Package 'EleChemr'

October 12, 2022
Title Electrochemical Reactions Simulation
Version 1.2.0
Description Digital simulation of electrochemical processes.
Each function allows for implicit and explicit solution of the differential equation using methods like Euler, Backwards implicit, Runge Kutta 4, Crank Nicholson and Backward differentiation formula as well as different number of points for derivative approximation. Several electrochemical processes can be simulated such as: Chronoamperometry, Potential Step, Linear Sweep, Cyclic Voltammetry, Cyclic Voltammetry with electrochemical reaction followed by chemical reaction (EC mechanism) and CV with two following electrochemical reaction (EE mechanism). In update 1.1.0 has been added a general purpose CV function that allow to simulate up to 4 EE mechanism combined with chemical reac-
tion for each species.Update 1.2.0 improved the accuracy of the measurements and allow personalized data resolution for simulation.
Bibliography regarding this methods can be found in the following texts.
Dieter Britz, Jorg Strutwolf (2016) ISBN:978-3-319-30292-8.
Allen J. Bard, Larry R. Faulkner (2000) ISBN:978-0-471-04372-0.
License GPL-3
Encoding UTF-8
LazyData true
Imports ggplot2
RoxygenNote 7.1.1
NeedsCompilation no
Author Federico Maria Vivaldi [aut, cre]
Maintainer Federico Maria Vivaldi federico-vivaldi@virgilio.it
Repository CRAN
Date/Publication 2021-02-09 14:20:03 UTC

R topics documented:

$$
\text { ChronAmp . } 2
$$

CottrCheck 3
CV 4
CVEC 5
CVEE 6
Derv 8
Gen_CV 9
invMat 11
LinSwp 12
OneMat 13
ParCall 14
PotStep 16
ZeroMat 17
Index 18
ChronAmp Chrono amperometry digital simulation

Description

Return a graph I vs t of the electrochemical process

Usage

ChronAmp(
Co = 0.001,
exptime $=1$,
$D x=1 \mathrm{e}-05$,
Dm $=0.45$,
Temp = 298.15,
n = 1,
Area = 1,
DerApprox = 2,
$1=100$,
errCheck = FALSE,
Method = "Euler"
)

Arguments

Co	bulk concentration expressed in Molar
exptime	experimental time to be simulated expressed in seconds
Dx	diffusion coefficient expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Dm	simulation parameter, maximum 0.5 for explicit methods
Temp	temperature in kelvin
n	number of electrons involved in the process
Area	area of the electrode expressed in $\mathrm{cm}^{\wedge} 2$
DerApprox	number of point for the approximation of the first derivative

1
errCheck if true the function returns a list with parameters for CottrCheck function
Method method to be used for the simulation = "Euler" "BI" "RK4" "CN" "BDF"

Value

if errCheck $==\mathrm{F}$ a graph I vs t , if errCheck $==\mathrm{T}$ a list

Examples

ChronAmp (Co = 0.001, exptime $=1$, DerApprox $=2, \operatorname{Dm}=0.45$, errCheck $=$ FALSE, Method $=$ "Euler" $)$

Description

Return a graph G/Gcot vs t of the electrochemical process

Usage

CottrCheck(Elefun)

Arguments

Elefun the function to be checked $=$ ChronAmp, PotStep

Value

A graph G/Gcot vs t for the simulation data selected

Examples

```
CottrCheck(ChronAmp(errCheck = TRUE, Method = "BI"))
```


Description

Return a graph I vs E of the electrochemical process

Usage

CV
Co = 0.001,

$$
D x=1 e-05,
$$

$$
\text { Eo }=0,
$$

$$
D m=0.45
$$

$$
\text { Vi }=0.3
$$

$$
V f=-0.3
$$

$$
V s=0.001
$$

$$
\text { ko }=0.01
$$

$$
\text { alpha }=0.5
$$

$$
\text { Temp }=298.15
$$

$$
\mathrm{n}=1
$$

Area = 1,

$$
1=100
$$

DerApprox = 2, errCheck = FALSE, Method = "Euler"

