OptimalBinningWoE: Optimal Binning and Weight of Evidence Framework for Modeling

High-performance implementation of 36 optimal binning algorithms (16 categorical, 20 numerical) for Weight of Evidence ('WoE') transformation, credit scoring, and risk modeling. Includes advanced methods such as Mixed Integer Linear Programming ('MILP'), Genetic Algorithms, Simulated Annealing, and Monotonic Regression. Features automatic method selection based on Information Value ('IV') maximization, strict monotonicity enforcement, and efficient handling of large datasets via 'Rcpp'. Fully integrated with the 'tidymodels' ecosystem for building robust machine learning pipelines. Based on methods described in Siddiqi (2006) <doi:10.1002/9781119201731> and Navas-Palencia (2020) <doi:10.48550/arXiv.2001.08025>.

Version: 1.0.3
Depends: R (≥ 4.1.0)
Imports: Rcpp, recipes, rlang, tibble, dials
LinkingTo: Rcpp, RcppEigen, RcppNumerical
Suggests: testthat (≥ 3.0.0), dplyr, generics, knitr, rmarkdown, tidymodels, workflows, parsnip, pROC, scorecard
Published: 2026-01-23
DOI: 10.32614/CRAN.package.OptimalBinningWoE (may not be active yet)
Author: José Evandeilton Lopes ORCID iD [aut, cre, cph]
Maintainer: José Evandeilton Lopes <evandeilton at gmail.com>
BugReports: https://github.com/evandeilton/OptimalBinningWoE/issues
License: MIT + file LICENSE
URL: https://github.com/evandeilton/OptimalBinningWoE
NeedsCompilation: yes
SystemRequirements: C++17
Language: en-US
Materials: README, NEWS
CRAN checks: OptimalBinningWoE results [issues need fixing before 2026-02-07]

Documentation:

Reference manual: OptimalBinningWoE.html , OptimalBinningWoE.pdf
Vignettes: OptimalBinningWoE: Practical Guide for Credit Risk Modeling (source, R code)

Downloads:

Package source: OptimalBinningWoE_1.0.3.tar.gz
Windows binaries: r-devel: OptimalBinningWoE_1.0.3.zip, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=OptimalBinningWoE to link to this page.