
Tutorial 4: Exploring Coupled ODEs Modelling a Biological System

Problem Statement

This Tutorial will demonstrate the use of ROptimus to address a problem from yet another problem class. We
will employ ROptimus to recover the rate constants for a system of coupled ordinary differential equations
(ODEs) modelling a biological pathway. Specifically, we will study a phosphorelay system from the high
osmolarity glycerol (HOG) pathway in yeast. A phosphorelay system is a network involving multiple
proteins in which, after an initial phosphorylation event using ATP (or an alternate phosphate donor), the
phosphorylation and dephosphorylation events of proteins in the network proceed without further consumption
of ATP (Klipp et al. 2009). The below diagram illustrates the phosphorelay system that will be studied in
detail (Klipp et al. 2009):

Under normal circumstances, the transmembrane protein Sln1, which is present as a dimer, autophosphorylates
at a histidine residue (consuming ATP). The phosphate group is then transferred to an aspartate residue of
Sln1. Thereafter, the phosphate is transferred to the protein Ypd1 and finally to the protein Ssk1. Ssk1 is
continuously dephosphortylated to give an output signal. The signalling pathway is inhibited by an increase
is osmolarity outside of the cell (Klipp et al. 2009). If we let A represent Sln1, B represent Ypd1, C represent
Ssk1 and XP represent the phophorylated form of protein X, then the above network can be represented by
the below schematic (Klipp et al. 2009):

40

where each ki represents the rate constant for the relevant phosphorylation/dephosphorylation reaction.

The above graphic allows us to arrive at the following equations to describe the temporal behavior of the
phosphorelay system:

d

dt
[A] = −k1[A] + k2[AP][B]

d

dt
[B] = −k2[AP][B] + k3[BP][C]

d

dt
[C] = −k3[BP][C] + k4[CP]

Moreover, under the generally accepted assumption that the degradation and production of proteins occurs on
a time scale that far exceeds that of phosphorylation events, we have the following conservation relationships
(Klipp et al. 2009):

[A]total = [A] + [AP]

[B]total = [B] + [BP]

[C]total = [C] + [CP]

where [A]total, [B]total and [C]total are constants. Differentiating, we have:

d

dt
[AP] = − d

dt
[A]

d

dt
[BP] = − d

dt
[B]

d

dt
[CP] = − d

dt
[C]

Given this model of the phosphorelay system, the question we desire to answer is as follows: given ini-
tial concentrations of the three proteins {[A]i, [B]i, [C]i} and target concentrations of the three proteins
{[A]t, [B]t, [C]t}, what are the values {k1, k2, k3, k4} that result in the proteins having the target concen-
trations at steady state when the system is allowed to equilibrate from the initial concentrations? This
formulation assumes that no information is known about the rate constants and that initial and target
concentrations can be determined experimentally, which is often the case in practice (Raue et al. 2013). The
problem formulation could be altered depending on the information that is known or that can be determined
experimentally.

41

Defining ROptimus Inputs

Having outlined how the behaviour of the phosphorelay system can be modelled using a system of differential
equations, we can now proceed with defining input parameters for Optimus(). We will create a variable state
that will be a numeric vector holding the names and initial concentrations of all species in the network. For
this tutorial, we will choose [A]i = [B]i = [C]i = 100 and [AP]i = [BP]i = [CP]i = 0. Note that the units are
arbitrary and that the total sum of units across this vector will remain constant throughout the simulation of
the dynamics of the phosphorelay system.
state <- c(cA=100, cB=100, cC=100, cAP=0, cBP=0, cCP=0)

Next, we will create a variable target which will be a numeric vector holding the names and target concentration
of all species in the network. We will arbitrarily choose target values of [A]t = 90, [B]t = 20, [C]t = 70,
[AP]t = 10, [BP]t = 80 and [CP]t = 30. Note that the chosen target values must be consistent with the
above defined conservation equations, meaning we must have [X]i + [XP]i = [X]t + [XP]t,∀X ∈ {A,B,C}.
target <- c(cA=90, cB=20, cC=70, cAP=10, cBP=80, cCP=30)