Arguments

Co
Dx
Eo
Dm
Vi
Vf
Vs
alpha charge transfer coefficient
Temp temperature in kelvin

1
ko heterogeneous electron transfer rate constant expressed in m / s
$\mathrm{n} \quad$ number of electrons involved in the process
Area area of the electrode expressed in $\mathrm{cm}^{\wedge} 2$
bulk concentration expressed in Molar
diffusion coefficient expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
reduction potential of the species expressed in Volts
simulation parameter, maximum 0.5 for explicit methods
initial potential of the sweep expressed in Volts
final potential of the sweepexpressed in Volts
potential scan rate of the simulation expressed in V/s
number of time steps of the simulation

DerApprox number of point for the approximation of the first derivative
errCheck if true the function returns a list with parameters for CottrCheck function
Method method to be used for the simulation = "Euler" "BI" "RK4" "CN" "BDF"

Value

if errCheck $==\mathrm{F}$ a graph I vs E , if errCheck $==\mathrm{T}$ a list

Examples

```
CV(Co = 0.001, DerApprox = 2, Dm = 0.45, errCheck = FALSE, Method = "Euler")
```


Description

Return a graph I vs E of the electrochemical process

Usage

```
CVEC(
    Co = 0.001,
    Dx = 1e-05,
    Eo = 0,
    Dm = 0.45,
    Vi = 0.3,
    Vf = -0.3,
    Vs = 0.001,
    ko = 0.01,
    kc = 0.001,
    l = 100,
    alpha = 0.5,
    Temp = 298.15,
    n = 1,
    Area = 1,
    DerApprox = 2,
    errCheck = FALSE,
    Method = "Euler"
)
```


Arguments

Co	bulk concentration expressed in Molar
Dx	diffusion coefficient expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Eo	reduction potential of the species expressed in Volt
Dm	simulation parameter, maximum 0.5 for explicit methods
Vi	initial potential of the sweep expressed in Volt
Vf	final potential of the sweep expressed in Volt
Vs	potential scan rate of the simulation expressed in V/s
ko	heterogeneous electron transfer rate constant expressed in m / s
kc	rate constant of the reaction Red -> C expressed in $\mathrm{s}^{\wedge}-1$
l	number of time steps of the simulation
alpha	temperature in kelvin
Temp	number of electrons involved in the process
n	area of the electrode expressed in cm^2
Area	number of point for the approximation of the first derivative
DerApprox	if true the function returns a list with parameters for CottrCheck function
errCheck	method to be used for the simulation = "Euler" "BI" "RK4" "CN "BDF"
Method	

Value

if errCheck $==\mathrm{F}$ a graph I vs E , if errCheck $==\mathrm{T}$ a list

Examples

$\operatorname{CVEC}(C o=0.001$, DerApprox $=2, \operatorname{Dm}=0.45, \mathrm{kc}=0.00001$, errCheck $=$ FALSE, Method $=" E u l e r ")$

CVEE

EE behaviour cyclic voltammetry simulator

Description

Return a graph I vs E of the electrochemical process

Usage

CVEE (
Co = 0.001,
Dx1 = 1e-05,
Eo1 $=0$,
$\mathrm{Vi}=0.3$,
$V f=-0.3$,
$V s=0.001$,
ko1 $=0.01$,
alpha1 = 0.5,
Dred $=1 \mathrm{e}-05$,
Dred2 $=1 \mathrm{e}-05$,
Eo2 $=0$,
ko2 = 0.01,
alpha2 = 0.5,
Dm = 0.45,
$1=100$,
Temp $=298.15$,
$\mathrm{n}=1$,
Area $=1$,
DerApprox = 2,
errCheck = FALSE,
Method = "Euler"
)

