Meta Clustering with Similarity Network Fusion


[Up] [Top]

Documentation for package ‘metasnf’ version 1.1.2

Help Pages

A B C D E F G H I J L M N O P R S T V

-- A --

abcd_anxiety Mock ABCD anxiety data
abcd_colour Mock ABCD "colour" data
abcd_cort_sa Mock ABCD cortical surface area data
abcd_cort_t Mock ABCD cortical thickness data
abcd_depress Mock ABCD depression data
abcd_h_income Mock ABCD income data
abcd_income Mock ABCD income data
abcd_pubertal Mock ABCD pubertal status data
abcd_subc_v Mock ABCD subcortical volumes data
add_columns Add columns to a dataframe
add_settings_matrix_rows Add settings matrix rows
adjusted_rand_index_heatmap Heatmap of pairwise adjusted rand indices between solutions
age_df Mock age data
alluvial_cluster_plot Alluvial plot of patients across cluster counts and important features
anxiety Mock ABCD anxiety data
arrange_dl Given a data_list object, sort data elements by subjectkey
assemble_data Collapse a dataframe and/or a data_list into a single dataframe
assoc_pval_heatmap Heatmap of pairwise associations between features
auto_plot Automatically plot features across clusters

-- B --

bar_plot Bar plot separating a feature by cluster
batch_nmi Calculate feature NMIs for a data_list and a derived solutions_matrix
batch_row_closure Generate closure function to run batch_snf in an apply-friendly format
batch_snf Run variations of SNF.
batch_snf_subsamples Run SNF clustering pipeline on a list of subsampled data lists.

-- C --

calculate_coclustering Calculate coclustering data.
calculate_db_indices Calculate Davies-Bouldin indices
calculate_dunn_indices Calculate Dunn indices
calculate_silhouettes Calculate silhouette scores
calc_aris Meta-cluster calculations
calc_assoc_pval Calculate p-values based on feature vectors and their types
calc_assoc_pval_matrix Calculate p-values for all pairwise associations of features in a data_list
cancer_diagnosis_df Mock diagnosis data
cell_significance_fn Place significance stars on ComplexHeatmap cells.
char_to_fac Convert character-type columns of a dataframe to factor-type
check_dataless_annotations Helper function to stop annotation building when no data was provided
check_hm_dependencies Check for ComplexHeatmap and circlize dependencies
check_similarity_matrices Check validity of similarity matrices
chi_squared_pval Chi-squared test p-value (generic)
coclustering_coverage_check Coclustering coverage check
cocluster_density Density plot coclustering stability across subsampled data.
cocluster_heatmap Heatmap of observation co-clustering across resampled data.
collapse_dl Collapse a data_list into a single dataframe
colour_scale Return a colour ramp for a given vector
convert_uids Convert unique identifiers of data_list to 'subjectkey'
cort_sa Mock ABCD cortical surface area data
cort_t Mock ABCD cortical thickness data

-- D --

depress Mock ABCD depression data
diagnosis_df Mock diagnosis data
discretisation Internal function for 'estimate_nclust_given_graph'
discretisation_evec_data Internal function for 'estimate_nclust_given_graph'
dl_has_duplicates Check if data list contains any duplicate features
dl_uid_first_col Make the subjectkey UID columns of a data_list first
dl_variable_summary Variable-level summary of a data_list
domains Domains
domain_merge SNF scheme: Domain merge
drop_inputs Execute inclusion

-- E --

esm_manhattan_plot Manhattan plot of feature-cluster association p-values
estimate_nclust_given_graph Estimate number of clusters for a similarity matrix
euclidean_distance Distance metric: Euclidean distance
expression_df Modification of SNFtool mock dataframe "Data1"
extend_solutions Extend an solutions matrix to include outcome evaluations

-- F --

fav_colour Mock ABCD "colour" data
fisher_exact_pval Fisher exact test p-value

-- G --

gender_df Mock gender data
generate_annotations_list Generate annotations list
generate_clust_algs_list Generate a list of custom clustering algorithms
generate_data_list Generate a data_list
generate_distance_metrics_list Generate a list of distance metrics
generate_settings_matrix Build a settings matrix
generate_weights_matrix Generate a matrix to store feature weights
get_clusters Extract cluster membership vector from one solutions matrix row
get_cluster_df Extract cluster membership information from one solutions matrix row
get_cluster_solutions Extract cluster membership information from a solutions_matrix
get_complete_uids Pull complete-data UIDs from a list of dataframes
get_dist_matrix Calculate distance matrices
get_dl_subjects Extract subjects from a data_list
get_heatmap_order Return the row or column ordering present in a heatmap
get_matrix_order Return the hierarchical clustering order of a matrix
get_mean_pval Get mean p-value
get_min_pval Get minimum p-value
get_pvals Get p-values from an extended solutions matrix
get_representative_solutions Extract representative solutions from a matrix of ARIs
gower_distance Distance metric: Gower distance

