Tutorial 2: Finding an Optimal Equation by Navigating Through
a Term Space

Problem Statement

Counsider again the synthetic data that was created in Tutorial 1. Suppose that we were only provided
with the data and, unlike in Tutorial 1, had no knowledge of the best terms to be included in a functional
representation of said data. In this example, we shall use ROptimus to determine which terms should be used
in a least squares fitting of the data to achieve a representation with low RMSD while avoiding overfitting
the data with too complicated equation.

Let us start by generating the same data which was used in Tutorial 1:

set.seed(845)
x <- runif (1000, -15, 10)
y <= -1.0*%x - 0.3%x"2 + 0.2%x"3 + 0.01*x"4 + rnorm(length(x), 0, 30)

Synthetic Example Dataset

300
I

100
I

-100 O

-300

-15 -10 -5 0 5 10

From Tutorial 1, we know that if presented with this data and under the assumption that the most
appropriate model to describe the data is ki + kpa? + ksx® + kux?, the Least Squares model fitting is
y = —0.741z — 0.30722 + 0.19823 4 0.0102*. We also know that the RMSD between the observed data y and
the linear model fitting outcome is:

[1] 28.82655

17

Least—-Squares Linear Model Fitting

300
I

100
I

-100 O

-300

-15 -10 -5 0 5 10

Defining ROptimus Inputs

Let us first define an ordered set terms that is a collection of candidate terms to include in the representation
of the data:

terms = {x, 22, 23, 2%, 2%, 25, 27, 28, 2%, 210 €%, |z, sin(x), cos(z), tan(z), sin(z)cos(z), sin®(z), cos?(x),

sin(z?), sin(x3), cos(x?), cos(x3), sin(x®)cos(—x), cos(x3)sin(—x), sin(x®)cos(—x), cos(x®)sin(—x), e*sin(z),
e*cos(x), |z|sin(x), |z|cos(x)}

Let terms; denote the it" term in the set terms (for example, termsiy = cos(x)). We shall use the model:

card(terms)
y=>b+ Z k;c;terms;
i=1

where each k; is a binary variable (meaning a variable taking a value of either 0 or 1) indicating whether the
i*" term is included in the representation, each ¢; is a non-zero coefficient for the i** term and b is a real
number (the intercept). In our case, card(terms) = 30 so explicitly, our model is:

y = b+ kiciz + kocox? + ksczx® + kacax® + kscsa® + kecgx® + krera” + kgega® + kocox® + kigcior'® +
kiiciie® + kiacia|z| + kizcizsiz(x) + kigcracos(x) + kiseistan(z) + kigeigsin(z)cos(z) + kizeirsin®(x) +
kigcigcos®(z) + kigciosin(z?) + kogcaosin(z3) + kaicarcos(x?) + kogcoscos(x3) + kageazsin(a®)cos(—z) +
kascascos(x3)sin(—x) + kascassin(x®)cos(—x) + kagcagcos(z®)sin(—x) + karcare®sin(z) + kogcage®cos(x) +
kagcag|z|sin(x) + ksocso|x|cos(x)

Formally, X will be a numeric vector of length card(terms) whose it" entry is k;. K uniquely specifies a set
activeTerms = {terms; Vi |k; = 1}. Note that activeTerms C terms. Each binary variable k; should be
initialized randomly as below:
K <- c(rbinom(n=1, 1, 0.5),

