library(PriorGen)
## Loading required package: rootSolve
## Loading required package: nleqslv
findbeta(themedian = 0.5,lower.v = T,percentile = 0.999,percentile.value = 0.999)
## $parameters
## a b
## 1 1
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0005798 0.2548675 0.5011664 0.5009285 0.7471612 0.9999125
##
## $input
## themedian percentile percentile.value
## 0.500 0.999 0.999
##
## attr(,"class")
## [1] "PriorGen"
#findbeta(themode = 0.5,lower.v = T,percentile = 0.80,percentile.value = 0.95)
=findbeta(themean = 0.5,lower.v = T,percentile = 0.90,percentile.value = 0.95)
fb_per$parameters fb_per
## a b
## 0.6658199 0.6658199
$summary fb_per
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000004 0.1923723 0.4975507 0.4977591 0.8030204 0.9999862
$input fb_per
## themean percentile percentile.value
## 0.50 0.90 0.95
print_PriorGen(fb_per)
## [1] "The desired Beta distribution that satisfies the specified conditions is: Beta(0.67,0.67). Verification: The percentile value 0.95 corresponds to the 90th percentile"
library(PriorGen)
findbeta_raw(themedian = 0.5,therange = c(0,1))
## $parameters
## a b
## 1 1
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000875 0.2528388 0.4988336 0.4990715 0.7451325 0.9994202
##
## $input
## themedian scalemetric_var_or_range
## 0.5 1.0
##
## attr(,"class")
## [1] "PriorGen"
#findbeta_raw(themode = 0.5,therange = c(0,1))
=findbeta_raw(themean = 0.8,thevariance = 0.2)
fb_raw$parameters fb_raw
## a b
## 5.157879 1.289470
$summary fb_raw
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1156 0.7171 0.8315 0.8004 0.9130 0.9997
$input fb_raw
## themean scalemetric_var_or_range
## 0.8000000 0.0408861
library(PriorGen)
findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
## $parameters
## a b
## 2.136044 4.984102
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.004837 0.178582 0.281257 0.301772 0.404865 0.869466
##
## $input
## themean scalemetric percentile.value
## 0.3000 0.1075 0.9990
##
## attr(,"class")
## [1] "PriorGen"
#findbeta_abstract(themean.cat = "Very low",thevariance.cat = "Low")
=findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
fb_abstract$parameters fb_abstract
## a b
## 2.136044 4.984102
$summary fb_abstract
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.004837 0.178582 0.281257 0.301772 0.404865 0.869466
$input fb_abstract
## themean scalemetric percentile.value
## 0.3000 0.1075 0.9990
library(PriorGen)
#findbeta_panel(themedian.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
findbeta_panel(themode.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
## $parameters
## a b
## 4.570939 22.935768
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01882 0.11591 0.15828 0.16678 0.20848 0.51874
##
## $input
## themode percentile scalevalue percentile.value
## 0.1400 0.9999 0.4800 0.4990
##
## attr(,"class")
## [1] "PriorGen"
=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
fb_panel$parameters fb_panel
## a b
## 11.90200 73.11232
$summary fb_panel
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04516 0.11378 0.13739 0.14026 0.16347 0.30894
$input fb_panel
## themean percentile scalevalue percentile.value
## 0.1400000 0.9999000 0.0355600 0.2773494
library(PriorGen)
=findbetaqq(percentile.value1 = 0.3,percentile1 = 0.20,
fb_qqpercentile.value2 = 0.7,percentile2 = 0.97)
$parameters fb_qq
## a b
## 4.754100 6.398365
$summary fb_qq
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06502 0.32446 0.42170 0.42666 0.52329 0.89435
$input fb_qq
## percentile.value1 percentile1 percentile.value2 percentile2
## 0.30 0.20 0.70 0.97
library(PriorGen)
=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
fb_mupsi_RSpercentile.value=0.30, psi.percentile=0.90,
percentile.median=0.60, percentile95value=0.80,root.method="multiroot")
$parameters fb_mupsi_RS
## NULL
$summary fb_mupsi_RS
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000000 0.008379 0.085610 0.203784 0.320677 0.999995
$input fb_mupsi_RS
## themean percentile percentile.value psi.percentile
## 0.20 0.99 0.30 0.90
## percentile.median percentile95value
## 0.60 0.80
=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
fb_mupsi_NLpercentile.value=0.30, psi.percentile=0.90,
percentile.median=0.60, percentile95value=0.80,root.method="nleqslv")
$parameters fb_mupsi_RS
## NULL
$parameters fb_mupsi_NL
## NULL
# Results are similar
library(PriorGen)
=findbetamupsi_raw(themean=0.20,thevariance = 0.05, thepsi=0.15)
fb_mupsi_raw$parameters fb_mupsi_raw
## NULL
$summary fb_mupsi_raw
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000000 0.0000000 0.0000103 0.1935947 0.1337335 1.0000000
$input fb_mupsi_raw
