. Si l’argument warn
vaut FALSE, alors la fonction ne retournera pas de warning lors de l’évaluation.

Selon le préfixe de la fonction :

• si le check réussi :

– la fonction assert_scalar_integer retourne l’objet x de manière invisible;
– la fonction check_scalar_integer retourne le booléen TRUE.



10 check_scalar_natural

• si le check échoue :
– la fonction assert_scalar_integer retourne un message d’erreur;
– la fonction check_scalar_integer retourne une chaîne de caractère signalant le prob-

lème.

Value

En sortie la fonction retourne l’objet x de manière invisible ou une erreur.

See Also

check_scalar_natural(), assert_scalar_natural()

Examples

assert_scalar_integer(1L)
assert_scalar_integer(100L)
assert_scalar_integer(-4L)
assert_scalar_integer(0L)

check_scalar_integer(1L)
check_scalar_integer(100L)
check_scalar_integer(-4L)
check_scalar_integer(0L)

# Avec des erreurs,

check_scalar_integer(Inf)
check_scalar_integer(1:10)
check_scalar_integer(pi)
check_scalar_integer(2.)

check_scalar_natural Vérifie la conformité d’un entier naturel

Description

Le but de cett fonction est de tester si une variable x est un nombre naturel strictement positif.

Usage

check_scalar_natural(x, warn = TRUE)

assert_scalar_natural(
x,
add = NULL,
.var.name = checkmate::vname(x),
warn = TRUE

)



check_scalar_natural 11

Arguments

x un entier naturel strictement positif

warn un booleen

add Collection pour stocker les messages d’erreurs (Default is NULL)

.var.name Nom de l’objet à vérifier pour afficher dans les messages

Details

Cette fonction s’appuie essentiellement sur la fonction checkmate::assert_count. Il y a néan-
moins une petite subtilité : on vérifie si l’objet x est de type double ou integer. Dans le premier
cas, on affichera un warning et on corrigera l’objet au format integer pour les traitements ultérieurs.
En sortie, x est retourné de manière invisible. Si l’argument warn est FALSE, alors la fonction ne
retournera pas de warning lors de l’évaluation.

Selon le préfixe de la fonction :

• si le check réussi :

– la fonction assert_scalar_natural retourne l’objet x de manière invisible;
– la fonction check_scalar_natural retourne le booléen TRUE.

• si le check échoue :

– la fonction assert_scalar_natural retourne un message d’erreur;
– la fonction check_scalar_natural retourne une chaîne de caractère signalant le prob-

lème.

Value

En sortie la fonction retourne l’objet x de manière invisible ou une erreur.

See Also

check_scalar_integer(), assert_scalar_integer()

Examples

# Avec des entier integer
assert_scalar_natural(1L)
assert_scalar_natural(100L)

# Avec des entiers double
assert_scalar_natural(2.)
assert_scalar_natural(457)



12 check_timeunits

check_timeunits Vérifie la conformité d’un objet TimeUnits

Description

La fonction assert_timeunits vérifie qu’un objet est un TimeUnits.

Usage

check_timeunits(x, frequency_ts, .var.name = checkmate::vname(x))

assert_timeunits(x, frequency_ts, add = NULL, .var.name = checkmate::vname(x))

Arguments

x un numérique qui représente le time units de

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

.var.name Nom de l’objet à vérifier pour afficher dans les messages

add Collection pour stocker les messages d’erreurs (Default is NULL)

Details

Un objet de type TimeUnits est un numérique qui désigne l’année et la période en cours avec ses
décimales. Ainsi pour une série temporelle mensuelle, 2020.5 représente la moitié de l’année donc
juillet 2020 et s’écrit c(2020L, 7L) au format date_ts.

Selon le préfixe de la fonction :

• si le check réussi :

– la fonction assert_timeunits retourne l’objet x de manière invisible;

– la fonction check_timeunits retourne le booléen TRUE.

• si le check échoue :

– la fonction assert_timeunits retourne un message d’erreur;

– la fonction check_timeunits retourne une chaîne de caractère signalant le problème.

