Package 'IGCities'

October 25, 2022

Title Simulate Impact of Different Urban Policies Through a General Equilibrium Model

Version 0.2.0
Description Develops a General Equilibrium (GE) Model, which estimates key variables such as wages, the number of residents and workers, the prices of the floor space, and its distribution between commercial and residential use, as in Ahlfeldt et al., (2015) <https: //onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10876>. By doing so, the model allows understanding the economic influence of different urban policies.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1
NeedsCompilation no
Author David Zarruk [aut, cre], Roman Zarate [aut]
Maintainer David Zarruk davidzarruk@gmail.com
Repository CRAN
Date/Publication 2022-10-25 18:47:51 UTC

R topics documented:

array_operator 2
av_income_simple 2
commuting_matrix 3
density_development 3
inversionModel 4
living_amenities_simple 5
productivity 6
solveModel 7
sumDims 9
sumDims2 9
wages_inversion 10
Index 11

Array operator to mimic different-dimension-array element-wise operations in MATLAB. It receives as input two arrays of potentially different dimensions, it resizes them to have same dimensions and finally performs the element-wise operation.

Description

Array operator to mimic different-dimension-array element-wise operations in MATLAB. It receives as input two arrays of potentially different dimensions, it resizes them to have same dimensions and finally performs the element-wise operation.

Usage

array_operator(array1, array2, operation)

Arguments

array1 The first array
array2 The second array
operation The operation. It can take values: ' + ', '-', '*', ' $/$ ' and ' \wedge '

Value

An array with dimensions equal to the "largest" input array. It is the result of applying the operator element-wise to both input arrays.

```
av_income_simple Computes average income in each location, which is the weighted av-
    erage of the income of the people living in the location.
```


Description

Computes average income in each location, which is the weighted average of the income of the people living in the location.

Usage

av_income_simple(lambda_ij_i, w_tr)

Arguments

$\begin{array}{ll}\text { lambda_ij_i } & \begin{array}{l}\text { NxN matrix - Probability of individuals in each location of working in each } \\ \text { location. }\end{array} \\ \text { w_tr } & \text { NxS - Wages in each location in each sector. }\end{array}$

Description

Function to transform travel times into iceberg commuting costs

Usage

commuting_matrix(t_ij, epsilon)

Arguments

t_ij NxN matrix - Travel time matrix across locations
epsilon Float - Parameter that transforms travel times to commuting costs

Value

A NxN matrix of commuting costs
density_development Computes residential and commercial floorspace supply and equilibrium prices.

Description

Computes residential and commercial floorspace supply and equilibrium prices.

Usage

density_development(Q, K, w, L_j, y_bar, L_i, beta, alpha, mu)

Arguments

Q Nx1 array - Floorspaces prices.
K Nx1 array - Land supply.
w NxS - Wages in each location in each sector.
$L_{-} j \quad N x 1$ matrix - Number of workers in each location.
y_bar - Average income in each location.
L_i Nx1 matrix - Number of residents in each location.
beta Float - Cobb-Douglas parameter output elasticity wrt labor.
alpha Float - Utility parameter that determines preferences for consumption.
mu Float - Floorspace prod function: output elast wrt capita, 1-mu wrt land.

```
inversionModel
```

Function to invert model, so amenities, wages, productivities, and development density are chosen to match model to data.

Description

Function to invert model, so amenities, wages, productivities, and development density are chosen to match model to data.

Usage

inversionModel(
N,
L_i,
L_j,
Q,
K ,
t_ij,
alpha $=0.7$,
beta $=0.7$,
theta $=7$,
delta $=0.3585$,
rho = 0.9094,
lambda = 0.01,
epsilon = 0.01,
mu = 0.3,
eta $=0.1548$,
nu_init $=0.005$, tol $=10^{\wedge}-10$, maxiter $=1000$
)

Arguments

N	Integer - Number of locations.
$L_{-} i$	Nx1 matrix - Number of residents in each location.
$L_{-} j$	Nx1 matrix - Number of workers in each location.
Q	Nx1 matrix - Floorspace prices
K	Nx1 matrix - Land area
t_ij	NxN matrix - Travel times across all possible locations.
alpha	Float - Utility parameter that determines preferences for consumption.
beta	Float - Output elasticity wrt labor
theta	Float - Commuting elasticity and migration elasticity.
delta	Float - Decay parameter agglomeration

rho	Float - Decay parameter congestion
lambda	Float - Agglomeration force
epsilon	Float - Parameter that transforms travel times to commuting costs
mu	Float - Floorspace prod function: output elast wrt capital, 1-mu wrt land.
eta	Float - Congestion force
nu_init	Float - Convergence parameter to update wages. Default nu=0.01.
tol	Int - tolerance factor
maxiter	Integer - Maximum number of iterations for convergence. Default maxiter=1000.

