
Package ‘TFunHDDC’
June 4, 2023

Type Package

Title Clustering of Functional Data via Mixtures of t-Distributions

Version 1.0.1

Date 2023-06-01

Depends fda.usc, R (>= 3.5.0)

Imports tclust, stringr, MASS, fda

Description Extension of 'funHDDC' Schmutz et al. (2018)
<doi:10.1007/s00180-020-00958-4> for cases including
outliers by fitting t-distributions for robust groups. 'TFunHDDC' can cluster
univariate or multivariate data produced by the 'fda' package for data using
a b-splines or Fourier basis.

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation yes

Repository CRAN

Author Cristina Anton [aut, cre],
Iain Smith [aut],
Malcolm Nielsen [aut],
Jeffrey Andrews [ctb],
Jaymeson Wickins [ctb],
Nicholas Boers [ctb],
Paul McNicholas [ctb],
Amandine Schmutz [ctb],
Julien Jacques [ctb],
Charles Bouveyron [ctb]

Maintainer Cristina Anton <popescuc@macewan.ca>

Date/Publication 2023-06-04 12:20:13 UTC

1

https://doi.org/10.1007/s00180-020-00958-4

2 fitNOxBenchmark

R topics documented:
contaminatedTriangles . 2
fitNOxBenchmark . 2
genModelFD . 3
genTriangles . 5
plotNOx . 6
plotTriangles . 7
predict.tfunHDDC . 8
tfunHDDC . 10

Index 15

contaminatedTriangles contaminatedTriangles

Description

Simulated triangle data produced as an example of mild contaminated data with behavioural out-
liers.

Value

fd A functional data object representing the fitted triangle data.

groupd Group classifications for each curve as a ordinary behavioral group (1,2,3, or 4)
or outlier (4 as outliers to group 1 and 6 as outliers for group 3).

Author(s)

Cristina Anton and Iain Smith

References

- Cristina Anton, Iain Smith Model-based clustering of functional data via mixtures of t distribu-
tions. Advances in Data Analysis and Classification (to appear).

fitNOxBenchmark fitNOxBenchmark

Description

Extract NOx data from fda.usc

Usage

fitNOxBenchmark(nbasis=15)

genModelFD 3

Arguments

nbasis The number of basis functions to fit to the simulated data.

Details

Open NOx data from the poblenou data set of fda.usc. Fit the data to a given number of basis
functions and adjust classes for festive days into just weekdays and weekends.

Value

fd A functional data object representing the fitted NOx data.
groupd Group classifications for each curve as a curve representing a weekday or week-

end/festive day.

Author(s)

Cristina Anton and Iain Smith

References

- Febrero-Bande M, Galeano P, Gonz~alez-Manteiga W (2008) Outlier detection in functional data
by depth measures, with application to identify abnormal nox levels. Environmetrics 19:331-345.
<//doi.org/10.1002/env.878>.

- Cristina Anton, Iain Smith Model-based clustering of functional data via mixtures of t distribu-
tions. Advances in Data Analysis and Classification (to appear).

See Also

plotNOx

Examples

Univariate Contaminated Data
data1<-fitNOxBenchmark(15)
plotNOx(data1)

genModelFD genModelFD

Description

Generate functional data with coefficients distributed according to a finite mixture of contamined
normal distributions such that for the kth cluster we have the multivariate contaminated normal
distribution with density

f(γi; θk) = αkφ(γi;µk,Σk) + (1− αk)φ(γi;µk, ηkΣk)

where αk ∈ (0.5, 1) represents the proportion of uncontaminated data, ηk > 1 is the inflation
coefficient due to outliers, and φ(γi;µk,Σk) is the density for the multivariate normal distribution
N(µk,Σk).

4 genModelFD

Usage

genModelFD(ncurves=1000, nsplines=35, alpha=c(0.9,0.9,0.9),
eta=c(10, 5, 15))

Arguments

ncurves The number of curves total for the simulation.

nsplines The number of splines to fit to the simulated data.

alpha The proportion of uncontaminated data in each group.

eta The inflation coefficient that measures the increase in variability due to the out-
liers.