Value

En sortie la fonction retourne l’objet x de manière invisible ou une erreur.



check_ts 13

Examples

assert_timeunits(2020.5, frequency_ts = 12L)
assert_timeunits(2020.5, frequency_ts = 4L)
assert_timeunits(2023., frequency_ts = 12L)

assert_timeunits(2000. + 5. / 12.0, frequency_ts = 12L)
assert_timeunits(2015. + 3. / 4.0, frequency_ts = 4L)

check_timeunits(2020.5, frequency_ts = 12L)
check_timeunits(2015. + 3. / 4.0, frequency_ts = 4L)

# Avec erreur

check_timeunits(list(1.), frequency_ts = 12L)
check_timeunits(2000., frequency_ts = 1L)

check_ts Vérifie la conformité d’un objet ts

Description

Les fonctions assert_ts et check_ts vérifient qu’un objet ts est bien conforme.

Usage

check_ts(x, .var.name = checkmate::vname(x), allow_mts = FALSE)

assert_ts(x, add = NULL, .var.name = checkmate::vname(x), allow_mts = FALSE)

Arguments

x Un objet ts unidimensionnel

.var.name Nom de l’objet à vérifier pour afficher dans les messages

allow_mts Booleen. Est ce que les objects mts sont acceptés ?

add Collection pour stocker les messages d’erreurs (Default is NULL)

Details

Les fonctions du package date4ts sont faites pour fonctionner avec des times-series de fréquence
mensuelle ou trimestrielle et basées sur le système des mois, trimestres et années classiques. On
travaille avec des données numériques (integer, double ou logical) mais les autres types atomic
sont acceptés également. On cherche donc à favoriser l’utilisation de séries temporelles classiques
utilisants des types atomiques. Lorsque l’objet x en entrée est au mauvais format, une erreur est
généré.

Selon le préfixe de la fonction :



14 combine2ts

• si le check réussi :

– la fonction assert_ts retourne l’objet x de manière invisible;
– la fonction check_ts retourne le booléen TRUE.

• si le check échoue :

– la fonction assert_ts retourne un message d’erreur;
– la fonction check_ts retourne une chaîne de caractère signalant le problème.

Value

En sortie la fonction retourne l’objet x de manière invisible ou une erreur.

Examples

ts1 <- ts(1:100, start = 2010L, frequency = 12L)
ts2 <- ts(1:10, start = c(2020L, 4L), frequency = 4L)

assert_ts(ts1)
assert_ts(ts2)

check_ts(ts1)
check_ts(ts2)

# Exemples avec des erreurs

check_ts(1)
check_ts(ts(1:10, start = 2010L, frequency = 2L))
check_ts(1:10)

combine2ts Combiner 2 ts

Description

La fonction combine2ts combine (comme c()) 2 time series de même fréquence (mensuelle ou
trimestrielle).

Usage

combine2ts(a, b)

Arguments

a un objet ts unidimensionnel conforme aux règles de assert_ts

b un objet ts unidimensionnel conforme aux règles de assert_ts



date2date_ts 15

Details

Si a et b ont une période en commun, les valeurs de b écrasent celles de a sur la période concernée.
Si il existe une période sur laquelle ni a ni b ne prennent de valeur (mais qu’il existe des valeurs à
des dates ultérieures et antérieures) alors le ts en sortie prendra NA sur cette période.

Value

En sortie, la fonction retourne un ts qui contient les valeurs de a aux temps de a et les valeurs de b
aux temps de b.

Examples

trim_1 <- stats::ts(rep(1, 4), start = 2021, frequency = 4L)

mens_1 <- stats::ts(rep(1, 4), start = 2020, frequency = 12L)
mens_2 <- stats::ts(rep(2, 4), start = 2022, frequency = 12L)

# La série de PIB est écrasé par trim_1 sur la période temporelle de trim_1
combine2ts(ev_pib, trim_1)

# La période entre les séries temporelles mens_1 et mens_2 est complétée par
# des NA
combine2ts(mens_1, mens_2)

date2date_ts Conversion d’une date au format TS

Description

La fonction date2date_ts prend en argument une date au format date (integer avec une class Date)
et la convertit au format date_ts : c(AAAA, MM) ou c(AAAA, TT) avec le mois ou trimestre en cours.

Usage

date2date_ts(date, frequency_ts = 12L)

Arguments

date un objet de type Date

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

Value

En sortie, la fonction retourne la date au format date_ts (c(AAAA, MM) ou c(AAAA, TT)) avec le
mois ou trimestre en cours selon l’argument frequency_ts.



