dupiR: Bayesian Inference from Count Data using Discrete Uniform Priors
We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. This package implements a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. This can be used for a variety of statistical problems involving absolute quantification under uncertainty. See Comoglio et al. (2013) <doi:10.1371/journal.pone.0074388>.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=dupiR
to link to this page.