rbinom(n=1, 1, 0.5),

18

term3=rbinom(n=1, size=1, prob=0.5),
term4=rbinom(n=1, size=1, prob=0.5),
termb=rbinom(n=1, size=1, prob=0.5),
term6=rbinom(n=1, size=1, prob=0.5),
term7=rbinom(n=1, size=1, prob=0.5),
term8=rbinom(n=1, size=1, prob=0.5),
term9=rbinom(n=1, size=1, prob=0.5),
term10=rbinom(n=1, size=1, prob=0.5),
termli=rbinom(n=1, size=1, prob=0.5),
term12=rbinom(n=1, size=1, prob=0.5),
term13=rbinom(n=1, size=1, prob=0.5),
terml4=rbinom(n=1, size=1, prob=0.5),
term15=rbinom(n=1, size=1, prob=0.5),
terml6=rbinom(n=1, size=1, prob=0.5),
term17=rbinom(n=1, size=1, prob=0.5),
term18=rbinom(n=1, size=1, prob=0.5),
term19=rbinom(n=1, size=1, prob=0.5),
term20=rbinom(n=1, size=1, prob=0.5),
term21=rbinom(n=1, size=1, prob=0.5),
term22=rbinom(n=1, size=1, prob=0.5),
term23=rbinom(n=1, size=1, prob=0.5),
term24=rbinom(n=1, size=1, prob=0.5),
term25=rbinom(n=1, size=1, prob=0.5),
term26=rbinom(n=1, size=1, prob=0.5),
term27=rbinom(n=1, size=1, prob=0.5),
term28=rbinom(n=1, size=1, prob=0.5),
term29=rbinom(n=1, size=1, prob=0.5),
term30=rbinom(n=1, size=1, prob=0.5))

Next, we must define the model function m() that will operate on the parameter snapshot X and return an
observable object 0. For a given set activel erms specified by K, m() will fit a linear model to the data using
the entries in activeT'erms and using the built in generalised linear model (glm()) function in R, thereby
determining values for the variables ¢; and b. Accordingly, m() will require access to the variables z and vy,
which will be provided as entries in DATA, a variable of type list, as in Tutorial 1. The object 0 will be the
corresponding output of the function glm(). In the case that the set activeTerms is the empty set (meaning
that all entries in K are 0), m() will fit a model using the relationship y~x.

DATA <- NULL
DATA$x <- x
DATA$y <- y

m <- function(X, DATA){
y <- DATAS$y
x <- DATA$x

terms <- c("+x",
"+I(x"2)",
"+I(x"3)",
"+I(x"4)",
"+I(x"5)",
"+I(x"6)",
"+I(x"T)",
"+I(x"8)",
"+I(x"9)",

19

"+I(x~10)",
"+I(exp(x))",
"+I(abs(x))",
"+I(sin(x))",
"+I(cos(x))",
"+I(tan(x))",
"+I(sin(x)*cos(x))",
"+I((sin(x))"2)",
"+I((cos(x))"2)",
"+I(sin(x"2))",
"+I(sin(x"3))",
"+I(cos(x"2))",
"+I(cos(x"3))",
"+I(sin(x"3)*cos(-x))",
"+I(cos(x"3)*sin(-x))",
"+I(sin(x"5)*cos(-x))",
"+I(cos(x"B)*sin(-x))",
"+I(exp(x)*sin(x))",
"+I(exp(x)*cos(x))",
"+I(abs(x)*sin(x))",
"+I(abs(x)*cos(x))")

ind.terms <- which(K == 1)
if (length(ind.terms) !'=0){
equation <- paste(c("y~",terms[ind.terms]), "
} else {
equation <-"y~x" # In case there are nmo active terms, use a simple linear model.
3
0 <- glm(equation, environment ())
return(0)
}

Having defined m, we can now proceed to define the function u, which will determine how well a given
configuration of parameters K is performing by operating on the observable object 0 outputted by m() and on
the variable DATA. Here, to quantify (and thus be able to compare) the desirability of a given model for the
data, we will employ the Akaike Information Criterion (AIC) from information theory, defined as follows:

AIC(M) = 2p — 2in(L)

where p is the number of parameters in the fitted model, L is the maximum likelihood of the model M given
the data.

The target representation will be the fitted model M (whose terms are elements of terms) that minimises
the AIC. It is important to note that the 2p term in the AIC' penalises overfitting by increasing AIC as
function of the number of parameters, while the —2In(L) term rewards models that better represent the data
by decreasing AIC as a function of the likelihood of the model.