16 date_ts2date

Examples

date2date_ts(as.Date("2000-01-01"))
date2date_ts(as.Date("2000-01-01"), frequency_ts = 12L)

date2date_ts(as.Date("2021-10-01"), frequency_ts = 12L)
date2date_ts(as.Date("2021-10-01"), frequency_ts = 4L)

date_ts2date Conversion d’une date du format TS au format date

Description

Conversion d’une date du format TS au format date

Usage

date_ts2date(date_ts, frequency_ts)

Arguments

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

Value

En sortie, la fonction retourne un objet de type Date (atomic) de longueur 1 qui correspond à l’objet
date_ts.

Examples

date_ts2date(date_ts = c(2020L, 11L), frequency_ts = 12L)
date_ts2date(date_ts = c(1995L, 2L), frequency_ts = 4L)



date_ts2timeunits 17

date_ts2timeunits Conversion d’une date du format date_ts au format TimeUnits

Description

Conversion d’une date du format date_ts au format TimeUnits

Usage

date_ts2timeunits(date_ts, frequency_ts)

Arguments

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

Details

AAAA signifie que l’année est au format numérique avec 4 chiffres (Exemple : l’année deux mille
vingt-deux s’écrit 2022 et non 22) MM signifie que le mois est au format numérique (Exemple :
le mois de mai s’écrit 5, le moi de décembre s’écrit 12) TT signifie que le trimestre est au format
numérique (Exemple : le troisième trimestre s’écrit 3)

Value

En sortie, la fonction retourne la date au format AAAA + TT/4 ou AAAA + MM/12 (un numeric de
longueur 1).

Examples

# Avril 2020
date_ts2timeunits(date_ts = c(2020L, 4L), frequency_ts = 12L)
# Novembre 2020
date_ts2timeunits(date_ts = c(2022L, 11L), frequency_ts = 12L)

# 4ème trimestre de 2022
date_ts2timeunits(date_ts = c(2022, 4L), frequency_ts = 4L)
# 2ème trimestre de 1995
date_ts2timeunits(date_ts = c(1995L, 2L), frequency_ts = 4L)



18 diff_periode

diff_periode Intervalle entre 2 dates

Description

Intervalle entre 2 dates

Usage

diff_periode(a, b, frequency_ts)

Arguments

a un objet date_ts, c’est-à-dire un vecteur numérique, de préférence integer au
format AAAA, c(AAAA, MM) ou c(AAAA, TT)

b un objet date_ts, c’est-à-dire un vecteur numérique, de préférence integer au
format AAAA, c(AAAA, MM) ou c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

Details

On travaille ici avec des dates au format date_ts, c’est-à-dire qui passe le test de la fonction assert_date_ts.
Lorsqu’on parle d’intervalle et de nombre de période entre a et b, les bornes sont incluses. Ainsi
diff_periode(2020L, 2020L, 12L) retourne bien 1L et non 2L ou 0L.

Value

En sortie, la fonction retourne un entier qui désigne le nombre de période (mois ou trimestres) qui
sépare les 2 dates a et b.

Examples

# Une seule période
diff_periode(a = 2020L, b = 2020L, frequency_ts = 4L)

diff_periode(a = c(2000L, 1L), b = c(2020L, 4L), frequency_ts = 4L)

# Ordre chronologique respecté
diff_periode(a = c(2021L, 5L), b = c(2023L, 8L), frequency_ts = 12L)

# Date inversées
diff_periode(a = c(2023L, 8L), b = c(2021L, 5L), frequency_ts = 12L)



ev_pib 19

ev_pib Évolution du PIB français jusqu’au T1 2022

Description

Ce jeu de données contient une série ts de l’évolution trimestrielle du produit intérieur brut français.
Toutes les infos complémentaires sur cette série se trouve sur la page de la publication sur le site de
l’Insee.

Usage

ev_pib

Format

Un ts unidimensionnel :

start le ts commence au T1 1970 mais la série de PIB ne commence qu’au T2 1980.

end le ts finit au T3 2022 mais la série de PIB finit au T1 2022.

frequency_ts la fréquence est trimestrielle

Source

https://www.insee.fr/fr/statistiques/2830547

extend_ts Ajoute de nouvelles valeurs à un ts

Description

La fonction extend_ts ajoute de nouvelles valeurs à un ts.