Arguments

Co	bulk concentration expressed in Molar
Dx1	diffusion coefficient of the oxidized species expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Eo1	reduction potential of the first electrochemical reaction expressed in Volt
Vi	initial potential of the sweep expressed in Volt
Vf	final potential of the sweep expressed in Volt
Vs	potential scan rate of the simulation expressed in V/s heterogeneous electron transfer rate constant of the first electrochemical reaction expressed in m / s
ko1	charge transfer coefficient of the first electrochemical reaction alpha1
Dred	diffusion coefficient of the first reduced species expressed in cm coefficient of the second reduced species expressed in cm^2/s Dred2
Eoduction potential of the second electrochemical reaction expressed in Volt	

Temp	temperature in kelvin
n	number of electrons involved in the process
Area	area of the electrode expressed in $\mathrm{cm}^{\wedge} 2$
DerApprox	number of point for the approximation of the first derivative
errCheck	if true the function returns a list with parameters for CottrCheck function
Method	method to be used for the simulation = "Euler" "BI" "RK4" "CN "BDF"

Value

if errCheck $==\mathrm{F}$ a graph I vs E , if errCheck $==\mathrm{T}$ a list

Examples

$\operatorname{CVEE}(C o=0.001$, DerApprox $=2, \operatorname{Dm}=0.45$, errCheck $=$ FALSE, Method $=$ "Euler" $)$
$\operatorname{CVEE}(C o=0.001, ~ E o 2=-0.15, \operatorname{Dm}=0.45)$

Derv Derivative calculation of concentration profile

Description

Return a the derivative of the concentration profile simulated

Usage

```
    Derv(
        npoints = 2,
        h,
        0x,
        mode = "Forward",
        Derivative = "First",
        CoefMat = FALSE
    )
```


Arguments

npoints number of points to be used for the derivative
h
$0 x \quad$ data upon the derivative is calculated
mode \quad "Forward" or "Backward" the derivative will be calculated for the npoints
Derivative "First" or "Second" derivative to calculate
Coefmat if T return the derivative coefficient matrix for selected derivative

Value

a vector with the derivative requested or the coefficient of such derivative

Examples

```
Derv(npoints = 2, h = 0.13, 0x = matrix (c(1,2), nrow = 1), mode = "Forward", Derivative = "First")
```

Gen_CV General Purpose CV simulation

Description

Return a graph I vs E of the electrochemical process, up to 4 EE mechanisms and CE mechanisms can be simulated

Usage

$$
\begin{aligned}
& \text { Gen_CV(} \\
& \text { Co }=0.001, \\
& \text { Cred }=0, \\
& \text { kco }=0, \\
& \text { Dx1 }=1 \mathrm{e}-05, \\
& \mathrm{Eo1}=0, \\
& \mathrm{kc} 1=0, \\
& \mathrm{Vi}=0.3, \\
& \mathrm{Vf}=-0.3, \\
& \mathrm{Vs}=0.001, \\
& \text { ko1 }=0.01, \\
& \text { alpha1 }=0.5, \\
& \text { Dred }=1 \mathrm{e}-05, \\
& \text { Dred2 }=1 \mathrm{e}-05, \\
& \text { Eo2 }=0, \\
& \mathrm{kc2}=0, \\
& \text { ko2 }=0, \\
& \text { alpha2 }=0.5, \\
& \text { Dm }=0.45, \\
& \text { Dred3 }=1 \mathrm{e}-05, \\
& \text { Eo3 }=0, \\
& \text { kc3 }=0, \\
& \text { ko3 }=0, \\
& \text { alpha3 }=0.5, \\
& \text { Dred4 }=1 \mathrm{e}-05, \\
& \text { Eo4 }=0, \\
& \text { kc4 }=0, \\
& \text { ko4 }=0, \\
& \text { alpha4 }=0.5,
\end{aligned}
$$

```
    Temp = 298.15,
    n = 1,
    Area = 1,
    l = 100,
    DerApprox = 2,
    errCheck = FALSE,
    Method = "Euler"
)
```


