
Best practices and other tips

Mike Blazanin

Contents

Where are we so far? 1

Statistical analyses of growth curves data 2

When should we average replicates? . 2

Carrying out statistical testing . 4

Combining growth curves data with other data 5

Other growth curve analysis packages 7

What’s next? 8

Where are we so far?

1. Introduction: vignette("gc01_gcplyr")
2. Importing and reshaping data: vignette("gc02_import_reshape")
3. Incorporating experimental designs: vignette("gc03_incorporate_designs")
4. Pre-processing and plotting your data: vignette("gc04_preprocess_plot")
5. Processing your data: vignette("gc05_process")
6. Analyzing your data: vignette("gc06_analyze")
7. Dealing with noise: vignette("gc07_noise")
8. Best practices and other tips: vignette("gc08_conclusion")
9. Working with multiple plates: vignette("gc09_multiple_plates")

10. Using make_design to generate experimental designs: vignette("gc10_using_make_design")

So far, we’ve imported and transformed our measures, combined them with our design information, pre-
processed, processed, plotted, and analyzed our data. The only things left are a few notes on best practices
for running statistics, merging growth curve analyses with other data, and additional resources for analyzing
growth curves.

If you haven’t already, load the necessary packages.

library(gcplyr)

library(dplyr)
library(ggplot2)

1

Statistical analyses of growth curves data

At this point, we’ve now summarized our growth curves data into some metrics. How can we best go about
drawing statistical conclusions from these data?

When should we average replicates?

I want to emphasize something we did not do in our workflow: averaging different wells together before
summarization. In my opinion, averaging should only occur after summarization, not before. Why? Even
wells that have the same contents (i.e. are technical replicates) can still differ in their growth due to biological
variation (e.g. stochastic growth dynamics). If we average our density values at the beginning, we may
introduce bias, and we will not have the ability to visualize or assess the biological variation present in our
data.

Let’s look at a simple example to demonstrate this point. I’m going to simulate bacterial growth using
logistic growth, which starts after a finite ‘lag period’ where the bacteria don’t grow at all.

dN/dt =
{

0 t < lag

rN
(
1 − N

k

)
t ≥ lag

(1)

Where N is the population size, r is the rate of growth, k is the carrying capacity of the population, and
lag is the lag time.

In the code below, I’ve simulated the growth of 96 different wells of bacteria. All the bacteria grow at exactly
the same rate, except they differ in their lag time (how long they wait before starting to grow).

sim_dat_tdy <- make_example(vignette = 8, example = 1)

Now, let’s calculate the growth rate of each well and plot the growth:

sim_dat_tdy <- mutate(group_by(sim_dat_tdy, Well),
percap_deriv = calc_deriv(y = Measurements, x = time,

percapita = TRUE, blank = 0))

Plot the growth in our wells
ggplot(data = filter(sim_dat_tdy, Well != "averaged"),

aes(x = time, y = Measurements, group = Well)) +
geom_line(alpha = 0.1) +
geom_line(data = filter(sim_dat_tdy, Well == "averaged"), color = "red") +
scale_y_continuous(trans = "log10")

2

0.001

0.010

0.100

1.000

0 500 1000 1500
time

M
ea

su
re

m
en

ts

Here we’ve plotted each individual well in black, with the “average well” plotted in red. We can clearly see
that our different wells are varying in how long their lag time is, but not their growth rate once they start.
In contrast, our average well has a quite different shape. Does that affect its maximum growth rate?

Summarize our data
sim_dat_sum <- summarize(group_by(sim_dat_tdy, Well),

max_growth_rate = max(percap_deriv, na.rm = TRUE))

Plot the maximum per-capita growth rates of each well
as well as the 'average' well
ggplot(data = sim_dat_sum,

aes(x = Well == "averaged", y = max_growth_rate)) +
geom_point(alpha = 0.5, position = position_jitter(width = 0.1)) +
ylim(0.01, 0.03)

3

0.010

0.015

0.020

0.025

0.030

FALSE TRUE
Well == "averaged"

m
ax

_g
ro

w
th

_r
at

e

Here we can see that the maximum growth rate of the “average well” is far from the maximum growth rate
of each well.

