
Package ‘BRL’
October 12, 2022

Title Beta Record Linkage

Version 0.1.0

Description Implementation of the record linkage methodology pro-
posed by Sadinle (2017) <doi:10.1080/01621459.2016.1148612>. It handles the bipar-
tite record linkage problem, where two duplicate-free datafiles are to be merged.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports utils

RoxygenNote 7.0.2

URL https://github.com/msadinle/BRL

BugReports https://github.com/msadinle/BRL/issues

NeedsCompilation yes

Author Mauricio Sadinle [aut, cre] (<https://orcid.org/0000-0002-7092-3877>)

Maintainer Mauricio Sadinle <msadinle@uw.edu>

Repository CRAN

Date/Publication 2020-01-13 16:50:06 UTC

R topics documented:
bipartiteGibbs . 2
BRL . 3
compareRecords . 7
linkRecords . 9
twoFiles . 11

Index 13

1

https://doi.org/10.1080/01621459.2016.1148612
https://github.com/msadinle/BRL
https://github.com/msadinle/BRL/issues
https://orcid.org/0000-0002-7092-3877

2 bipartiteGibbs

bipartiteGibbs Gibbs Sampler Used for Beta Record Linkage

Description

Run a Gibbs sampler to explore the posterior distribution of bipartite matchings that represent the
linkage of the datafiles in beta record linkage.

Usage

bipartiteGibbs(cd, nIter = 1000, a = 1, b = 1, aBM = 1, bBM = 1, seed = 0)

Arguments

cd a list with the same structure as the output of the function compareRecords,
containing:

comparisons matrix with n1*n2 rows, where the comparison pattern for record
pair (i, j) appears in row (j-1)*n1+i, for i in 1, . . . , n1, and j in 1, . . . , n2.
A comparison field with L + 1 levels of disagreement, is represented by
L+1 columns of TRUE/FALSE indicators. Missing comparisons are coded
as FALSE, which is justified under an assumption of ignorability of the
missing comparisons, see Sadinle (2017).

n1,n2 the datafile sizes, n1 = nrow(df1) and n2 = nrow(df2).
nDisagLevs a vector containing the number of levels of disagreement per com-

parison field.
compFields a data frame containing the names of the fields in the datafiles used

in the comparisons and the types of comparison.

nIter number of iterations of Gibbs sampler.

a, b hyper-parameters of the Dirichlet priors for the m and u parameters in the model
for the comparison data among matches and non-matches, respectively. These
can be vectors with as many entries as disagreement levels among all compar-
ison fields. If specified as positive constants, they get recycled to the required
length. If not specified, flat priors are taken.

aBM, bBM hyper-parameters of beta prior on bipartite matchings. Default is aBM=bBM=1.

seed seed to be used for pseudo-random number generation. By default it sets seed=0.

Value

a list containing:

Z matrix with n2 rows and nIter columns containing the chain of bipartite matchings. A number
smaller or equal to n1 in row j indicates the record in datafile 1 to which record j in datafile 2
is linked at that iteration, otherwise n1+j.

m,u chain of m and u parameters in the model for the comparison data among matches and non-
matches, respectively.

BRL 3

References

Mauricio Sadinle (2017). Bayesian Estimation of Bipartite Matchings for Record Linkage. Journal
of the American Statistical Association 112(518), 600-612. [Published] [arXiv]

Examples

data(twoFiles)

myCompData <- compareRecords(df1, df2, flds=c("gname", "fname", "age", "occup"),
types=c("lv","lv","bi","bi"))

chain <- bipartiteGibbs(myCompData)

BRL Beta Record Linkage

Description

Beta record linkage methodology for probabilistic bipartite record linkage: the task of merging two
duplicate-free datafiles that lack unique identifiers. This function runs all the steps of beta record
linkage: creates comparisons of the records, runs Gibbs sampler on bipartite matchings, and derives
point estimate of bipartite matching (this determines the final linkage). The parameters of BRL
consist of all the parameters needed to run compareRecords, bipartiteGibbs and linkRecords,
except for intermediate input/output, and in addition to a parameter burn for the burn-in period of
the Gibbs sampler.

