Imputation Method vimpute

Eileen Vattheuer

Introduction

This vignette demonstrates how to use the vimpute() function for flexible missing data imputation using machine learning models from the mlr3 ecosystem.

Function Arguments

Data

To demonstrate the function, the sleep dataset from the VIM package is used.

data <- as.data.table(VIM::sleep)
a <- aggr(sleep, plot = FALSE)
plot(a, numbers = TRUE, prop = FALSE)

The left plot shows the amount of missings for each column in the dataset sleep and the right plot shows how often each combination of missings occur. For example, there are 9 rows wich contain a missing in both NonD and Dream.

dataDS <- sleep[, c("Dream", "Sleep")]
marginplot(dataDS, main = "Missing Values")

The red boxplot on the left shows the distrubution of all values of Sleep where Dream contains a missing value. The blue boxplot on the left shows the distribution of the values of Sleep where Dream is observed.

Basic Usage

Default Imputation

In the basic usage, the vimpute() function performs imputation using the default settings. It uses the “ranger” method for all variables, applies predictive mean matching, and performs sequential imputation with a convergence threshold of 0.005.

result <- vimpute(
  data = data,
  pred_history = TRUE)
print(head(result$data, 3))
#>     BodyWgt BrainWgt  NonD Dream Sleep  Span  Gest  Pred   Exp Danger NonD_imp
#>       <num>    <num> <num> <num> <num> <num> <num> <num> <num>  <num>   <lgcl>
#> 1: 6654.000   5712.0   3.3   1.3   3.3  38.6   645     3     5      3     TRUE
#> 2:    1.000      6.6   6.3   2.0   8.3   4.5    42     3     1      3    FALSE
#> 3:    3.385     44.5  10.6   2.3  12.5  14.0    60     1     1      1     TRUE
#>    Dream_imp Sleep_imp Span_imp Gest_imp
#>       <lgcl>    <lgcl>   <lgcl>   <lgcl>
#> 1:      TRUE     FALSE    FALSE    FALSE
#> 2:     FALSE     FALSE    FALSE    FALSE
#> 3:      TRUE     FALSE    FALSE    FALSE

Results and information about missing/imputed values can be shown in the plot margins:

dataDS <- as.data.frame(result$data[, c("Dream", "Sleep", "Dream_imp", "Sleep_imp")])
marginplot(dataDS, delimiter = "_imp", main = "Imputation with Default Model")

The default output are the imputed dataset and the prediction history.

In this plot three differnt colors are used in the top-right. These colors represent the structure of missings.

Advanced Options

Parameter method

(default: “ranger” for all variables)

Specifies the machine learning method used for imputation of each variable. In this example, different imputation methods are specified for each variable. The NonD variable uses a robust method, Dream and Span are using ranger, Sleep uses xgboost, Gest uses a regularized method and class uses a robust method.

result_mixed <- vimpute(
  data = data,
  method = list(NonD = "robust", Dream = "ranger", Sleep = "xgboost", Span = "ranger" , Gest = "regularized"),
  pred_history = TRUE
  )
dataDS <- as.data.frame(result_mixed$data[, c("Dream", "Sleep", "Dream_imp", "Sleep_imp")])
marginplot(dataDS, delimiter = "_imp", main = "Imputation with different Models for each Variable")

The side-by-side margin plots compare the performance of two imputation methods: xgboost (left) and regularized (right):

xgboost handles missing values with data-driven, uneven imputations that capture complex patterns but may be less stable, while regularized methods produce smoother, more conservative estimates that are less prone to overfitting. The key difference lies in flexibility (xgboost) versus robustness (regularization).

Parameter pmm

(default: TRUE for all numeric variables)

result <- vimpute(
  data = data,
  method = list(NonD = "robust", 
                Dream = "ranger", 
                Sleep = "xgboost", 
                Span = "ranger" , 
                Gest = "regularized"),
  pmm = list(NonD = FALSE, Dream = TRUE, Sleep = FALSE, Span = FALSE , Gest = TRUE)
  )

If TRUE, imputed values are restricted to actual observed values in the dataset, ensuring realism but potentially limiting variability. If FALSE, raw model predictions are used, allowing greater flexibility but risking implausible or extreme imputations.

