BCDAG: Bayesian Structure and Causal Learning of Gaussian Directed Graphs

A collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <arXiv:2201.12003>.

Version: 1.0.0
Depends: R (≥ 2.10)
Imports: graphics, gRbase, grDevices, lattice, methods, mvtnorm, stats, utils
Suggests: rmarkdown, knitr, testthat (≥ 3.0.0)
Published: 2022-03-15
Author: Federico Castelletti [aut], Alessandro Mascaro [aut, cre]
Maintainer: Alessandro Mascaro <a.mascaro3 at campus.unimib.it>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README NEWS
CRAN checks: BCDAG results


Reference manual: BCDAG.pdf
Vignettes: Random data generation from Gaussian DAG models
Elaborate on the output of 'learn_DAG()' using get_ functions
MCMC scheme for posterior inference of Gaussian DAG models: the 'learn_DAG()' function


Package source: BCDAG_1.0.0.tar.gz
Windows binaries: r-devel: BCDAG_1.0.0.zip, r-release: BCDAG_1.0.0.zip, r-oldrel: BCDAG_1.0.0.zip
macOS binaries: r-release (arm64): BCDAG_1.0.0.tgz, r-oldrel (arm64): BCDAG_1.0.0.tgz, r-release (x86_64): BCDAG_1.0.0.tgz, r-oldrel (x86_64): BCDAG_1.0.0.tgz


Please use the canonical form https://CRAN.R-project.org/package=BCDAG to link to this page.