## themean thevariances percentile percentile.value
## 0.2000000 0.0500000 0.9999000 0.3645263
## thepsi
## 0.1500000
library(PriorGen)
=findbetamupsi_abstract(themean="Average",thevariance = "Very high",
fb_mupsi_abstractpsi.percentile=0.90,percentile.median=0.999,
percentile95value=0.9999)
$parameters fb_mupsi_abstract
## NULL
$summary fb_mupsi_abstract
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.05677 0.64303 0.54865 0.99077 1.00000
$input fb_mupsi_abstract
## themean percentile percentile.value psi.percentile
## 0.5500000 0.9999000 0.9974181 0.9000000
## percentile.median percentile95value
## 0.9990000 0.9999000
library(PriorGen)
=findbetamupsi_panel(themean=c(0.1,0.5,0.6,0.3,0.05,0.01,0.3),
fb_mupsi_panelpsi.percentile=0.90, percentile.median=0.50,
percentile95value=0.60)
$parameters fb_mupsi_panel
## NULL
$summary fb_mupsi_panel
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000001 0.1293974 0.2387243 0.2681315 0.3763673 0.9607058
$input fb_mupsi_panel
## themean percentile percentile.value psi.percentile
## 0.2657143 0.9999000 0.4656722 0.9000000
## percentile.median percentile95value
## 0.5000000 0.6000000
library(PriorGen)
=findbeta(themean = 0.5,lower.v = T,percentile = 0.999,percentile.value = 0.999)
fb_prplot(fb_pr,main="Elicited beta prior \n(Percentile)",ylab = "Density",lwd=3,type="l",xlab="")
# Plot for finbeta_raw
library(PriorGen)
=findbeta_raw(themean = 0.5,thevariance = 0.5)
fb_rawplot(fb_raw,main="Elicited beta prior \n(Raw)",ylab = "Density",lwd=3,type="l",xlab="")
# Plot for findbeta_abstract
library(PriorGen)
=findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
fb_abstractplot(fb_abstract,main="Elicited beta prior \n(Abstract)",ylab = "Density",lwd=3,type="l",xlab="")
library(PriorGen)
=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
fb_panel1=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.4,0.04,0.05))
fb_panel2plot(fb_panel1,main="Elicited beta prior \n(Panel)",ylab = "Density",lwd=3,type="l",xlab="")
lines(fb_panel2,lwd=3,type="l",lty=2)
legend("topright",c("Panel 1", "Panel 2"),lty = c(1,2),lwd=3)
library(PriorGen)
=findbetaqq(percentile.value1 = 0.3,percentile1 = 0.20,
fb_qqpercentile.value2 = 0.7,percentile2 = 0.97)
plot(fb_qq,main="Elicited beta prior \n(Percentiles method)",ylab = "Density",lwd=3,type="l",xlab="")
library(PriorGen)
=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
fb_mupsipercentile.value=0.30, psi.percentile=0.90,
percentile.median=0.50, percentile95value=0.60)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi(themean=0.30, percentile=0.8, lower.v=TRUE,
fb_mupsi1percentile.value=0.30, psi.percentile=0.90,
percentile.median=0.70, percentile95value=0.80)
lines(fb_mupsi1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Basic","Basic1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
=findbetamupsi_raw(themean=0.20, thevariance = 0.1, thepsi=0.15)
fb_mupsi_raw#par(mfrow=c(1,3))
#plot(density(fb_mupsi_abstract$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_abstract$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_raw,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi_raw(themean=0.30, thevariance = 0.15, thepsi=0.15)
fb_mupsi_raw1lines(fb_mupsi_raw1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Raw","Raw1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
=findbetamupsi_abstract(themean="Low", thevariance = "High",
fb_mupsi_abstractpsi.percentile=0.90, percentile.median=0.95, percentile95value=0.98)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi_abstract$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_abstract$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_abstract,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi_abstract(themean="Very low", thevariance = "Average",
fb_mupsi_abstract1psi.percentile=0.90,percentile.median=0.95,
percentile95value=0.98)
lines(fb_mupsi_abstract1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Abstract","Abstract1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
=findbetamupsi_panel(themean=c(0.1,0.5,0.05,0.01,0.4,0.2), psi.percentile=0.90,
fb_mupsi_panelpercentile.median=0.50, percentile95value=0.60)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi_panel$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_panel$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_panel,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi_panel(themean=c(0.1,0.5,0.05,0.01,0.6,0.65), psi.percentile=0.90,
fb_mupsi_panel1percentile.median=0.80, percentile95value=0.90)
lines(fb_mupsi_panel1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Panel","Panel1"),col=c("black","gray"),lty=1:2,lwd=3)