Usage

BRL(
df1,
df2,
flds = NULL,
flds1 = NULL,
flds2 = NULL,
types = NULL,
breaks = c(0, 0.25, 0.5),
nIter = 1000,
burn = round(nIter * 0.1),
a = 1,
b = 1,
aBM = 1,
bBM = 1,
seed = 0,
lFNM = 1,
lFM1 = 1,
lFM2 = 2,
lR = Inf

)

https://doi.org/10.1080/01621459.2016.1148612
https://arxiv.org/abs/1601.06630

4 BRL

Arguments

df1, df2 two datasets to be linked, of class data.frame, with rows representing records
and columns representing fields. Without loss of generality, df1 is assumed to
have no less records than df2.

flds a vector indicating the fields to be used in the linkage. Either a character
vector, in which case all entries need to be names of columns of df1 and df2,
or a numeric vector indicating the columns in df1 and df2 to be used in the
linkage. If provided as a numeric vector it is assumed that the columns of
df1 and df2 are organized such that it makes sense to compare the columns
df1[,flds] and df2[,flds] in that order.

flds1, flds2 vectors indicating the fields of df1 and df2 to be used in the linkage. Either
character vectors, in which case all entries need to be names of columns of
df1 and df2, respectively, or numeric vectors indicating the columns in df1
and df2 to be used in the linkage. It is assumed that it makes sense to compare
the columns df1[,flds1] and df2[,flds2] in that order. These arguments are
ignored if flds is specified. If none of flds,flds1,flds2 are specified, the
columns with the same names in df1 and df2 are compared, if any.

types a vector of characters indicating the comparison type per comparison field. The
options are: "lv" for comparisons based on the Levenshtein edit distance nor-
malized to [0, 1], with 0 indicating no disagreement and 1 indicating maximum
disagreement; "bi" for binary comparisons (agreement/disagreement); "nu" for
numeric comparisons computed as the absolute difference. The default is "lv".
Fields compared with the "lv" option are first transformed to character class.
Factors with different levels compared using the "bi" option are transformed to
factors with the union of the levels. Fields compared with the "nu" option need
to be of class numeric.

breaks break points for the comparisons to obtain levels of disagreement. It can be a list
of length equal to the number of comparison fields, containing one numeric vec-
tor with the break points for each comparison field, where entries corresponding
to comparison type "bi" are ignored. It can also be a named list of length two
with elements ’lv’ and ’nu’ containing numeric vectors with the break points for
all Levenshtein-based and numeric comparisons, respectively. Finally, it can be
a numeric vector with the break points for all comparison fields of type "lv"
and "nu", which might be meaningful only if all the non-binary comparisons
are of a single type, either "lv" or "nu". For comparisons based on the normal-
ized Levenshtein distance, a vector of length L of break points for the interval
[0, 1] leads to L+1 levels of disagreement. Similarly, for comparisons based on
the absolute difference, the break points are for the interval [0,∞). The default
is breaks=c(0,.25,.5), which might be meaningful only for comparisons of
type "lv".

nIter number of iterations of Gibbs sampler.
burn number of iterations to discard as part of the burn-in period.
a, b hyper-parameters of the Dirichlet priors for the m and u parameters in the model

for the comparison data among matches and non-matches, respectively. These
can be vectors with as many entries as disagreement levels among all compar-
ison fields. If specified as positive constants, they get recycled to the required
length. If not specified, flat priors are taken.

BRL 5

aBM, bBM hyper-parameters of beta prior on bipartite matchings. Default is aBM=bBM=1.
seed seed to be used for pseudo-random number generation. By default it sets seed=0.
lFNM individual loss of a false non-match in the loss functions of Sadinle (2017),

default lFNM=1.
lFM1 individual loss of a false match of type 1 in the loss functions of Sadinle (2017),

default lFM1=1.
lFM2 individual loss of a false match of type 2 in the loss functions of Sadinle (2017),

default lFM2=2.
lR individual loss of ’rejecting’ to make a decision in the loss functions of Sadinle

(2017), default lR=Inf.