Value

Equilibrium values.

Examples

$$
\begin{aligned}
& \mathrm{N}=5 \\
& \text { L_i }=c(63,261,213,182,113) \\
& L_{-} j=c(86,278,189,180,99) \\
& Q=c(2123,1576,1371,1931,1637) \\
& K=c(0.44,1.45,1.15,0.87,0.58) \\
& t_{-} i j=r b i n d(c(0.0,6.6,5.5,5.6,6.4) \text {, } \\
& c(6.7,0.0,3.9,4.6,4.4) \text {, } \\
& c(5.5,3.9,0.0,2.8,3.0) \text {, } \\
& c(5.6,4.6,2.8,0.0,2.7) \text {, } \\
& c(6.4,4.4,3.0,2.7,0.0) \text {) }
\end{aligned}
$$

inversionModel $(\mathrm{N}=\mathrm{N}$,
L_i=L_i,
$L_{-} j=L_{-} j$,
$\mathrm{Q}=\mathrm{Q}$,
$\mathrm{K}=\mathrm{K}$,
t_ij=t_ij)
living_amenities_simple
Function to estimate amenity parameters of locations where users live.

Description

Function to estimate amenity parameters of locations where users live.

Usage

living_amenities_simple(theta, N, L_i, W_i, Q, K, alpha, t_ij, rho, eta)

Arguments

theta	Float - Parameter that governs the reallocation of workers across locations in the city. This parameter measures how sensible are migration flows within the city to changes in real income.
N	Integer - Number of locations. $L_{-} \mathrm{i}$
$\mathrm{W}_{-} \mathrm{i}$	Nx1 matrix - Total residents.
Q	Nx1 matrix - Market access measure in each location.
K	Nx1 matrix - Floor space prices.
alpha	Nx1 matrix - Land area
t_ij	Float - Para
rho	NxN matrix - Travel times across locations.
eta	Float - decay parameter for amenities.

Value

Matrix with the amenity distribution of living in each location.

```
productivity
Computes productivity levels in each location
```


Description

Computes productivity levels in each location

Usage

productivity(N, Q, w, L_j, K, t_ij, delta, lambda, beta)

Arguments

N
Q Nx1 matrix - Floorspace prices in each location.
w Nx1 matrix - wages in each location.
$L_{-} \quad$ Nx1 matrix - Employment in each location.
K Nx1 matrix - Land in each location.
t_ij NxN matrix - Travel times matrix.
delta Float - decay parameter agglomeration.
lambda Float - agglomeration force.
beta Float - Output elasticity wrt labor

```
solveModel Function to solve counterfactuals.
```


Description

Function to solve counterfactuals.

Usage

solveModel(
N,
L_i,
L_j,
K,
t_ij,
a,
b,
varphi,
w_eq,
u_eq,
Q_eq,
ttheta_eq,
alpha = 0.7,
beta $=0.7$,
theta = 7,
$m u=0.3$,
delta $=0.3585$,
lambda = 0.01,
rho $=0.9094$,
eta $=0.1548$,
epsilon = 0.01,
zeta $=0.95$,
tol $=10^{\wedge}-10$,
maxiter = 1000
)

Arguments

N
L_i
L_j
K
t_ij
a
b

Integer - Number of locations.
Nx1 array - Number of residents in each location
Nx1 array - Number of workers in each location
Nx1 array - Land supply
NxN matrix - Travel times across locations
Nx1 array - Total Factor Productivity in each location
Nx1 array - Vector of amenities in each location

varphi	Nx1 array - Density of development
w_eq	Nx1 array - Initial vector of wages
u_eq	Nx1 array - Initial vector of welfare
Q_eq	Nx1 array - Initial price for floorspace
ttheta_eq	Nx1 array - Share of floorspace used commercially
alpha	Float - Exp. share in consumption, 1-alpha exp. share in housing
beta	Float - Output elasticity with respect to labor
theta	Float - Commuting and migration elasticity.
mu	Float - Floorspace prod function: output elasticity wrt capital
delta	Float - Decay parameter agglomeration force
lambda	Float - agglomeration externality
rho	Float - decay parameter for amenities
eta	Float - amenity externality
epsilon	Float - Parameter that transforms travel times to commuting costs
zeta	Float - convergence parameter
tol	Int - tolerance factor
maxiter	Integer - Maximum number of iterations for convergence. Default maxiter=1000.