In order to determine the steady state behavior of the ODE system, we will employ the function ode() from
the R library deSolve (this function interfaces with the Fortran library typically used to solve systems of
differential equations). This function requires as input a function that describes the dynamics of the ODE
system. We will call this function model(). At a high level, model() will simply define the equations derived
in the previous section that describe the network. It should contain equations that use the objects with
the names specified within state above, and should have equations that assign the outcomes to new objects
that have the same order and names as specified in state, but with “d” at the beginning (a more detailed
description of the requirements of model() can be found in the R documentation of ode()).
model <- function(t, state, K){

with(as.list(c(state, K)), {
rate of change
dcA <- -k1*cA+k2*cAP*cB
dcB <- -k2*cAP*cB+k3*cBP*cC
dcC <- -k3*cBP*cC+k4*cCP
dcAP <- -dcA
dcBP <- -dcB
dcCP <- -dcC
return the rate of change
list(c(dcA, dcB, dcC, dcAP, dcBP, dcCP))

})
}

The variables state and target, and the function model() should be stored as entries in a list DATA which
will be given to the functions m() and u() as inputs.
DATA <- NULL
DATA$state <- state
DATA$target <- target
DATA$model <- model

We will make K be a numeric vector holding the set of rate constants {k1, k2, k3, k4}. We will (arbitrarily)
initialize each rate constant to have value 1.0.
K <- c(k1=1.0, k2=1.0, k3=1.0, k4=1.0)

The function m() will take as input the vector K of rate constants and the list DATA. It will return an object O
that contains the concentrations of the six species in the network when the system is simulated from the
initial state specified in DATA using the K rate constants for 10 time steps. Note that it is not necessarily

42

guaranteed that the system will reach a steady state after 10 time steps; the number of time steps was chosen
such that the optimisation procedure would terminate within 1-2 hours in this example. m() will call the
function ode() from the library deSolve, so we must first ensure that deSolve is installed.
install.packages("deSolve")

library(deSolve)
m <- function(K, DATA){
state <- DATA$state
model <- DATA$model

span = 10.0

times <- c(0, span)
O <- ode(y=state, times=times, func=model, parms=K)[2,2:(length(state)+1)]
return(O)

}

Recall that the function u() must return an energy E and a quality Q of the candidate solution. Here, u()
will set both E and Q to be the RMSD between the steady state concentrations of the network corresponding
to the current set of rate constants K, as determined by m(), and the target concentrations.
u <- function(O, DATA){
target <- DATA$target
RESULT <- NULL
RESULT$Q <- sqrt(mean((O-target)ˆ2)) # measure of the fit quality
RESULT$E <- RESULT$Q # the pseudo energy derived from the above measure

return(RESULT)
}

The final mandatory input to Optimus() that must be defined is the alteration function r(). Just as in
Tutorial 1, for each snapshot of K, we shall randomly select one of its four coefficients, then either increment
or decrement (chosen randomly) it by 0.0002, returning the altered set of coefficients. Since we are dealing
with rate constants in this case, if ever r() were to make an entry in K negative, that entry will automatically
be set to 0.
r <- function(K){
K.new <- K
Randomly selecting a coefficient to alter:
K.ind.toalter <- sample(size=1, x=1:length(K.new))
Creating a potentially new set of coefficients where one entry is altered
by either +move.step or -move.step, also randomly selected:
move.step <- 0.0002
K.new[K.ind.toalter] <- K.new[K.ind.toalter] + sample(size=1, x=c(-move.step, move.step))

Setting the negative coefficients to 0
neg.ind <- which(K.new < 0)
if(length(neg.ind)>0){ K.new[neg.ind] <- 0 }

return(K.new)
}

43

Exploring the System Dynamics

Before calling Optimus() to solve this problem, let us first simulate the system of ODEs from the chosen
initial state using a few sets of arbitrary rate constants to become familiar with how the system evolves. The
below graphs illustrate the evolution of the system for 50 time steps for the rate constants {k1 = 1.0, k2 =
1.0, k3 = 1.0, k4 = 1.0}:

0 10 20 30 40 50

0
20

40
60

80
10

0

Concentration of Dephosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[A] [B] [C]

0 10 20 30 40 50

0
20

40
60

80
10

0

Concentration of Phosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[AP] [BP] [CP]

The table below summarises the initial and final concentrations of the various species when the system is
simulated for 50 time steps using the rate constants {k1 = 1.0, k2 = 1.0, k3 = 1.0, k4 = 1.0}:

44

[A] [B] [C] [AP] [BP] [CP]

Table 11: System summary for k1 = k2 = k3 = k4 = 1.0.