Details

Beta record linkage (BRL, Sadinle, 2017) is a methodology for probabilistic bipartite record link-
age, that is, the task of merging two duplicate-free datafiles that lack unique identifiers. This is
accomplished by using the common partially identifying information of the entities contained in
the datafiles. The duplicate-free requirement means that we expect each entity to be represented
maximum once in each datafile. This methodology should not be used with datafiles that contain
duplicates nor should it be used for deduplicating a single datafile.

The first step of BRL, accomplished by the function compareRecords, consists of constructing
comparison vectors for each pair of records from the two datafiles. The current implementation al-
lows binary comparisons (agree/disagree), numerical comparisons based on the absolute difference,
and Levenshtein-based comparisons. This can be easily extended to other comparison types, so a
resourceful user should be able to construct an object that recreates the output of compareRecords
for other types of comparisons (so long as they get transformed to levels of disagreement), and still
be able to run the next step outside the function BRL.

The second step of BRL, accomplished by the function bipartiteGibbs, consists of running a
Gibbs sampler that explores the space of bipartite matchings representing the plausible ways of
linking the datafiles. This sampler is derived from a model for the comparison data and a beta prior
distribution on the space of bipartite matchings. See Sadinle (2017) for details.

The third step of BRL, accomplished by the function linkRecords, consists of deriving a point
estimate of the bipartite matching (which gives us the optimal way of linking the datafiles) by
minimizing the expected value of a loss function that uses different penalties for different types
of linkage errors. The current implementation only supports the Bayes point estimates of bipartite
matchings that can be obtained in closed form according to Theorems 1, 2 and 3 of Sadinle (2017).
The losses have to be positive numbers and satisfy one of three conditions:

1. Conditions of Theorem 1 of Sadinle (2017): (lR == Inf) & (lFNM <= lFM1) & (lFNM + lFM1
<= lFM2)

2. Conditions of Theorem 2 of Sadinle (2017): ((lFM2 >= lFM1) & (lFM1 >= 2*lR)) | ((lFM1
>= lFNM) & (lFM2 >= lFM1 + lFNM))

3. Conditions of Theorem 3 of Sadinle (2017): (lFM2 >= lFM1) & (lFM1 >= 2*lR) & (lFNM >=
2*lR)

If one of the last two conditions is satisfied, the point estimate might be partial, meaning that there
might be some records in datafile 2 for which the point estimate does not include a linkage decision.
For combinations of losses not supported here, the linear sum assignment problem outlined by
Sadinle (2017) needs to be solved.

6 BRL

Value

A vector containing the point estimate of the bipartite matching, as in the output of linkRecords.
If lR != Inf the output might be a partial estimate. A number smaller or equal to n1 in entry j
indicates the record in datafile 1 to which record j in datafile 2 gets linked, a number n1+j indicates
that record j does not get linked to any record in datafile 1, and the value -1 indicates a ’rejection’
to link, meaning that the correct linkage decision is not clear.

References

Mauricio Sadinle (2017). Bayesian Estimation of Bipartite Matchings for Record Linkage. Journal
of the American Statistical Association 112(518), 600-612. [Published] [arXiv]

See Also

compareRecords for examples on how to work with different types of comparison data, bipartiteGibbs
for Gibbs sampler on bipartite matchings, and linkRecords for examples on full and partial point
estimates of the true bipartite matching that indicates which records to link.