Value

Counterfactual values.

Examples

```
N=5
L_i = c(63, 261, 213, 182, 113)
L_j = c(86, 278, 189, 180, 99)
Q = c(2123, 1576, 1371, 1931, 1637)
K = c(0.44, 1.45, 1.15, 0.87, 0.58)
t_ij = rbind(c(0.0, 6.6, 5.5, 5.6, 6.4),
    c(6.7, 0.0, 3.9, 4.6, 4.4),
    c(5.5, 3.9, 0.0, 2.8, 3.0),
    c(5.6, 4.6, 2.8, 0.0, 2.7),
    c(6.4, 4.4, 3.0, 2.7, 0.0))
```

```
a = c(1.7, 1.7, 1.6, 1.8, 1.6)
b = c(2.2, 2.5, 2.4, 2.6, 2.3)
varphi = c(95, 219, 215, 167, 148)
w_eq = c(0.9, 1.0, 1.0, 1.0, 0.9)
u_eq = c(1.0, 1.3, 1.2, 1.2, 1.1)
Q_eq = c(1.2, 0.9, 0.8, 1.1, 0.9)
ttheta_eq = c(0.5, 0.4, 0.4, 0.4, 0.4)
solveModel(N=N,
    L_i=L_i,
    L_j=L_j,
    K=K,
```

```
t_ij=t_ij,
a=a,
b=b,
varphi=varphi,
w_eq=w_eq,
u_eq=u_eq,
Q_eq=Q_eq,
ttheta_eq=ttheta_eq)
```

sumDims
Collapse array along one of the dimensions by adding the elements along that dimension.

Description

Collapse array along one of the dimensions by adding the elements along that dimension.

Usage

sumDims(array, dimension)

Arguments

$$
\begin{array}{ll}
\text { array } & \text { Array to collapse along one dimension. } \\
\text { dimension } & \text { Dimension to collapse the array. }
\end{array}
$$

Value

An array that has been collapsed along the given dimension.
sumDims2 Collapse array 2 along one of the dimensions by adding the elements along that dimension.

Description

Collapse array 2 along one of the dimensions by adding the elements along that dimension.

Usage

sumDims2(array, dimension)

Arguments

$$
\begin{array}{ll}
\text { array } & \text { Array to collapse along one dimension. } \\
\text { dimension } & \text { Dimension to collapse the array. }
\end{array}
$$

Value

An array that has been collapsed along the given dimension.
wages_inversion Function to compute equilibrium wages that make the model labor in every location in equal to the observed data. It finds the w's such that equation (3.2) holds.

Description

Function to compute equilibrium wages that make the model labor in every location in equal to the observed data. It finds the w's such that equation (3.2) holds.

Usage

wages_inversion(
N,
w_init,
theta,
tau,
L_i,
L_j,
nu_init $=0.05$, tol $=10^{\wedge}-10$, maxiter $=10000$
)

Arguments

N
w_init Initial vector of wages.
theta Float - Commuting elasticity.
tau NxN matrix - Commuting cost matrix across all locations.
L_i Nx1 matrix - Number of residents in each location.
$L_{-} \quad$ Nx1 matrix - Number of workers in each location.
nu_init Float - Convergence parameter to update wages. Default nu=0.01.
tol Float - Maximum tolerable error for estimating total labor. Default tol=10^-10.
maxiter Integer - Maximum number of iterations for convergence. Default maxiter=10000.

Value

A list with equilibrium wages and probability of workers in each location working in every other location.

Index

array_operator, 2
av_income_simple, 2
commuting_matrix, 3
density_development, 3
inversionModel, 4
living_amenities_simple, 5
productivity, 6
solveModel, 7
sumDims, 9
sumDims2, 9
wages_inversion, 10