[A] [B] [C] [AP] [BP] [CP]
Initial 100.00000 100.00000 100.000000 0.000000 0.00000 0.00000
Final (after 50 time steps) 98.08145 51.12118 2.004924 1.918549 48.87882 97.99508

If instead we use the set of rate constants {k1 = 1.5, k2 = 0.5, k3 = 1.0, k4 = 1.0}, the system evolves as
follows:

0 10 20 30 40 50

0
20

40
60

80
10

0

Concentration of Dephosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[A] [B] [C]

0 10 20 30 40 50

0
20

40
60

80
10

0

Concentration of Phosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[AP] [BP] [CP]

The table below summarizes the initial and final concentrations of the various species when the system is

45

simulated for 50 time steps using the rate constants {k1 = 1.5, k2 = 0.5, k3 = 1.0, k4 = 1.0}:

Table 12: System summary for k1 = 1.5, k2 = 0.5, k3 = k4 = 1.0.

[A] [B] [C] [AP] [BP] [CP]
Initial 100.00000 100.000000 100.000000 0.00000 0.00000 0.00000
Final (after 50 time steps) 65.96628 5.814787 1.050583 34.03372 94.18521 98.94942

Acceptance Ratio Simulated Annealing ROptimus Run

We will now call Acceptance Ratio Simulated Annealing ROptimus to solve our problem. Similarly to
Tutorial 2, we will execute 200 000 optimisation iterations and perform 2 annealing cycles. We will set
DUMP.FREQ to have a value of 100 000.
Optimus(NCPU=4, OPTNAME="DE_4_SA",

NUMITER=200000, CYCLES=2, DUMP.FREQ=100000, LONG=FALSE,
OPT.TYPE="SA",
K.INITIAL=K, rDEF=r, mDEF=m, uDEF=u, DATA=DATA)

Table 13: 4-core Acceptance Ratio Simulated Annealing results
from ROptimus run.

E (RMSD) K1 K2 K3 K4
CPU 1 0.0012516 0.7974 0.3586 0.0128 2.3886
CPU 2 0.0017556 0.7850 0.3532 0.0126 2.3512
CPU 3 0.0013625 0.8098 0.3642 0.0130 2.4262
CPU 4 0.0012516 0.7974 0.3586 0.0128 2.3886

Of the 4 optimisation replicas, CPU 1 and 4 find the best set of rate constants, {k1 = 0.7974, k2 = 0.3586, k3 =
0.0128, k4 = 2.3886}. This set of rate constants results in an RMSD (after 10 iterations) of 0.0012516. Let us
simulate how the system evolves according to these rate constants for 10 time steps:

46

2 4 6 8 10

0
20

40
60

80
10

0

Concentration of Dephosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[A] [B] [C]

2 4 6 8 10

0
20

40
60

80
10

0

Concentration of Phosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[AP] [BP] [CP]

The table below summarizes the initial and final concentrations of the various species when the system is
simulated for 10 time steps using the rate constants {k1 = 0.7974, k2 = 0.3586, k3 = 0.0128, k4 = 2.3886}:

Table 14: System summary for k1 = 0.7974, k2 = 0.3586, k3 =
0.0128, k4 = 2.3886.

[A] [B] [C] [AP] [BP] [CP]
Initial 100.00000 100.00000 100.00000 0.00000 0.00000 0.00000
Final (after 10 time steps) 89.99814 20.00081 69.99924 10.00186 79.99919 30.00076

As can be seen in the above table, the concentration of the species in the system after 10 time steps are very

47

close to the target values [A]t = 90, [B]t = 20, [C]t = 70, [AP]t = 10, [BP]t = 80 and [CP]t = 30. As alluded
to earlier, it is possible that the system has not reached a steady state after 10 time steps, however the above
graphs suggest that the concentrations after 10 steps are already extremely close to, if not equal to, steady
state values. The optimisation process could be re-executed after increasing the value of the parameter span
in the function m() to simulate the system for a larger number of time steps.

Acceptance Ratio Replica Exchange ROptimus Run

Let us now examine how replica exchange ROptimus using 12 cores performs on this task. We will use 200
000 optimisation iterations and set STATWINDOW to 50, similarly to Tutorials 2 and 3.
ACCRATIO <- c(90, 82, 74, 66, 58, 50, 42, 34, 26, 18, 10, 2)

Optimus(NCPU=12, OPTNAME="DE_12_RE",
NUMITER=200000, STATWINDOW=50, DUMP.FREQ=100000, LONG=FALSE,
OPT.TYPE="RE", ACCRATIO=ACCRATIO,
K.INITIAL=K, rDEF=r, mDEF=m, uDEF=u, DATA=DATA)

Table 15: 12-core Acceptance Ratio Replica Exchange results from
ROptimus run.