Usage

extend_ts(
series,
replacement,
date_ts_to = NULL,
replace_na = TRUE,
times = 1L,
each = 1L

)

https://www.insee.fr/fr/statistiques/2830547
https://www.insee.fr/fr/accueil
https://www.insee.fr/fr/statistiques/2830547


20 extend_ts

Arguments

series un objet ts unidimensionnel conforme aux règles de assert_ts

replacement un vecteur de même type que le ts series

date_ts_to un vecteur numérique, de préférence integer, au format date_ts, c’est-à-dire
AAAA, c(AAAA, MM) ou c(AAAA, TT).

replace_na un booléen.

times un entier qui précise le nombre de fois où replacement doit être répété, le
vecteur entier.

each un entier qui précise le nombre de fois où replacement doit être répété mais
élément par élément.

Details

date_ts_to désigne la date jusqu’à laquelle le remplacement s’effectue. Par défault, cette valeur
vaut NULL.

Si replace_na vaut TRUE alors le remplacement commence dès que l’objet ne contient que des
NA. Dans le cas contraire, le ts est étendu, qu’il contienne des NA ou non à la fin. Si le vecteur
replacement est de taille un sous-multiple de la différence de période entre la date de fin de series
et date_ts_to, le vecteur replacement est répété jusqu’à la date date_ts_to. Sinon une erreur
est générée.

Les arguments times et each en sont utilisé que si date_ts est manquant (non fourni par l’utilisateur).
Si tel est le cas, ils se comporte comme si replacement devenait rep(replacement, times =
times, each = each).

Value

En sortie, la fonction retourne une copie de l’objet series complété avec le vecteur replacement.

Examples

ts1 <- ts(
data = c(rep(NA_integer_, 3L), 1L:10L, rep(NA_integer_, 3L)),
start = 2020,
frequency = 12

)
x <- rep(3L, 2L)

extend_ts(series = ts1, replacement = x)
extend_ts(series = ts1, replacement = x, replace_na = FALSE)
extend_ts(series = ts1, replacement = x,

date_ts_to = c(2021L, 7L), replace_na = TRUE)



first_date 21

first_date Première date non NA

Description

Cette fonction calcule la première date pour laquelle l’objet series ne vaut pas NA.

Usage

first_date(series)

Arguments

series un objet ts unidimensionnel conforme aux règles de assert_ts

Details

La date retournée en output est au format date_ts. Si l’objet series ne contient que des NAs, la
fonction retourne une erreur.

Value

En sortie, la fonction retourne un objet au format date_ts (AAAA, c(AAAA, MM) ou c(AAAA, TT))

See Also

last_date

Examples

ts1 <- ts(c(NA, NA, NA, 1:10, NA), start = 2000, frequency = 12L)
ts2 <- ts(c(1:10, NA), start = 2020, frequency = 4L)

stats::start(ts1)
first_date(ts1)

stats::start(ts1)
first_date(ts2)



22 get_value_ts

get_value_ts Récupère des valeurs d’un ts

Description

La fonction get_value_ts permet de récupérer des valeurs.

Usage

get_value_ts(series, date_from, date_to, n)

Arguments

series un objet ts unidimensionnel conforme aux règles de assert_ts

date_from un vecteur numérique, de préférence integer au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

date_to un vecteur numérique, de préférence integer au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

n un entier

Details

Il faut qu’exactement 2 arguments parmi date_to, date_to et n soient renseignés. L’argument n
combiné avec date_to ou date_from permet de déterminer combien de période seront retourné à
partir de ou jusqu’à la date renseignée.

Il faudrait parler d’extraction car contrairement à la fonction window, ici on retourne un vecteur
devaleur et plus un objet ts.

Value

En sortie, la fonction retourne un vecteur (atomic) de même type que series avec les valeurs
extraites.

Examples

ts1 <- ts(1:100, start = 2012L, frequency = 12L)
ts2 <- ts(letters, start = 2014L, frequency = 4L)
ts3 <- ts(exp(-(1:50)), start = 2015L, frequency = 12L)

get_value_ts(series = ts1, date_from = c(2015L, 7L), date_to = c(2018L, 6L))
get_value_ts(series = ts2, date_from = c(2018L, 4L), n = 4L)
get_value_ts(series = ts3, date_to = c(2018L, 4L), n = 14L)



is_before 23

is_before Comparaison de 2 date_ts

Description

Comparaison de 2 date_ts

Usage

is_before(a, b, frequency_ts, strict = FALSE)