Details

The data are generate from the model FCLM [ak, bk,Qk, dk, αk, ηk]. The number of clusters is
fixed to K = 3 and the mixing proportions are equal π1 = π2 = π3 = 1/3. We consider the
following values of the parameters

Group 1:d = 5, a = 150, b = 5, µ = (1, 0, 50, 100, 0, . . . , 0)

Group 2: d = 20, a = 15, b = 8, µ = (0, 0, 80, 0, 40, 2, 0, . . . , 0)

Group 3: d = 10, a = 30, b = 10, µ = (0, . . . , 0, 20, 0, 80, 0, 0, 100),

where d is the intrinsic dimension of the subgroups, µ is the mean vector of size 70, a is the values of
the d-first diagonal elements of D, and b the value of the last 70−d- elements. Curves as smoothed
using 35 Fourier basis functions.

Value

fd A functional data object representing the simulated data.

groupd Group classifications for each curve.

Author(s)

Cristina Anton and Iain Smith

References

- Amovin-Assagba M, Gannaz I, Jacques J (2022) Outlier detection in multivariate functional data
through a contaminated mixture model. Comput Stat Data Anal 174. - Cristina Anton, Iain Smith
Model-based clustering of functional data via mixtures of t distributions. Advances in Data Analysis
and Classification (to appear).

Examples

Univariate Contaminated Data
data <- genModelFD(ncurves=300, nsplines=35, alpha=c(0.9,0.9,0.9),

eta=c(10, 7, 17))
plot(data$fd, col = data$groupd)
clm <- data$groupd

genTriangles 5

genTriangles genTriangles

Description

Generate contaminated triangle data. Groups 1, 2, 3, and 4 are separable over the two dimensions
of functional data. Groups 5 and 6 contain the contaminated curves of groups 1 and 3 respectively.

Usage

genTriangles()

Details

Group 1:

X1(t) = U + (0.6− U)H1(t) + ε1(t)

X2(t) = U + (0.5− U)H1(t) + ε1(t)

Contaminated X1(t) = sin(t) + (0.6− U)H1(t) + ε2(t)

Contaminated X2(t) = sin(t) + (0.5− U)H1(t) + ε2(t)

Group 2:

X1(t) = U + (0.6− U)H2(t) + ε1(t)

X2(t) = U + (0.5− U)H2(t) + ε1(t)

Group 3:

X1(t) = U + (0.5− U)H1(t) + ε1(t)

X2(t) = U + (0.6− U)H2(t) + ε1(t)

Contaminated X1(t) = sin(t) + (0.5− U)H1(t) + ε3(t)

Contaminated X2(t) = sin(t) + (0.6− U)H2(t) + ε3(t)

Group 4:

X1(t) = U + (0.5− U)H2(t) + ε1(t)

X2(t) = U + (0.6 − U)H1(t) + ε1(t). Here t ∈ [1, 21], H1(t) = (6 − |t − 7|)+, and H2(t) =
(6 − |t − 15|)+, with (·)+ representing the positive part. U ∼ U(0, 0.1), and ε1(t) ∼ N(0, 0.5),
ε2(t) ∼ N(0, 2), ε3(t) ∼ Cauchy(0, 4) are mutually independent white noises and independent of
U . We simulate 100 curves for each group, groups 1 and 3 consisting of 80 ordinary curves and 20
contaminated curves. Curves are smoothed using a 25 cubic B-spline basis.

Value

fd List of functional data objects representing the two dimensions of triangle data.

groupd Group classification for each curve

Author(s)

Cristina Anton and Iain Smith

6 plotNOx

References

- C.Bouveyron and J.Jacques (2011), Model-based Clustering of Time Series in Group-specific
Functional Subspaces, Advances in Data Analysis and Classification, vol. 5 (4), pp. 281-300,
<doi:10.1007/s11634-011-0095-6>

- Schmutz A, Jacques J, Bouveyron C, et al (2020) Clustering multivariate functional data in group-
specific functional subspaces. Comput Stat 35:1101-1131

- Cristina Anton, Iain Smith Model-based clustering of functional data via mixtures of t distribu-
tions. Advances in Data Analysis and Classification (to appear).