Replica Acceptance Ratio E (RMSD) K1 K2 K3 K4
CPU 1 90 0.0026225 0.9088 0.4090 0.0146 2.7246
CPU 2 82 0.0026343 0.8346 0.3754 0.0134 2.5012
CPU 3 74 0.0019724 0.7234 0.3252 0.0116 2.1644
CPU 4 66 0.0020945 0.9586 0.4312 0.0154 2.8748
CPU 5 58 0.0029243 0.9338 0.4200 0.0150 2.8002
CPU 6 50 0.0025811 0.8964 0.4034 0.0144 2.6872
CPU 7 42 0.0028685 0.8592 0.3866 0.0138 2.5752
CPU 8 34 0.0025121 0.8840 0.3978 0.0142 2.6500
CPU 9 26 0.0011265 0.9834 0.4424 0.0158 2.9492
CPU 10 18 0.0025811 0.8964 0.4034 0.0144 2.6872
CPU 11 10 0.0012516 0.7974 0.3586 0.0128 2.3886
CPU 12 2 0.0017556 0.7850 0.3532 0.0126 2.3512

Of the 12 optimisation replicas, CPU 9 (26% acceptance ratio) finds the best set of rate constants, {k1 =
0.9834, k2 = 0.4424, k3 = 0.0158, k4 = 2.9492}. This set of rate constants results in an RMSD (after crude
10 iteration limit) of 0.0011265, which is lower than the RMSD of the solution found by Acceptance Ratio
Simulated Annealing ROptimus (0.0012516) done with the use of more modest computational resources. Let
us simulate how the system evolves according to these rate constants for 10 time steps:

48

2 4 6 8 10

0
20

40
60

80
10

0

Concentration of Dephosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[A] [B] [C]

2 4 6 8 10

0
20

40
60

80
10

0

Concentration of Phosphorylated Species as a function of Time Step

Time Step

C
on

ce
nt

ra
tio

n

[AP] [BP] [CP]

The table below summarises the initial and final concentrations of the various protein species when the system
is simulated for 10 time steps using the rate constants {k1 = 0.9834, k2 = 0.4424, k3 = 0.0158, k4 = 2.9492}:

Table 16: System summary for k1 = 0.9834, k2 = 0.4424, k3 =
0.0158, k4 = 2.9492.

[A] [B] [C] [AP] [BP] [CP]
Initial 100.00000 100.00000 100.00000 0.00000 0.00000 0.00000
Final (after 10 time steps) 89.99807 19.99983 70.00022 10.00193 80.00017 29.99978

Here again, we see that the protein concentrations after 10 time steps are remarkably close to the target

49

values [A]t = 90, [B]t = 20, [C]t = 70, [AP]t = 10, [BP]t = 80 and [CP]t = 30 and the graphs suggests that
these concentrations have either converged or are very close to converging to the steady state.

Summary

We have seen how ROptimus can be employed to recover rate constants for a system of coupled ODEs that
describes a biological pathway. Given an initial state of the system and a target state, both Acceptance Ratio
Simulated Annealing (SA) ROptimus and Replica Exchange (RE) ROptimus found a set of rate constants
that resulted in the desired system behaviour upon simulation of the system. In the current setup in this
tutorial, RE slightly outperformed SA, both however are not directly comparable unless their allocated
resources and times are equalised.

Table 17: Summary of protein concentrations after 10 time steps.

[A] [B] [C] [AP] [BP] [CP]
Target 90.00000 20.00000 70.00000 10.00000 80.00000 30.00000
ROptimus (AR Simulated Annealing) 89.99814 20.00081 69.99924 10.00186 79.99919 30.00076
ROptimus (AR Replica Exchange) 89.99807 19.99983 70.00022 10.00193 80.00017 29.99978

Table 18: Summary of recovered rate constants.

E (RMSD) K1 K2 K3 K4
ROptimus (AR Simulated Annealing) 0.0012516 0.7974 0.3586 0.0128 2.3886
ROptimus (AR Replica Exchange) 0.0011265 0.9834 0.4424 0.0158 2.9492

50

	Tutorial 4: Exploring Coupled ODEs Modelling a Biological System
	Problem Statement
	Defining ROptimus Inputs
	Exploring the System Dynamics
	Acceptance Ratio Simulated Annealing ROptimus Run
	Acceptance Ratio Replica Exchange ROptimus Run
	Summary