Arguments

Co	bulk concentration oxidated speciesexpressed in Molar
Cred	bulk concentration of reduced species expressed in Molar
kco	Chemical rate constant for Ox Species expressed in $\mathrm{s}^{\wedge}-1$
Dx1	diffusion coefficient of the oxidized species expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Eo1	reduction potential of the first electrochemical reaction expressed in Volt
kc1	Chemical rate constant for Red Species expressed in s^{\wedge}-1
Vi	initial potential of the sweep expressed in Volt
Vf	final potential of the sweep expressed in Volt
Vs	potential scan rate of the simulation expressed in V/s
ko1	heterogeneous electron transfer rate constant of the first electrochemical reaction expressed in m / s
alpha1	charge transfer coefficient of the first electrochemical reaction
Dred	diffusion coefficient of the first reduced species expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{S}$
Dred2	diffusion coefficient of the second reduced species expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Eo2	reduction potential of the second electrochemical reaction expressed in Volt
kc2	Chemical rate constant for second Red Species expressed in $\mathrm{s}^{\wedge}-1$
ko2	heterogeneous electron transfer rate constant of the second electrochemical reaction expressed in m / s
alpha2	charge transfer coefficient of the second electrochemical reaction
Dm	simulation parameter, maximum 0.5 for explicit methods
Dred3	diffusion coefficient of the third reduced species expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Eo3	reduction potential of the third electrochemical reaction expressed in Volt
kc3	Chemical rate constant for third Red Species expressed in $\mathrm{s}^{\wedge}-1$
ko3	heterogeneous electron transfer rate constant of the third electrochemical reaction expressed in m / s
alpha3	charge transfer coefficient of the third electrochemical reaction
Dred4	diffusion coefficient of the fourth reduced species $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Eo4	reduction potential of the fourth electrochemical reaction expressed in Volt
kc4	Chemical rate constant for fourth Red Species expressed in $\mathrm{s}^{\wedge}-1$

ko4	heterogeneous electron transfer rate constant of the fourth electrochemical reac- tion expressed in m / s
alpha4	charge transfer coefficient of the fourth electrochemical reaction temp n
Area	number of electrons involved in the process
l	area of the electrode expressed in cm^2

Value

if errCheck $==\mathrm{F}$ a graph I vs E , if errCheck $==\mathrm{T}$ a list

Examples

```
Gen_CV(Co = 0.001, DerApprox = 2, Dm = 0.45, errCheck = FALSE, Method = "Euler")
Gen_CV(Co = 0.001, Eo2 = -0.15, Dm = 0.45, kc1 = 0.0001)
```

```
invMat Inverse matrix
```


Description

Returns the inverse matrix of the selected one

Usage

invMat (A)

Arguments

A
matrix to be inverted

Value

inverse matrix of the selected

Examples

$$
\operatorname{invMat}(A=\operatorname{matrix}(c(1,2,6,14), \text { nrow }=2))
$$

Description

Return a graph I vs E of the electrochemical process

Usage

LinSwp(Co = 0.001, $D x=1 e-05$, Eo $=0$, Dm $=0.45$, $\mathrm{Vi}=0.3$, $V f=-0.3$, $V s=0.001$, ko $=0.01$, alpha $=0.5$, Temp $=298.15$, $\mathrm{n}=1$, Area $=1$, $1=100$, DerApprox = 2, errCheck = FALSE, Method = "Euler"
)

Arguments

Co
Dx diffusion coefficient expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
bulk concentration expressed in Molar

Eo reduction potential of the species expressed in Volt
Dm simulation parameter, maximum 0.5 for explicit methods
Vi initial potential of the sweep expressed in Volt
Vf final potential of the sweep expressed in Volt
Vs potential scan rate of the simulation expressed in V / s
ko heterogeneous electron transfer rate constant expressed in m / s
alpha charge transfer coefficient
Temp temperature in kelvin
n number of electrons involved in the process
Area area of the electrode expressed in $\mathrm{cm}^{\wedge} 2$
1 number of time steps of the simulation