Examples

data(twoFiles)

(Zhat <- BRL(df1, df2, flds=c("gname", "fname", "age", "occup"),
types=c("lv","lv","bi","bi")))

n1 <- nrow(df1)

Ztrue <- df2ID

number of links (estimated matches)
nLinks <- sum(Zhat <= n1)

number of actual matches according to the ground truth
nMatches <- sum(Ztrue <= n1)

number of links that are actual matches
nCorrectLinks <- sum(Zhat[Zhat<=n1]==Ztrue[Zhat<=n1])

compute measures of performance

precision
nCorrectLinks/nLinks

recall
nCorrectLinks/nMatches

the linked record pairs
cbind(df1[Zhat[Zhat<=n1],], df2[Zhat<=n1,])

finally, note that we could run BRL step by step as follows

https://doi.org/10.1080/01621459.2016.1148612
https://arxiv.org/abs/1601.06630

compareRecords 7

create comparison data
myCompData <- compareRecords(df1, df2,

flds=c("gname", "fname", "age", "occup"),
types=c("lv","lv","bi","bi"))

Gibbs sampling from posterior of bipartite matchings
chain <- bipartiteGibbs(myCompData)

bipartite matching Bayes estimate derived from the loss functions of Sadinle (2017)
Zhat2 <- linkRecords(chain$Z, n1=n1)

identical(Zhat, Zhat2)

compareRecords Creation of Comparison Data

Description

Create comparison vectors for all pairs of records coming from two datafiles to be linked.

Usage

compareRecords(
df1,
df2,
flds = NULL,
flds1 = NULL,
flds2 = NULL,
types = NULL,
breaks = c(0, 0.25, 0.5)

)

Arguments

df1, df2 two datasets to be linked, of class data.frame, with rows representing records
and columns representing fields. Without loss of generality, df1 is assumed to
have no less records than df2.

flds a vector indicating the fields to be used in the linkage. Either a character
vector, in which case all entries need to be names of columns of df1 and df2,
or a numeric vector indicating the columns in df1 and df2 to be used in the
linkage. If provided as a numeric vector it is assumed that the columns of
df1 and df2 are organized such that it makes sense to compare the columns
df1[,flds] and df2[,flds] in that order.

flds1, flds2 vectors indicating the fields of df1 and df2 to be used in the linkage. Either
character vectors, in which case all entries need to be names of columns of
df1 and df2, respectively, or numeric vectors indicating the columns in df1

8 compareRecords

and df2 to be used in the linkage. It is assumed that it makes sense to compare
the columns df1[,flds1] and df2[,flds2] in that order. These arguments are
ignored if flds is specified. If none of flds,flds1,flds2 are specified, the
columns with the same names in df1 and df2 are compared, if any.

types a vector of characters indicating the comparison type per comparison field. The
options are: "lv" for comparisons based on the Levenshtein edit distance nor-
malized to [0, 1], with 0 indicating no disagreement and 1 indicating maximum
disagreement; "bi" for binary comparisons (agreement/disagreement); "nu" for
numeric comparisons computed as the absolute difference. The default is "lv".
Fields compared with the "lv" option are first transformed to character class.
Factors with different levels compared using the "bi" option are transformed to
factors with the union of the levels. Fields compared with the "nu" option need
to be of class numeric.

breaks break points for the comparisons to obtain levels of disagreement. It can be a list
of length equal to the number of comparison fields, containing one numeric vec-
tor with the break points for each comparison field, where entries corresponding
to comparison type "bi" are ignored. It can also be a named list of length two
with elements ’lv’ and ’nu’ containing numeric vectors with the break points for
all Levenshtein-based and numeric comparisons, respectively. Finally, it can be
a numeric vector with the break points for all comparison fields of type "lv"
and "nu", which might be meaningful only if all the non-binary comparisons
are of a single type, either "lv" or "nu". For comparisons based on the normal-
ized Levenshtein distance, a vector of length L of break points for the interval
[0, 1] leads to L+1 levels of disagreement. Similarly, for comparisons based on
the absolute difference, the break points are for the interval [0,∞). The default
is breaks=c(0,.25,.5), which might be meaningful only for comparisons of
type "lv".

Value

a list containing:

comparisons matrix with n1*n2 rows, where the comparison pattern for record pair (i, j) appears
in row (j-1)*n1+i, for i in 1, . . . , n1, and j in 1, . . . , n2. A comparison field with L + 1
levels of disagreement, is represented by L+1 columns of TRUE/FALSE indicators. Missing
comparisons are coded as FALSE, which is justified under an assumption of ignorability of
the missing comparisons, see Sadinle (2017).

n1,n2 the datafile sizes, n1 = nrow(df1) and n2 = nrow(df2).

nDisagLevs a vector containing the number of levels of disagreement per comparison field.

compFields a data frame containing the names of the fields in the datafiles used in the comparisons
and the types of comparison.