Arguments

a un objet date_ts, c’est-à-dire un vecteur numérique, de préférence integer au
format AAAA, c(AAAA, MM) ou c(AAAA, TT)

b un objet date_ts, c’est-à-dire un vecteur numérique, de préférence integer au
format AAAA, c(AAAA, MM) ou c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

strict un booleen (default FALSE)

Details

Les dates a et b sont au format date_ts. L’argument frequency_ts est nécessaire pour interpréter les
dates. Ainsi, si je souhaite comparer la date a = c(2023L, 4L) et la date b = c(2023L, -2L). Dans
le cas d’une fréquence mensuelle, la date a est antérieure à la date b. Dans le cas d’une fréquence
mensuelle, c’est l’inverse. Si strict vaut TRUE, la fonction compare strictement les dates a et b (<).

Value

En sortie, la fonction retourne un booleen (de longueur 1) qui indique si la date a est antérieure à la
date b.

Examples

is_before(a = c(2020L, 3L), b = c(2022L, 4L), frequency_ts = 12L)
is_before(a = c(2022L, 3L), b = c(2010L, 1L), frequency_ts = 4L)

is_before(a = c(2022L, 4L), b = c(2022L, 4L), frequency_ts = 12L)
is_before(a = c(2022L, 4L), b = c(2022L, 4L),

frequency_ts = 12L, strict = TRUE)

# Importance de la fréquence
is_before(a = c(2022L, -3L), b = c(2021L, 8L), frequency_ts = 12L)
is_before(a = c(2022L, -3L), b = c(2021L, 8L), frequency_ts = 4L)



24 last_date

last_date Dernière date non NA

Description

Cette fonction calcule la dernière date pour laquelle l’objet series ne vaut pas NA.

Usage

last_date(series)

Arguments

series un objet ts unidimensionnel conforme aux règles de assert_ts

Details

La date retournée en output est au format date_ts. Si l’objet series ne contient que des NAs, la
fonction retourne une erreur.

Value

En sortie, la fonction retourne un objet au format date_ts (AAAA, c(AAAA, MM) ou c(AAAA, TT))

See Also

first_date

Examples

ts1 <- ts(c(NA, NA, NA, 1:10, NA), start = 2000, frequency = 12L)
ts2 <- ts(c(1:10), start = 2020, frequency = 4L)

stats::end(ts1)
last_date(ts1)

stats::end(ts2)
last_date(ts2)



libelles 25

libelles Libelés pour une période

Description

La fonction libelles créé un vecteur de chaines de caractère contenant les libelés de toutes les
dates sur une période

Usage

libelles(date_ts, frequency_ts, n = 1L, warn = TRUE)

Arguments

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

n un entier

warn un booleen

Details

Pour choisir la période, il faut spécifier une date de début date_ts, une fréquence frequency_ts
pour le pas entre 2 dates (trimestrielle ou mensuelle) et un nombre de valeur n (nombre de période).

Si l’argument warn est FALSE, alors la fonction ne retournera pas de warning lors de l’évaluation.

Value

En sortie, la fonction retourne un vecteur de chaine de caractère de longueur n avec les libellés de
la période (de la date date_ts à la date date_ts + n périodes.

Examples

libelles(date_ts = c(2019L, 10L), frequency_ts = 12L, n = 9L)
libelles(date_ts = c(2019L, 4L), frequency_ts = 4L, n = 3L)



26 next_date_ts

na_trim Supprime les NA aux bords

Description

La fonction na_trim supprime les NA en début et en fin de période.

Usage

na_trim(series, sides = c("both", "left", "right"))

Arguments

series un objet ts unidimensionnel conforme aux règles de assert_ts

sides une chaine de caractere qui spécifie quelle NA doivent être retirés (au début et à
la fin ("both"), juste au début ("left") ou juste à la fin ("right"))

Details

L’objet retourné commence et finis par des valeurs non manquantes.

Value

En sortie, la fonction retourne une copie de l’objet series corrigée des NA et début et fin de série.