See Also

plotTriangles

Examples

Multivariate Contaminated Triangles
conTrig <- genTriangles()
cls = conTrig$groupd
plotTriangles(conTrig)

plotNOx plotNOx

Description

Plot data returned by fitNOxBenchmark as lines coloured according to the assigned clusters.

Usage

plotNOx(fdn)

Arguments

fdn List with an element fd given the functional data, and an element groupd given
the classes; usually returned from the function fitNOxBenchmark.

Value

No return value, used for side effects.

Author(s)

Cristina Anton and Iain Smith

See Also

fitNOxBenchmark

plotTriangles 7

Examples

Univariate Contaminated Data
data1<-fitNOxBenchmark(15)
plotNOx(data1)

plotTriangles plotTriangles

Description

Plot data returned by genTriangles as lines coloured according to the assigned clusters.

Usage

plotTriangles(fdt)

Arguments

fdt List with an element fd given the functional data, and an element groupd given
the classes, as returned from the function genTriangles.

Value

No return value, used for side effects.

Author(s)

Cristina Anton and Iain Smith

See Also

genTriangles

Examples

conTrig <- genTriangles()
plotTriangles(conTrig)

8 predict.tfunHDDC

predict.tfunHDDC predict.tfunHDDC: Predicting Function for t-funHDDC Objects

Description

Provides the matrix of classification probabilities and the classification vector for inputted observa-
tions assuming the model provided by the tfunHDDC object.

Usage

S3 method for class 'tfunHDDC'
predict(object, data=NULL, ...)

Arguments

object An object of class tfunHDDC

data Data frame (univariate funtional data) or a list (multivariate functional data) of
new observations on the same variables used in the fitting of the tfunHDDC ob-
ject. If NULL, then the observations used in the fitting of the tfunHDDC object are
inputted.

... Arguments to be passed to other functions.

Value

t Matrix of classification probabilities

class Vector of maximum a posteriori classifications

Author(s)

Cristina Anton, Iain Smith

References

-Andrews JL, McNicholas PD (2012) Model-based clustering, classi

cation, and discriminant analysis via mixtures of multivariate t-distributions: The teigen family.
Stat Comput 22:10211029. <doi.org/10.1007/ s11222-011-9272-x>

-Andrews JL, Wickins JR, Boers NM, et al (2018) An R package for modelbased clustering and
classi

cation via the multivariate t distribution. Journal of Statistical Software 83(7):1-32

- Cristina Anton, Iain Smith Model-based clustering of functional data via mixtures of t distribu-
tions. Advances in Data Analysis and Classification (to appear).

See Also

tfunHDDC

predict.tfunHDDC 9

Examples

set.seed(1027)
#simulataed univariate data

data = genModelFD(ncurves=300, nsplines=35, alpha=c(0.9,0.9,0.9),
eta=c(10, 7, 17))

plot(data$fd, col = data$groupd)

clm = data$groupd

model1=c("AkjBkQkDk", "AkjBQkDk", "AkBkQkDk", "ABkQkDk", "AkBQkDk", "ABQkDk")

####################classification example with predictions

training=c(1:50,101:150, 201:250)

test=c(51:100,151:200, 251:300)

known1=clm[training]

t4<-tfunHDDC(data$fd[training],K=3,threshold=0.2,init="kmeans",nb.rep=1,
dfconstr="no", dfupdate="numeric", model=model1[1],known=known1,
itermax = 10)

if (!is.null(t4$class)) {
table(clm[training], t4$class)

p1<-predict.tfunHDDC(t4,data$fd[test])

if (!is.null(p1$class)) table(clm[test], p1$class)
}

###########################NOX data

data1=fitNOxBenchmark(15)

plotNOx(data1)

###example for prediction

training=c(1:50)

test=c(51:115)

known1=data1$groupd[training]

t1<-tfunHDDC(data1$fd[training],K=2,threshold=0.6,init="kmeans",nb.rep=10,
dfconstr="no", model=c("AkjBkQkDk", "AkjBQkDk", "AkBkQkDk",
"ABkQkDk", "AkBQkDk", "ABQkDk"),known=known1)

10 tfunHDDC

if (!is.null(t1$class)) {
table(data1$groupd[training], t1$class)

p1<-predict.tfunHDDC(t1,data1$fd[test])

if (!is.null(p1$class)) table(data1$groupd[test], p1$class)
}

tfunHDDC tfunHDDC: Function for Model-Based Clustering of Functional Data
with Outliers Using the t-Distribution.