References

Mauricio Sadinle (2017). Bayesian Estimation of Bipartite Matchings for Record Linkage. Journal
of the American Statistical Association 112(518), 600-612. [Published] [arXiv]

https://doi.org/10.1080/01621459.2016.1148612
https://arxiv.org/abs/1601.06630

linkRecords 9

Examples

data(twoFiles)

myCompData <- compareRecords(df1, df2,
flds=c("gname", "fname", "age", "occup"),
types=c("lv","lv","bi","bi"),
breaks=c(0,.25,.5))

same as
myCompData <- compareRecords(df1, df2, types=c("lv","lv","bi","bi"))

let's transform 'occup' to numeric to illustrate how to obtain numeric comparisons
df1$occup <- as.numeric(df1$occup)
df2$occup <- as.numeric(df2$occup)

using different break points for 'lv' and 'nu' comparisons
myCompData1 <- compareRecords(df1, df2,

flds=c("gname", "fname", "age", "occup"),
types=c("lv","lv","bi","nu"),
breaks=list(lv=c(0,.25,.5), nu=0:3))

using different break points for each comparison field
myCompData2 <- compareRecords(df1, df2,

flds=c("gname", "fname", "age", "occup"),
types=c("lv","lv","bi","nu"),
breaks=list(c(0,.25,.5), c(0,.2,.4,.6), NULL, 0:3))

linkRecords Bayes Estimates of Bipartite Matchings

Description

Bayes point estimates of bipartite matchings that can be obtained in closed form according to The-
orems 1, 2 and 3 of Sadinle (2017).

Usage

linkRecords(Zchain, n1, lFNM = 1, lFM1 = 1, lFM2 = 2, lR = Inf)

Arguments

Zchain matrix as the output $Z of the function bipartiteGibbs, with n2 rows and
nIter columns containing a chain of draws from a posterior distribution on
bipartite matchings. Each column indicates the records in datafile 1 to which
the records in datafile 2 are matched according to that draw.

n1 number of records in datafile 1.

lFNM individual loss of a false non-match in the loss functions of Sadinle (2017),
default lFNM=1.

10 linkRecords

lFM1 individual loss of a false match of type 1 in the loss functions of Sadinle (2017),
default lFM1=1.

lFM2 individual loss of a false match of type 2 in the loss functions of Sadinle (2017),
default lFM2=2.

lR individual loss of ’rejecting’ to make a decision in the loss functions of Sadinle
(2017), default lR=Inf.

Details

Not all combinations of losses lFNM, lFM1, lFM2, lR are supported. The losses have to be positive
numbers and satisfy one of three conditions:

1. Conditions of Theorem 1 of Sadinle (2017): (lR == Inf) & (lFNM <= lFM1) & (lFNM + lFM1
<= lFM2)

2. Conditions of Theorem 2 of Sadinle (2017): ((lFM2 >= lFM1) & (lFM1 >= 2*lR)) | ((lFM1
>= lFNM) & (lFM2 >= lFM1 + lFNM))

3. Conditions of Theorem 3 of Sadinle (2017): (lFM2 >= lFM1) & (lFM1 >= 2*lR) & (lFNM >=
2*lR)

If one of the last two conditions is satisfied, the point estimate might be partial, meaning that there
might be some records in datafile 2 for which the point estimate does not include a linkage decision.
For combinations of losses not supported here, the linear sum assignment problem outlined by
Sadinle (2017) needs to be solved.

Value

A vector containing the point estimate of the bipartite matching. If lR != Inf the output might be
a partial estimate. A number smaller or equal to n1 in entry j indicates the record in datafile 1 to
which record j in datafile 2 gets linked, a number n1+j indicates that record j does not get linked
to any record in datafile 1, and the value -1 indicates a ’rejection’ to link, meaning that the correct
linkage decision is not clear.