Moreover, this bias can show up in other summary metrics as well. An ‘average curve’ is rarely a good repre-
sentative of the average of all curves, so I recommend against averaging wells together before summarizing.

Carrying out statistical testing

How do you go about running statistics on analyzed growth curve data? Typically, growth curves experiments
will have a highly nested structure. You probably have multiple wells with the same contents (i.e. technical
replicates) in each plate. You may also have multiple plates from different runs (creating the possibility of
batch effects).

In order to pull apart these effects and test for differences between your treatments, you’ll likely need to
do mixed-effects modeling. Unfortunately, it’s beyond the scope of this vignette to provide a sufficient
explanation of how to do mixed-effects statistics. However, I can provide some guidance:

For frequentist statistics, the R package lme4 is one of the most-popular implementations of mixed-effects
modeling.

For Bayesian statistics, the R packages brms or rstanarm are popular implementations that can incorporate
mixed-effects modeling.

Regardless of your approach, you should:

• use your your summarized statistics (e.g. auc, max_growth_rate, lag_time, etc.) as your response
variable

• use your design elements (e.g. Bacteria_strain, Phage) as your explanatory variables (i.e. fixed effects)

4

• incorporate random effects for any technical replicates you have
• incorporate random effects for any potential batch effects in-play

There are a number of excellent resources out there to learn how to do this sort of mixed-effects modeling,
including what I think is a good introductory guide to the process by Michael Clark.

Combining growth curves data with other data

As you approach the end of your growth curves analyses, you have summarized the dynamics of your growth
curves into one or a few metrics. At this point, you may wish to pull in other sources of data to compare
to your growth curves metrics. Just like merging multiple growth curves data frames together, this can be
achieved with merge_dfs.

We’ll focus on the area-under-the-curve metric, and on just the bacteria grown in the absence of phages.

This code was previously explained
Here we're re-running it so it's available for us to work with
example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless,

id_cols = "Time")
ex_dat_mrg <- merge_dfs(example_tidydata, example_design_tidy)
#> Joining with `by = join_by(Well)`
ex_dat_mrg_sum <-

summarize(group_by(dplyr::filter(ex_dat_mrg, Phage == "No Phage"),
Well, Bacteria_strain, Phage),

auc = auc(x = Time, y = Measurements))
#> `summarise()` has grouped output by 'Well', 'Bacteria_strain'. You can override using
#> the `.groups` argument.

Imagine that, separately, we’ve measured the resistance of each of our example bacteria to antibiotics, and
we want to know if there’s any relationship between the antibiotic resistance of the bacteria and their growth.
make_example has some mock antibiotic resistance data we can use. Importantly, the antibiotic data must
have matching headers to our growth curve data so that merge_dfs knows how to merge them.

Here we’ll generate some mock antibiotic resistance data. Importantly, our data must have matching headers
as our growth curve data so that merge_dfs knows how to merge the data.frame’s. We’ll put whether or not
the strain is resistant to the antibiotic under the Antibiotic_resis column, with a TRUE for resistance,
and FALSE for sensitivity. Don’t worry exactly how this code works, since it’s just simulating data
that you would have collected in the lab.

antibiotic_dat <- make_example(vignette = 8, example = 2)
#> Joining with `by = join_by(Well)`

head(antibiotic_dat)
#> Bacteria_strain Antibiotic_resis
#> 1 Strain 1 TRUE
#> 2 Strain 2 FALSE
#> 3 Strain 3 TRUE
#> 4 Strain 4 FALSE
#> 5 Strain 5 FALSE
#> 6 Strain 6 TRUE

Great, now we merge our two data frames and see if there’s a relationship.