Description

tfunHDDC is an adaptation of funHDDC (Schmutz et al., 2018) that uses t-distributions for robust
clustering in the presence of outliers.

Usage

tfunHDDC(data, K=1:10, model="AkjBkQkDk", known=NULL,dfstart=50, dfupdate="approx",
dfconstr="no", threshold=0.1, itermax=200, eps=1e-6, init='random',
criterion="bic", d_select="Cattell", init.vector=NULL,
show=TRUE, mini.nb=c(5, 10), min.individuals=2, mc.cores=1, nb.rep=2,
keepAllRes=TRUE, kmeans.control = list(), d_max=100, d_range=2,
verbose = TRUE)

Arguments

data In the univariate case: a functional data object produced by the fda package. In
the multivariate case: a list of functional data objects.

K The number of clusters or list of clusters to try, for example K=2:10.
dfstart The df (degrees of freedom) to which we initialize the t-distribution.
dfupdate Either "numeric", or "approx". The default is "approx" indicating a closed form

approximation be used. Alternatively, "numeric" can be specified which makes
use of uniroot.

dfconstr "yes" when df (degrees of freedom) for the t-distribution should be the same
between all clusters; "no" when df may be different between clusters.

model The chosen model among ’AkjBkQkDk’, ’AkjBQkDk’, ’AkBkQkDk’, ’ABkQkDk’,
’AkBQkDk’, ’ABQkDk’. ’AkjBkQkDk’ is the default. We can test multiple
models at the same time with the command c(). For example c("AkjBkQkDk","AkjBQkDk").

threshold The threshold of the Cattell’ scree-test used for selecting the group-specific in-
trinsic dimensions.

known A vector of known classifications that can be numeric or NA. It is optional for
clustering. For classification, curves with unknown classification should be
given the value NA within known (see the examples below). Must be the same
length as the number of curves in the data set.

tfunHDDC 11

itermax The maximum number of iterations.

eps The threshold of the convergence criterion.

init A character string. It is the way to initialize the EM algorithm. There are
five ways of initialization: “kmeans” (default), “param”, “random”, “mini-em”,
“vector”, or "tkmeans". See details for more information. It can also be directly
initialized with a vector containing the prior classes of the observations.

criterion The criterion used for model selection: bic (default) or icl.

d_select “Cattell” (default), “BIC”, or "grid". This parameter selects which method to
use to select the intrinsic dimensions of subgroups. "grid" will select d based
on thecriterion value after running each combination of d1, d2, ..., dK for the
groups. d used for each group is based on the values for d_range. "grid" will
only work for a single value of K (not a list). See details for more information.

init.vector A vector of integers or factors. It is a user-given initialization. It should be of
the same length as of the data. Only used when init="vector".

show Use show = FALSE to settle off the informations that may be printed.

mini.nb A vector of integers of length two. This parameter is used in the “mini-em”
initialization. The first integer sets how many times the algorithm is repeated;
the second sets the maximum number of iterations the algorithm will do each
time. For example, if init=“mini-em” and mini.nb=c(5,10), the algorithm wil be
launched 5 times, doing each time 10 iterations; finally the algorithm will begin
with the initialization that maximizes the log-likelihood.

min.individuals

This parameter is used to control for the minimum population of a class. If
the population of a class becomes stricly inferior to ’min.individuals’ then the
algorithm stops and gives the message: ’pop<min.indiv.’. Here the meaning of
"population of a class" is the sum of its posterior probabilities. The value of
’min.individuals’ cannot be lower than 2.

mc.cores Positive integer, default is 1. If mc.cores>1, then parallel computing is used,
using mc.cores cores. Warning for Windows users only: the parallel computing
can sometimes be slower than using one single core (due to how parLapply
works).