As articulated in Tutorial 1, the output of u() should have a component E holding a pseudo energy for the
parameter snapshot K, and a component Q that can be used for plotting the optimisation process. In this
case, E will be equal to the value of AIC (implemented using the built in AIC() function in R) and Q will be
equal to the RMSD between the predicted values of y from the fitted model and the actual y values, used for
plotting purpose. Consequently, u() will need access to the variable y. The definition of u() is below:

20

u <- function(0, DATA){
y <- DATASy

Q <- sqrt(mean((0$fitted.values-y)"2))
E <- AIC(0)/1000 # Akatike's information criterion.

result <- NULL
result$q <- Q
result$E <- E
return(result)

}

Finally, we need to define the rule function r(). We will adopt the following simple procedure: randomly
select an equation entry from K and switch its value to the other binary value (on to off, or off to on).

r <- function(K){
K.new <- K
Randomly selecting a term:
K.ind.toalter <- sample(1, x=1:length(K.new))
If the term is on (1), switching it off (0) or wvice versa:
if (K.new([K.ind.toalter]==1){
K.new[K.ind.toalter] <- 0

} else {
K.new([K.ind.toalter] <- 1

}

return(K.new)

}

Having defined all the necessary inputs, we are now ready to call Optimus().

An important remark is that modelling this problem in this manner results in an objective function (AIC)
that is not smooth because small changes in the parameter set K (as defined by r()) can produce significantly
large changes in the objective value. The equation, i.e. the system itself, changes from one step to another.
Therefore, an entirely different model is being used to fit the data at each step. Optimisation procedures in
such cases are in danger to be trapped in certain minima due to a major change in pseudo temperatures
necessary to overcome barriers while the system abruptly evolves. Despite this, we will see that ROptimus
will get the job done by arriving at good solutions largely as a consequence of its adaptive thermoregulation
and acceptance-ratio-guided optimisation procedure.

Acceptance Ratio Simulated Annealing ROptimus Run

In addition to the inputs defined above, Optimus () can optionally take other inputs to dictate the optimisation
process (see the Advanced User Manual), all of which have built in default values and some of which will be
altered in this example due to the increased computational complexity of the model defined in this tutorial
compared to that of Tutorial 1. The variable NUMITER represents the number of iterations of the optimisation
process (per core) and has a default value of 1 000 000. For this example, 200 000 iterations will be used to
reduce the running time of ROptimus given that each iteration is more computationally demanding than
in Tutorial 1. The variable CYCLES (unique to Acceptance Ratio Annealing ROptimus runs) denotes the
number of acceptance ratio annealing cycles. Its default value is 10, however it will be set to 2 in this example
so that each annealing cycle has 100 000 iterations just as in Tutorial 1 (the number of steps per cycle is
calculated as NUMITER/CYCLES). Lastly, the variable DUMP.FREQ, the frequency (in steps) with which the best
found model is assessed and outputted by the function, will be set to 100 000 (its default value is 10 000).

Let us again investigate the Simulated Annealing (SA) version of ROptimus on 4 processors, which can be
executed as follows:

21

Optimus(4,

"SA", "term_4_SA",
200000, 2, 100000, FALSE,
K, r, m, u, DATA)

Interestingly, each of the 4 computing cores arrive at the same solution in this instance.

Acceptance Ratio Annealing ROptimus Fitting (4 Cores)

o

o p—

™

o

O p—

—i

>

o - ~—n -

o

o _|

—

|

o

o

°|° | | | | |

-15 -10 -5 0 5
X
Table 4: 4-core Acceptance Ratio Simulated Annealing results from
ROptimus.
CPU1 CPU2 CPU3 CPUA4