Examples

ts1 <- ts(c(rep(NA, 3L), 1:10, rep(NA, 3L)), start = 2020, frequency = 12L)
ts2 <- ts(c(1:10, rep(NA, 3L)), start = c(2023, 2), frequency = 4L)
ts3 <- ts(c(rep(NA, 3L), 1:10), start = 2000, frequency = 12L)

na_trim(ts1)
na_trim(ts2)
na_trim(ts3)

next_date_ts Obtenir la date suivante

Description

Obtenir la date suivante

Usage

next_date_ts(date_ts, frequency_ts, lag = 1L)



normalize_date_ts 27

Arguments

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

lag un entier

Details

Lorsqu’on parle de date suivante, on parle de date future. L’argument lag est entier et désigne le
nombre de décalage que l’on affecte à notre date. Par exemple pour des lag positif (1L, 2L, 10L)
on désigne le décalage de la période suivante, celle d’après et celle dans 10 périodes. Cependant,
lorsque l’argument lag vaut zéro, la fonction retourne la date inchangée. Aussi lorsque l’argument
lag est négatif, la fonction se comporte comme la fonction previous_date_ts et retourne les
périodes passées et non futures.

Value

En sortie, la fonction retourne un vecteur d’entier qui représente la date à la période future au format
date_ts.

See Also

previous_date_ts

Examples

next_date_ts(c(2020L, 4L), frequency_ts = 4L, lag = 2L)
next_date_ts(c(2021L, 1L), frequency_ts = 4L, lag = -2L)

next_date_ts(c(2020L, 4L), frequency_ts = 12L, lag = 2L)
next_date_ts(c(2022L, 6L), frequency_ts = 12L, lag = 12L)

normalize_date_ts Ajuste un objet date_ts dans un format conforme.

Description

Ajuste un objet date_ts dans un format conforme.

Usage

normalize_date_ts(date_ts, frequency_ts, test = TRUE)



28 previous_date_ts

Arguments

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

test un booléen (Default is TRUE)

Details

Ici le formattage correspond à une réécriture de la date sans en changer la valeur. Alors que l’objet
c(2020L, 12L) désigne le mois de décembre 2020 et c(2021L, 1L) le mois de janvier 2021, on
peut imaginer que la date_ts c(2021L, 0L) peut aussi représenter le mois de décembre 2020. Si
l’argument test est mis à FALSE, alors aucun test ne sera effectué sur les données en entrée.

Value

En sortie, la fonction retourne une date au même format que l’objet date_ts avec la période inclus
entre 1 et la fréquence.

Examples

# Formattage inchangée
normalize_date_ts(c(2020L, 1L), frequency_ts = 4L) # 1er trimestre de 2020
normalize_date_ts(c(2020L, 8L), frequency_ts = 12L) # Aout 2020

# Retour dans le passé
normalize_date_ts(c(2020L, 0L), frequency_ts = 4L) # 4ème trimestre de 2019
normalize_date_ts(c(2020L, -10L), frequency_ts = 12L) # février 2019

# Avancée dans le futur
normalize_date_ts(c(2020L, 7L), frequency_ts = 4L) # 3ème trimestre de 2021
normalize_date_ts(c(2020L, 13L), frequency_ts = 4L) # janvier 2021

previous_date_ts Obtenir la date précédente

Description

Obtenir la date précédente

Usage

previous_date_ts(date_ts, frequency_ts, lag = 1L)



set_value_ts 29

Arguments

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

frequency_ts un entier qui vaut 4L (ou 4.0) pour les séries trimestrielles et 12L (ou 12.0) pour
les séries mensuelles.

lag un entier

Details

Lorsqu’on parle de date précédente, on parle de date passée. L’argument lag est entier et désigne le
nombre de décalage que l’on affecte à notre date. Par exemple pour des lag positif (1L, 2L, 10L) on
désigne le décalage de la période précédente, celle d’avant et celle d’il y a 10 périodes. Cependant,
lorsque l’argument lag vaut zéro, la fonction retourne la date inchangée. Aussi lorsque l’argument
lag est négatif, la fonction se comporte comme la fonction next_date_ts et retourne les périodes
futures et non passées.

Value

En sortie, la fonction retourne un vecteur d’entier qui représente la date à la période passée au
format date_ts.

See Also

next_date_ts

Examples

previous_date_ts(c(2020L, 4L), frequency_ts = 4L, lag = 2L)
previous_date_ts(c(2021L, 1L), frequency_ts = 4L, lag = -2L)

previous_date_ts(c(2020L, 4L), frequency_ts = 12L, lag = 2L)
previous_date_ts(c(2022L, 6L), frequency_ts = 12L, lag = 12L)

set_value_ts Change certaines valeurs d’un ts

Description

La fonction set_value_ts modifie la ou les valeurs d’un objet ts à une date donnée.