nb.rep A positive integer (default is 1 for kmeans initialization and 20 for random ini-
tialization). Each estimation (i.e. combination of (model, K, threshold)) is re-
peated nb.rep times and only the estimation with the highest log-likelihood is
kept.

keepAllRes Logical. Should the results of all runs be kept? If so, an argument all_results is
created in the results. Default is TRUE.

kmeans.control A list. The elements of this list should match the parameters of the kmeans ini-
tialization (see kmeans help for details). The parameters are “iter.max”, “nstart”
and “algorithm”. "alpha" is an added parameter for the tkmeans initialization
(see tkmeans help for details)

d_max A positive integer. The maximum number of dimensions to be computed. De-
fault is 100. It means that the instrinsic dimension of any cluster cannot be larger
than d_max. It quickens a lot the algorithm for datasets with a large number of
variables (e.g. thousands).

12 tfunHDDC

d_range Vector of values to use for the intrinsic dimension for each group when d_select="grid".

verbose Whether to print progress and approximate timing information as tfunHDDC ex-
ecutes. TRUE (default when running in serial) or FALSE (default when running
parallel).

Details

If we choose init="random", the algorithm is run 20 times with the same model options and the
solution which maximises the log-likelihood is printed. This explains why sometimes with this
initialization it runs a bit slower than with ’kmeans’ initialization.

If the warning message: "In tfunHDDC(...) : All models diverged" is printed, it means that the
algorithm found less classes that the chosen number (parameter K). Because the EM algorithm is
used, it could be because of a bad initialization of the EM algorithm. So we have to restart the
algorithm multiple times in order to check if with a new initialization of the EM algorithm the
model converges, or if there is no solution with the chosen number K.

The different initializations are:

“mini-em”: it is an initialization strategy for which the classes are randomly initialized and the EM
algorithm is run for several iterations. This action is repetead a few times (the default is 5 iterations
and 10 times). At the end, the initialization chosen is the one which maximise the log-likelihood
(see mini.nb for more information about its parameters).

“random”: the classes are randomly given using a multinomial distribution

“kmeans”: the classes are initialized using the kmeans function (with algorithm="Hartigan-Wong";
nstart=4; iter.max=50); note that the user can use his own arguments for kmeans using the dot-dot-
dot argument

“tkmeans”: the classes are initialized using the tkmeans function (with same default initialization as
kmeans); note that the user can use his own arguments for tkmeans using the dot-dot-dot argument

A prior class "vector": It can also be directly initialized with a vector containing the prior classes of
the observations. To do so use init="vector" and provide the vector in the argument init.vector.

Note that the BIC criterion used in this function is to be maximized and is defined as 2*LL-k*log(n)
where LL is the log-likelihood, k is the number of parameters and n is the number of observations.

There are three methods for selecting the intrinsic dimension using d_select:

"Cattell": Runs a Cattell’s scree test to approximate the intrinsic dimension that yields the greatest
improvement in clustering.

"BIC": At each iteration we tests each value for each group’s intrinsic dimension and sets the
intrinsic dimension that yields the best BIC.

"grid": Runs every combination of hyperparameters (eg. K=2, threshold = 0.05, model = ...) for
every combination of intrinsic dimensions that can be set with the given d_range (with K = 2 and
d_range = c(2, 10) it would set (2,2), (2, 10), (10, 2), and (10, 10)). Due to the sharp increase in
test cases it is recommended that this mode is run in parallel if possible. Doing an intial short run
to approximate the timing with verbose = TRUE is suggested as well.

Value

d The number of dimensions for each cluster.

a Values of parameter a for each cluster.

tfunHDDC 13

b Values of parameter b for each cluster.

mu The mean of each cluster in the original space.

prop The proportion of individuals in each cluster.

loglik The maximum of log-likelihood.

loglik_all The log-likelihood at each iteration.

posterior The posterior probability for each individual to belong to each cluster.

class The clustering partition.

BIC The BIC value.