References

Mauricio Sadinle (2017). Bayesian Estimation of Bipartite Matchings for Record Linkage. Journal
of the American Statistical Association 112(518), 600-612. [Published] [arXiv]

Examples

data(twoFiles)

myCompData <- compareRecords(df1, df2, flds=c("gname", "fname", "age", "occup"),
types=c("lv","lv","bi","bi"))

chain <- bipartiteGibbs(myCompData)

discard first 100 iterations of Gibbs sampler

full estimate of bipartite matching (full linkage)
fullZhat <- linkRecords(chain$Z[,-c(1:100)], n1=nrow(df1), lFNM=1, lFM1=1, lFM2=2, lR=Inf)

https://doi.org/10.1080/01621459.2016.1148612
https://arxiv.org/abs/1601.06630

twoFiles 11

partial estimate of bipartite matching (partial linkage), where
lR=0.5, lFNM=1, lFM1=1 mean that we consider not making a decision for
a record as being half as bad as a false non-match or a false match of type 1
partialZhat <- linkRecords(chain$Z[,-c(1:100)], n1=nrow(df1), lFNM=1, lFM1=1, lFM2=2, lR=.5)

for which records the decision is not clear according to this set-up of the losses?
undecided <- which(partialZhat == -1)
df2[undecided,]

compute frequencies of link options observed in the chain
linkOptions <- apply(chain$Z[undecided, -c(1:100)], 1, table)
linkOptions <- lapply(linkOptions, sort, decreasing=TRUE)
linkOptionsInds <- lapply(linkOptions, names)
linkOptionsInds <- lapply(linkOptionsInds, as.numeric)
linkOptionsFreqs <- lapply(linkOptions, function(x) as.numeric(x)/sum(x))

first record without decision
df2[undecided[1],]

options for this record; row of NAs indicates possibility that record has no match in df1
cbind(df1[linkOptionsInds[[1]],], prob = round(linkOptionsFreqs[[1]],3))

twoFiles Two Datasets for Record Linkage

Description

Two data frames, df1 and df2, containing 300 and 150 records of artificially created individuals,
where 50 of them are included in both datafiles. In addition, the vector df2ID contains one entry
per record in df2 indicating the true matching between the datafiles, codified as follows: a number
smaller or equal to n1=300 in entry j indicates the record in df1 to which record j in df2 truly
matches, and a number n1+j indicates that record j in df2 does not match any record in df1.

Usage

data(twoFiles)

Source

Extracted from the datafiles used in the simulation studies of Sadinle (2017). The datafiles were
originally generated using code provided by Peter Christen (https://users.cecs.anu.edu.au/
~Peter.Christen/).

References

Mauricio Sadinle (2017). Bayesian Estimation of Bipartite Matchings for Record Linkage. Journal
of the American Statistical Association 112(518), 600-612. [Published] [arXiv]

https://users.cecs.anu.edu.au/~Peter.Christen/
https://users.cecs.anu.edu.au/~Peter.Christen/
https://doi.org/10.1080/01621459.2016.1148612
https://arxiv.org/abs/1601.06630

12 twoFiles

Examples

data(twoFiles)

n1 <- nrow(df1)

the true matches
cbind(df1[df2ID[df2ID<=n1],], df2[df2ID<=n1,])

alternatively
df1$ID <- 1:n1
df2$ID <- df2ID
merge(df1, df2, by="ID")

all the records in a merged file
merge(df1, df2, by="ID", all=TRUE)

Index

bipartiteGibbs, 2, 3, 5, 6, 9
BRL, 3

compareRecords, 2, 3, 5, 6, 7

df1 (twoFiles), 11
df2 (twoFiles), 11
df2ID (twoFiles), 11

linkRecords, 3, 5, 6, 9

twoFiles, 11

13

	bipartiteGibbs
	BRL
	compareRecords
	linkRecords
	twoFiles
	Index