Usage

set_value_ts(series, date_ts, replacement)



30 substr_year

Arguments

series un objet ts unidimensionnel conforme aux règles de assert_ts

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

replacement un vecteur de même type que le ts series

Value

En sortie, la fonction retourne une copie de l’objet series modifié avec les valeurs de replacement
imputés à partir de la date date_ts.

Examples

set_value_ts(
series = ev_pib,
date_ts = c(2021L, 2L),
replacement = c(1, 2, 3)

)

substr_year Retire une année à une date

Description

La fonction substr_year retire n annnée(s) à une date.

Usage

substr_year(date, n = 1L)

Arguments

date un objet de type Date

n un entier

Value

En sortie, la fonction retourne un objet de type Date (atomic) de longueur 1.



trim2mens 31

Examples

substr_year(as.Date("2000-02-29"), n = 1L)
substr_year(as.Date("2000-02-29"), n = 3L)
substr_year(as.Date("2000-02-29"), n = 4L)
substr_year(as.Date("2000-02-29"), n = 16L)

substr_year(as.Date("2023-01-25"), n = 10L)
substr_year(as.Date("2022-11-01"), n = 3L)

trim2mens Conversion entre date mensuelle et trimestrielle

Description

Les fonctions trim2mens et mens2trim convertissent une date_ts du format mensuelle c(AAAA,
MM) au format trimestrielle c(AAAA, TT).

Usage

trim2mens(date_ts)

mens2trim(date_ts)

Arguments

date_ts un vecteur numérique, de préférence integer, au format AAAA, c(AAAA, MM) ou
c(AAAA, TT)

Value

En sortie, la fonction retourne la date toujours au format date_ts.

Examples

trim2mens(c(2019L, 4L)) # 4ème trimestre 2019 --> Octobre 2019
trim2mens(c(2020L, 1L)) # 1er trimestre 2020 --> Janvier 2020

mens2trim(c(2019L, 4L)) # Avril 2019 --> 2ème trimestre 2019
mens2trim(c(2020L, 11L)) # Novembre 2020 --> 4ème trimestre 2020



32 ts2df

ts2df Convertit un objet ts en data.frame

Description

Convertit un objet ts en data.frame

Usage

ts2df(x)

Arguments

x un objet de type ts.

Value

En sortie la fonction retourne un data.frame avec autant de colonnes que x et une de plus pour la
date.

Examples

ts2df(AirPassengers)
ts2df(Seatbelts)



Index

∗ datasets
ev_pib, 19

as_yyyymm (as_yyyytt), 3
as_yyyytt, 3
assert_date_ts (check_date_ts), 4
assert_expression (check_expression), 5
assert_frequency (check_frequency), 6
assert_scalar_date (check_scalar_date),

8
assert_scalar_integer

(check_scalar_integer), 9
assert_scalar_integer(), 11
assert_scalar_natural

(check_scalar_natural), 10
assert_scalar_natural(), 10
assert_timeunits (check_timeunits), 12
assert_ts (check_ts), 13

check_date_ts, 4
check_expression, 5
check_frequency, 6
check_scalar_date, 8
check_scalar_integer, 9
check_scalar_integer(), 11
check_scalar_natural, 10
check_scalar_natural(), 10
check_timeunits, 12
check_ts, 13
combine2ts, 14

date2date_ts, 15
date_ts2date, 16
date_ts2timeunits, 17
diff_periode, 18

ev_pib, 19
extend_ts, 19

first_date, 21

get_value_ts, 22

is_before, 23

last_date, 24
libelles, 25

mens2trim (trim2mens), 31

na_trim, 26
next_date_ts, 26
normalize_date_ts, 27

previous_date_ts, 28

set_value_ts, 29
substr_year, 30

trim2mens, 31
ts2df, 32

33


	as_yyyytt
	check_date_ts
	check_expression
	check_frequency
	check_scalar_date
	check_scalar_integer
	check_scalar_natural
	check_timeunits
	check_ts
	combine2ts
	date2date_ts
	date_ts2date
	date_ts2timeunits
	diff_periode
	ev_pib
	extend_ts
	first_date
	get_value_ts
	is_before
	last_date
	libelles
	na_trim
	next_date_ts
	normalize_date_ts
	previous_date_ts
	set_value_ts
	substr_year
	trim2mens
	ts2df
	Index