E (AIC) 9.567 9.567 9.567 9.567
Q (RMSD) 28.693 28.693 28.693 28.693
Term 1 0.000 0.000 0.000 0.000
Term 2 1.000 1.000 1.000 1.000
Term 3 1.000 1.000 1.000 1.000
Term 4 1.000 1.000 1.000 1.000
Term 5 0.000 0.000 0.000 0.000
Term 6 0.000 0.000 0.000 0.000
Term 7 0.000 0.000 0.000 0.000
Term 8 0.000 0.000 0.000 0.000
Term 9 0.000 0.000 0.000 0.000
Term 10 0.000 0.000 0.000 0.000
Term 11 1.000 1.000 1.000 1.000
Term 12 0.000 0.000 0.000 0.000
Term 13 0.000 0.000 0.000 0.000
Term 14 0.000 0.000 0.000 0.000
Term 15 0.000 0.000 0.000 0.000
Term 16 0.000 0.000 0.000 0.000

22

CPU1 CPU2 CPU3 CPU4

Term 17 0.000 0.000 0.000 0.000
Term 18 0.000 0.000 0.000 0.000
Term 19 0.000 0.000 0.000 0.000
Term 20 1.000 1.000 1.000 1.000
Term 21 0.000 0.000 0.000 0.000
Term 22 0.000 0.000 0.000 0.000
Term 23 0.000 0.000 0.000 0.000
Term 24 0.000 0.000 0.000 0.000
Term 25 0.000 0.000 0.000 0.000
Term 26 1.000 1.000 1.000 1.000
Term 27 0.000 0.000 0.000 0.000
Term 28 0.000 0.000 0.000 0.000
Term 29 0.000 0.000 0.000 0.000
Term 30 0.000 0.000 0.000 0.000

Thus, the optimal functional representation found by ROptimus has the following form:

y=b+ cox® + 32> + caxt + c11€% + czosin(:p?’) + 026005(x5)sin(—m)

Below is the explicit representation after determining the coefficients ¢; and b:

##

Call: glm(formula = equation, data = environment())

##

Coefficients:

#t (Intercept) I(x"2) I(x"3)
-1.988699 -0.253437 0.178807
I(x"4) I(exp(x)) I(sin(x"3))
0.008567 0.001569 1.878796
I(cos(x75) * sin(-x))

-2.770457

##

Degrees of Freedom: 999 Total (i.e. Null); 993 Residual

Null Deviance: 10850000

Residual Deviance: 823300 AIC: 9567

Notice that the solution selected by ROptimus results in an RMSD of 28.693 which is lower than the RMSD
of the Least Squares Solution (28.827) that assumes the appropriate model is kiz + kox? + kza® + kya?.
ROptimus selected a model which does not include all terms from the form used to generate the data. If
a user were concerned by the fact that the model ROptimus selected contains more terms (6) than are
used in the representation of the de-noised data (4), the user could either increase the multiplicative factor
associated with the term p in the AIC to more strongly penalise representations involving a greater number
of parameters. Alternatively, the user could also modify the function r() to ensure that only a fixed number
of terms are ever active.

Let us now take a look at how the adaptive thermoregulation performed given this highly non-smooth
objective. The graphs below should now feel very familiar, they represent data taken from the last 20 000
iterations of the optimisation protocol executed by CPU 1.

23

System Pseudo Temperature (CPU 1)

<
?
()
o
<
?
()
<
[
3 <
s Q@ |
Q o)
Q.
£ [47]
g o
?
()
N
<
?
()
-
T T T T T
180000 185000 190000 195000 200000
Step
Observed Acceptance Ratio (CPU 1)
o
o —
—
o _|
— ¢}
g
[%]
2 o
s © 7
()
[8)
8 o
a Y 7
Q
[S]
Q
< o
<
O —
T T T T I
180000 185000 190000 195000 200000
Step

Despite optimising a completely different model with a non-smooth objective function, the TCU succeeds in
dynamically adjusting the system pseudo-temperature such that the observed acceptance ratio follows the
annealing schedule rather well.

Acceptance Ratio Replica Exchange ROptimus Run

Let us now consider the Acceptance Ratio Replica Exchange version of ROptimus on 12 CPUs with the
variable ACCRATIO defined as in Tutorial 1.