DerApprox number of point for the approximation of the first derivative
errCheck if true the function returns a list with parameters for CottrCheck function
Method method to be used for the simulation = "Euler" "BI" "RK4" "CN" "BDF"

Value

if errCheck $==\mathrm{F}$ a graph I vs E , if errCheck $==\mathrm{T}$ a list

Examples

LinSwp(Co = 0.001, Dm =0.45, DerApprox = 2, errCheck = FALSE, Method = "Euler")
OneMat Starting Matrix of oxidazed species

Description

Return a matrix ixj filled with 1 value

Usage

OneMat(i, j = i)

Arguments

i	number of rows
j	number of columns

Value

a matrix of dimention ixj filled with 1 value

Examples

OneMat (2,2)

Description

Returns a list with the parameters necessary for the simulation

Usage

ParCall(
Fun,
n. ,

Temp.,
Dx1.,
eta.,
exptime.,
Eo1.,
ko1.,
ko2.,
kc.,
Dm. ,
Vf.,
Vi.,

Vs.,
alpha1.,
Eo2.,
Dred1.,
Dred2.,
alpha2.,
Dred3.,
Dred4.,
ko3.,
ko4.,
kco.,
kc1.,
kc2.,
kc3.,
kc4.,
alpha3.,
alpha4.,
Eo3.,
Eo4.,
1.
)

Arguments

Fun
Name of the function this function is called to. Must be a string.

n.	Number of electrons		
Temp.	Temperature for the simulation		
Dx1.	Diffusion coefficient of species One		
eta.	OverPotential for potential step		
exptime.	experimental time for the simulation		
Eo1.	reduction potential of the first electrochemical reaction		
ko1.	heterogeneous electron transfer rate constant of the first electrochemical reaction ko2.		
action		\quad	Chemical rate constant for first Ox Species, used in simulation with just one
:---			

Value

inverse matrix of the selected

Examples

ParCall("ChronAmp", n. = 1, Temp. = 298, Dx1. = 0.0001, exptime. = 1, Dm. = 0.45, l. = 100)

Description

Return a graph I vs t of the electrochemical process

Usage

PotStep(Co = 0.001, exptime $=1$, Dx $=1 \mathrm{e}-05$, Dm = 0.45, eta $=0$, Temp $=298.15$, $\mathrm{n}=1$,
Area $=1$, $1=100$, DerApprox = 2, errCheck = FALSE, Method = "Euler"
)

Arguments

Co
exptime
Dx
Dm
eta
Temp
n
Area
1
DerApprox
errCheck
Method
bulk concentration expressed in Molar
experimental time to be simulated expressed in seconds
diffusion coefficient expressed in $\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
simulation parameter, maximum 0.5 for explicit methods
overpotential of the step expressed in Volt
temperature in kelvin
number of electrons involved in the process
area of the electrode expressed in $\mathrm{cm}^{\wedge} 2$
number of time steps of the simulation
number of point for the approximation of the first derivative
if true the function returns a list with parameters for CottrCheck function
method to be used for the simulation = "Euler" "BI" "RK4" "CN" "BDF"

Value
if errCheck $==\mathrm{F}$ a graph I vs t , if errCheck $==\mathrm{T}$ a list

Examples

```
PotStep(Co = 0.001, exptime = 1, Dm =0.45, DerApprox = 2, errCheck = FALSE, Method = "Euler")
```


Description

Return a matrix ixj filled with 0 value

Usage

ZeroMat(i, j = i)

Arguments

i	number of rows
j	number of columns

Value

a matrix of dimention ixj filled with 1 value

Examples

ZeroMat $(2,2)$

Index

ChronAmp, 2
CottrCheck, 3
CV, 4
CVEC, 5
CVEE, 6
Derv, 8
Gen_CV, 9
invMat, 11

LinSwp, 12
OneMat, 13
ParCall, 14
PotStep, 16
ZeroMat, 17