-- H --

hamming_distance Distance metric: Hamming distance

-- I --

income Mock ABCD income data
individual SNF Scheme: Individual

-- J --

jitter_plot Jitter plot separating a feature by cluster

-- L --

label_prop Label propagation
label_splits Convert a vector of partition indices into meta cluster labels
linear_adjust Linearly correct data_list by features with unwanted signal
linear_model_pval Linear model p-value (generic)
list_remove Remove items from a data_list
lp_solutions_matrix Label propagate cluster solutions to unclustered subjects

-- M --

mc_manhattan_plot Manhattan plot of feature-meta cluster associaiton p-values
merge_data_lists Horizontally merge compatible data lists
merge_df_list Merge list of dataframes
methylation_df Modification of SNFtool mock dataframe "Data2"

-- N --

no_subs Select all columns of a dataframe not starting with the 'subject_' prefix.
numcol_to_numeric Convert dataframe columns to numeric type

-- O --

ord_reg_pval Ordinal regression p-value

-- P --

parallel_batch_snf Parallel processing form of batch_snf
prefix_dl_sk Add "subject_" prefix to all UID values in subjectkey column
pubertal Mock ABCD pubertal status data
pval_heatmap Heatmap of p-values

-- R --

random_removal Generate random removal sequence
reduce_dl_to_common Reduce data_list to common subjects
remove_dl_na Remove NAs from a data_list object
rename_dl Rename features in a data_list
reorder_dl_subs Reorder the subjects in a data_list
resample Helper resample function found in ?sample

-- S --

save_heatmap Save a heatmap object to a file
scale_diagonals Adjust the diagonals of a matrix
settings_matrix_heatmap Heatmap for visualizing a settings matrix
sew_euclidean_distance Squared (excluding weights) Euclidean distance
shiny_annotator Launch shiny app to identify meta cluster boundaries
similarity_matrix_heatmap Plot heatmap of similarity matrix
similarity_matrix_path Generate a complete path and filename to store an similarity matrix
siw_euclidean_distance Squared (including weights) Euclidean distance
snf_step Convert a data list to a similarity matrix through a variety of SNF schemes
sn_euclidean_distance Distance metric: Standard normalization then Euclidean
spectral_eigen Clustering algorithm: Spectral clustering with eigen-gap heuristic
spectral_eigen_classic Clustering algorithm: Spectral clustering with eigen-gap heuristic
spectral_eight Clustering algorithm: Spectral clustering for a eight cluster solution
spectral_five Clustering algorithm: Spectral clustering for a five cluster solution
spectral_four Clustering algorithm: Spectral clustering for a four cluster solution
spectral_nine Clustering algorithm: Spectral clustering for a nine cluster solution
spectral_rot Clustering algorithm: Spectral clustering with rotation cost heuristic
spectral_rot_classic Clustering algorithm: Spectral clustering with rotation cost heuristic
spectral_seven Clustering algorithm: Spectral clustering for a seven cluster solution
spectral_six Clustering algorithm: Spectral clustering for a six cluster solution
spectral_ten Clustering algorithm: Spectral clustering for a ten cluster solution
spectral_three Clustering algorithm: Spectral clustering for a three cluster solution
spectral_two Clustering algorithm: Spectral clustering for a two cluster solution
split_parser Helper function to determine which row and columns to split on
subc_v Mock ABCD subcortical volumes data
subs Select all columns of a dataframe starting with a given string prefix.
subsample_data_list Create subsamples of a data_list
subsample_pairwise_aris Calculate pairwise adjusted Rand indices across subsamples of data
summarize_clust_algs_list Summarize a clust_algs_list object
summarize_dl Summarize a data list
summarize_dml Summarize metrics contained in a distance_metrics_list
summarize_pvals Summarize p-value columns of an extended solutions matrix

-- T --

train_test_assign Training and testing split
two_step_merge Two step SNF

-- V --

var_manhattan_plot Manhattan plot of feature-feature associaiton p-values