ACCRATIO <- c(90, 82, 74, 66, 58, 50, 42, 34, 26, 18, 10, 2)

As in the Acceptance Ratio Simulated Annealing run above, we will again execute the optimisation procedure
for 200 000 iterations. The Replica Exchange version of ROptimus takes an input argument EXCHANGE . FREQ
(default value 1000) which specifies the total number of exchanges that will occur during the optimisation
process. Consequently, the number of optimisation iterations that occur between subsequent exchanges
between replicas can be calculated as NUMITER/EXCHANGE.FREQ, which is 200 iterations in this case.

24

Here we will set the input parameter STATWINDOW to have value 50 (its default value is 70). This signifies
that the TCU will update the system pseudo temperature once every 50 iterations on each optimisation
replica. This guarantees that 4 temperature adjustments will be made if a given replica is involved in
two subsequent exchanges (because the number of iterations between exchanges is 200, as explained in the
preceding paragraph) as opposed to merely 2 adjustments which would be the case if STATWINDOW were left
to take its default value and could result in poor agreement between the observed acceptance ratio of the
replica in question and the target acceptance ratio. The following line executes ROptimus with the above
specified inputs:

Optimus(12, "term_12_RE",
200000, 50, 100000, FALSE,
"RE", ACCRATIO,
K, r, m, u, DATA)

Nine of the optimisation replicas (CPUs 1, 2, 3, 5, 6, 8, 9, 10 and 12) recovered the same solution that was
found by the Acceptance Ratio Simulated Annealing ROptimus run. Moreover, this solution is better (lower
AIC) than those recovered by CPUs 4, 7 and 11. Thus, in this example, the Acceptance Ratio Simulated
Annealing and Replica Exchange versions produce the same solution.

Replica Exchange ROptimus Fitting (12 Cores)

300
I

100
I

-100 O

I I I I I I
-15 -10 -5 0 5 10

-300

X Please
note that for convenience, only those replicas that produced a unique solution are listed in the table below
(replicas 1, 2, 3, 6, 8, 9, 10 and 12 produced the same solution as replica 5; replica 11 produced the same
solution as replica 7).

Table 5: 12-core Acceptance Ratio Replica Exchange results from
ROptimus run.

CPU4 CPUS5 CPUT
Replica Acceptance Ratio 66.0000 58.0000 42.0000

E (AIC) 9.5673 9.5672 9.5673
Q (RMSD) 28.6664 28.6932 28.6951
Term 1 0.0000 0.0000 0.0000

25

CPU4 CPU5 CPU7Y

Term 2 1.0000 1.0000 1.0000
Term 3 1.0000 1.0000 1.0000
Term 4 1.0000 1.0000 1.0000
Term 5 0.0000 0.0000 0.0000
Term 6 0.0000 0.0000 0.0000
Term 7 0.0000 0.0000 0.0000
Term 8 0.0000 0.0000 0.0000
Term 9 0.0000 0.0000 0.0000
Term 10 0.0000 0.0000 0.0000
Term 11 1.0000 1.0000 0.0000
Term 12 0.0000 0.0000 0.0000
Term 13 1.0000 0.0000 1.0000
Term 14 0.0000 0.0000 0.0000
Term 15 0.0000 0.0000 0.0000
Term 16 0.0000 0.0000 0.0000
Term 17 0.0000 0.0000 0.0000
Term 18 0.0000 0.0000 0.0000
Term 19 0.0000 0.0000 0.0000
Term 20 1.0000 1.0000 0.0000
Term 21 0.0000 0.0000 0.0000
Term 22 0.0000 0.0000 0.0000
Term 23 0.0000 0.0000 0.0000
Term 24 0.0000 0.0000 0.0000
Term 25 0.0000 0.0000 0.0000
Term 26 1.0000 1.0000 1.0000
Term 27 0.0000 0.0000 0.0000
Term 28 0.0000 0.0000 1.0000
Term 29 0.0000 0.0000 0.0000
Term 30 0.0000 0.0000 0.0000