ICL The ICL value.

complexity the number of parameters that are estimated.

all_results if multiple number of clusters or models are considered, results for each model
are stored here

nux Values for the degrees of freedom of the t-distributions for each group.

Author(s)

Cristina Anton, Iain Smith, and Malcolm Nielsen

References

- Andrews JL and McNicholas PD. “Model-based clustering, classification, and discriminant analy-
sis with the multivariate t-distribution: The tEIGEN family” Statistics and Computing 22(5), 1021–
1029.

- Andrews JL, McNicholas PD, and Subedi S (2011) “Model-based classification via mixtures of
multivariate t-distributions” Computational Statistics and Data Analysis 55, 520–529.

- C.Bouveyron and J.Jacques, Model-based Clustering of Time Series in Group-specific Func-
tional Subspaces, Advances in Data Analysis and Classification, vol. 5 (4), pp. 281-300, 2011
<doi:10.1007/s11634-011-0095-6>

- Schmutz A, Jacques J, Bouveyron C, et al (2020) Clustering multivariate functional data in group-
specific functional subspaces. Comput Stat 35:1101-1131

- Cristina Anton, Iain Smith Model-based clustering of functional data via mixtures of t distribu-
tions. Advances in Data Analysis and Classification (to appear).

See Also

teigen, kmeans, tkmeans,predict.tfunHDDC

Examples

set.seed(1027)
#simulataed univariate data

data = genModelFD(ncurves=300, nsplines=35, alpha=c(0.9,0.9,0.9),
eta=c(10, 7, 17))

14 tfunHDDC

plot(data$fd, col = data$groupd)

clm = data$groupd

model1=c("AkjBkQkDk", "AkjBQkDk", "AkBkQkDk", "ABkQkDk", "AkBQkDk", "ABQkDk")

t1<-tfunHDDC(data$fd,K=3,threshold=0.2,init="kmeans",nb.rep=1,dfconstr="no",
dfupdate="numeric", model=model1[1], itermax=10)

if (!is.null(t1$class)) table(clm, t1$class)

###############example when some classifications are known

known1=rep(NA,1,300)

known1[1]=clm[1]

known1[103]=clm[103]

known1[250]=clm[250]

t2<-tfunHDDC(data$fd,K=3,threshold=0.2,init="kmeans",nb.rep=1,dfconstr="no",
dfupdate="numeric", model=model1[1],known=known1, itermax=10)

if (!is.null(t2$class)) table(clm, t2$class)

####### example when some classifications are known

known1=rep(NA,1,300)

known1[1:100]=rep(3,1,50)

t3<-tfunHDDC(data$fd,K=3,threshold=0.2,init="kmeans",nb.rep=1,dfconstr="no",
dfupdate="numeric", model=model1[1],known=known1, itermax=10)

if (!is.null(t3$class)) table(clm, t3$class)

############################multivariate simulated data
set.seed(1027)

conTrig <- genTriangles()

cls = conTrig$groupd # groups 5 and 6 (contaminated) into 1 and 3 respectively

res_s = tfunHDDC(conTrig$fd, K=4, dfconstr="no", dfupdate="numeric",
model="ABKQKDK", init="kmeans", threshold=0.2, nb.rep=1,
itermax=10)

if (!is.null(res_s$class)) table(cls, res_s$class)

Index

∗ classif
predict.tfunHDDC, 8

∗ cluster
tfunHDDC, 10

∗ datagen
fitNOxBenchmark, 2
genModelFD, 3
genTriangles, 5

∗ datasets
contaminatedTriangles, 2

∗ robust
tfunHDDC, 10

contaminatedTriangles, 2

fitNOxBenchmark, 2, 6

genModelFD, 3
genTriangles, 5, 7

kmeans, 11, 13

plotNOx, 3, 6
plotTriangles, 6, 7
predict.tfunHDDC, 8, 13

teigen, 13
tfunHDDC, 8, 10
tkmeans, 11, 13

uniroot, 10

15

	contaminatedTriangles
	fitNOxBenchmark
	genModelFD
	genTriangles
	plotNOx
	plotTriangles
	predict.tfunHDDC
	tfunHDDC
	Index