5

https://m-clark.github.io/mixed-models-with-R/

growth_and_antibiotics <-
merge_dfs(ex_dat_mrg_sum, antibiotic_dat)

#> Joining with `by = join_by(Bacteria_strain)`
head(growth_and_antibiotics)
#> # A tibble: 6 x 5
#> # Groups: Well, Bacteria_strain [6]
#> Well Bacteria_strain Phage auc Antibiotic_resis
#> <chr> <chr> <chr> <dbl> <lgl>
#> 1 A1 Strain 1 No Phage 57291. TRUE
#> 2 A2 Strain 2 No Phage 69361. FALSE
#> 3 A3 Strain 3 No Phage 54460. TRUE
#> 4 A4 Strain 4 No Phage 72280. FALSE
#> 5 A5 Strain 5 No Phage 73112. FALSE
#> 6 A6 Strain 6 No Phage 45970. TRUE

ggplot(data = growth_and_antibiotics,
aes(x = Antibiotic_resis, y = auc)) +

geom_point()

30000

40000

50000

60000

70000

80000

FALSE TRUE
Antibiotic_resis

au
c

There is! We can see that the antibiotic resistant strains (TRUE) have a smaller area-under-the-curve than
the antibiotic sensitive strains (FALSE) (although, to be fair, I did simulate the data so we’d get that result).

6

Other growth curve analysis packages

A number of other software tools besides gcplyr facilitate analysis of growth curves data or data wrangling
of plate reader data. Here I’ll provide some brief notes on how gcplyr compares to these other tools, for a
more detailed comparison please see: Blazanin, M. “gcplyr: an R package for microbial growth curve data
analysis.” bioRxiv (2023)

There are, broadly speaking, two ways to analyze growth curves data:

1. directly quantify attributes of the growth dynamics
2. fit the growth dynamics with a mathematical model, then extract parameters from the fitted model

While gcplyr and some other R packages focus on the first analysis approach (direct quantification of growth
curves dynamics), many other R packages focus on fitting growth dynamics with a mathematical model.

Generally, fitting growth dynamics with a model has greater power to accurately quantify the underlying
traits. However, it also takes much more effort to be rigorous when fitting data with a model. You have to
carefully choose a model whose assumptions your data meet. You also have to evaluate the fits to ensure
that the optimization algorithms arrived on reasonable solutions.

Here are some other software tools for growth curve data analysis, for you to explore. I’ve italicized several
tools which might be particularly compatible with gcplyr because they can import the tidy-shaped data
that gcplyr generates.

• growthcurver
• growthrates
• biogrowth
• opm
• QurvE
• AUDIT
• bletl
• AMiGA
• fitderiv
• phenom
• B-GREAT
• PMAnalyzer
• GrowthRates
• GCAT
• PRECOG
• IPMP 2013
• GATHODE
• Microrisk Lab
• CarboLogR
• YODA
• BGFit

Additionally, some software doesn’t analyze growth curve data, but does contain useful functionality for
plate-reader data wrangling:

• plater
• Parsley

7

https://doi.org/10.1101/2023.04.30.538883
https://doi.org/10.1101/2023.04.30.538883
https://github.com/sprouffske/growthcurver
https://nicwir.github.io/QurvE/

What’s next?

You’ve finished all of the core documentation. Congratulations! gcplyr is a powerful framework to build
additional analyses on, since the data is nicely organized. Feel free to reach out to me with any questions,
comments, or concerns you might have. I’d love to continue making gcplyr as useful for others in the
scientific community as it has been for me. You can reach me at mikeblazanin [at] gmail [dot] com.

If you’d like to read about how to work with multiple plates of data at once, check out our final vignette:
vignette("gc09_multiple_plates")

1. Introduction: vignette("gc01_gcplyr")
2. Importing and reshaping data: vignette("gc02_import_reshape")
3. Incorporating experimental designs: vignette("gc03_incorporate_designs")
4. Pre-processing and plotting your data: vignette("gc04_preprocess_plot")
5. Processing your data: vignette("gc05_process")
6. Analyzing your data: vignette("gc06_analyze")
7. Dealing with noise: vignette("gc07_noise")
8. Best practices and other tips: vignette("gc08_conclusion")
9. Working with multiple plates: vignette("gc09_multiple_plates")

10. Using make_design to generate experimental designs: vignette("gc10_using_make_design")

8

	Where are we so far?
	Statistical analyses of growth curves data
	When should we average replicates?
	Carrying out statistical testing

	Combining growth curves data with other data
	Other growth curve analysis packages
	What's next?