Note that the various replica outcomes illustrate the penalising effects of the AIC' on models using a greater
number of parameters. Consider the solutions found by the 66% acceptance ratio replica and the 58%
acceptance ratio replica (CPUs 4 and 5 respectively). Let y; denote the solution found by CPU . Then, we
have:

ys = b+ 22 4 c32° + cax + c116% + kseizsiz () + coosin(x®) + cogeos(z®)sin(—x)

ys = b+ cox® + 3> + caxt + c11€% + czosin(x?’) + czgcos(xf’)sin(—m)

Although the RMSD of y4, 28.6664, is lower than the RMSD of y5, 28.6932, y5 has a lower value for AIC
because it contains one less term than y4. Since AIC was specified as the objective metric, ROptimus
(perhaps counterintuitively) selected ys as the more optimal solution to reduce overfitting.

26

System Pseudo Temperature (CPU 5 - 58% Acceptance Ratio)

0
o
(2]
N~
N
o
o
IS
o 2
2 R
S o7
g 3
e o
& _
L
[o0]
[e0]
N~
~
o
o
IS
T I I I I
180000 185000 190000 195000 200000
Step
Observed Acceptance Ratio (CPU 5 — 58% Acceptance Ratio)
o
o —
—
o |
— [e6]
=3
[%2]
S o | I] k l I
= Z| (1" | | N
g © [| ‘] ' il v | ‘ W
(0]
o
g o
g S
(0]
Q
(5]
< o |
N
O —
T T T T I
180000 185000 190000 195000 200000
Step

The above graphs are produced using data from the last 20 000 iterations of the 58% acceptance ratio replica
(CPU 5). Tt is clear that the observed acceptance ratio more strongly oscillated around the target acceptance
ratio than was the case in the Acceptance Ratio Simulated Annealing run from the previous part of this
tutorial. More generally, it should be expected that the observed acceptance ratio fluctuates more significantly
around the target acceptance ratio in Replica Exchange than in Simulated Annealing, especially when the
objective function is non-smooth as is the case in this example. This is because an exchange between two
replicas has the same effect as restarting a Monte Carlo optimisation from a random initial configuration with
a temperature that very likely is not conducive to the target acceptance ratio for the given configuration.
As such, each time an exchange occurs, significant deviations from the target acceptance ratio may occur
and may require several STATWINDOWs for the TCU to correct. Despite this challenge, the TCU performs
satisfactorily.

Summary

We now understand how to employ ROptimus to solve a more general problem than was addressed in
Tutorial 1 and one with a non-smooth objective function. Additionally, we have a better understanding of

27

the adaptive thermoregulation. Using the Akaike Information Criterion (AIC) as a metric with which to
evaluate the performance of a candidate model, taking into account the desire to represent the data while
avoiding to overfit the data, both the Acceptance Ratio Simulated Annealing and Replica Exchange versions
of ROptimus recovered a better functional form to describe the data than the form which was assumed in
Tutorial 1 (based on how the data had been generated), obviously with some overfitting to adapt to the
noise while with the stringency used in this example.

Table 6: Summary of solutions.

E (AIC) Q (RMSD)

Least Squares (Tutorial 1) 9.5705 28.82655
ROptimus (AR Simulated Annealing) 9.5672 28.69324
ROptimus (AR Replica Exchange) 9.5672 28.69324

Least Squares (Tutorial 1):

Yy =Cc1x + 021'2 —+ 03x3 + C4x4

ROptimus (Acceptance Ratio Simulated Annealing):

y = b+ cox? + c3x3 + cqzt 4 c11€” + copsin(x?) + cagcos(z®)sin(—x)

ROptimus (Acceptance Ratio Replica Exchange):

y = b+ cox? + c32® + caxt 4 c11e® + ca05in(2®) + cagcos(z®)sin(—x)

28

	Tutorial 2: Finding an Optimal Equation by Navigating Through a Term Space
	Problem Statement
	Defining ROptimus Inputs
	Acceptance Ratio Simulated Annealing ROptimus Run
	Acceptance Ratio Replica Exchange ROptimus Run
	Summary