Parameter formula

(default: FALSE)

Specifies custom model formulas for imputation of each variable, offering precise control over the imputation models.

Key Features:

  1. Variable-Specific Models
    • Each formula specifies which predictors should be used for imputing a particular variable

    • Enables different predictor sets for different target variables

    • Example:

      formula = list(
        income ~ education + age,
        blood_pressure ~ weight + age
      )
  2. Transformations Support
    • Handles common transformations on both sides of the formula:

      • Response transformations: log(y), sqrt(y), exp(y), I(1/y)
      • Predictor transformations: log(x1), poly(x2, 2), etc.
    • Example with transformations:

      formula = list(
        log(income) ~ poly(age, 2) + education,
        sqrt(blood_pressure) ~ weight + I(1/age)
      )
  3. Interaction Terms
    • Supports interaction terms using : or * syntax (on the right side)

    • Example:

      formula = list(
        price ~ sqft * neighborhood + year_built
      )

Example Demonstration:

result <- vimpute(
  data = data,
  method = setNames(as.list(rep("regularized", ncol(data))), names(data))
  formula = list(
    NonD ~ Dream + Sleep,              # Linear combination
    Span ~ Dream:Sleep + Gest,         # With interaction term
    log(Gest) ~ Sleep + exp(Span)      # With transformations
  )
)

Interpreting the Example:

  1. For NonD:
    • Uses linear combination of Dream and Sleep variables
    • Model: NonD = β₀ + β₁*Dream + β₂*Sleep + ε
  2. For Span:
    • Includes interaction between Dream and Sleep
    • Plus main effect of Gest
    • Model: Span = β₀ + β₁*Dream*Sleep + β₂*Gest + ε
  3. For Gest:
    • Uses log-transformed response
    • Predictors include Sleep and exponential of Span
    • Model: log(Gest) = β₀ + β₁*Sleep + β₂*exp(Span) + ε
  4. For Sleep and Dream all other variables are used as predictors

Notes:

Parameter tune

(default: FALSE)

result <- vimpute(
  data = data,
  tune = TRUE
  )

Whether to perform hyperparameter tuning (only possible if seq = TRUE):

Parameters nseq and eps

(default: 10 and default: 0.005)

result <- vimpute(
  data = data,
  nseq = 20,
  eps = 0.01
  )

nseq describes the number of sequential imputation iterations. Higher values:

eps describes the convergence threshold for sequential imputation:

Parameter imp_var

(default: TRUE)

result <- vimpute(
  data = data,
  imp_var = TRUE
  )

Creating indicator variables for imputed values adds “_imp” columns (TRUE/FALSE) to mark which data points were imputed. This is particularly useful for tracking imputation effects and conducting diagnostic analyses.

Parameter pred_history

(default: TRUE)

print(tail(result$pred_history, 9))
#>    iteration variable index predicted_values
#>        <int>   <char> <int>            <num>
#> 1:        10    Sleep    62             10.7
#> 2:        10     Span     4              7.0
#> 3:        10     Span    13              6.0
#> 4:        10     Span    35              6.0
#> 5:        10     Span    36              7.0
#> 6:        10     Gest    13             42.0
#> 7:        10     Gest    19            225.0
#> 8:        10     Gest    20             90.0
#> 9:        10     Gest    56             33.0

When enabled (TRUE), this option saves prediction trajectories in $pred_history, allowing users to track how imputed values evolve across iterations. This feature is particularly useful for diagnosing convergence issues.

Performance

In order to validate the performance of vimpute() the iris dataset is used. Firstly, some values are randomly set to NA.

library(reactable)

data(iris)
df <- as.data.table(iris)
colnames(df) <- c("S.Length","S.Width","P.Length","P.Width","Species")
# randomly produce some missing values in the data
set.seed(1)
nbr_missing <- 50
y <- data.frame(row=sample(nrow(iris),size = nbr_missing,replace = T),
                col=sample(ncol(iris)-1,size = nbr_missing,replace = T))
y<-y[!duplicated(y),]
df[as.matrix(y)]<-NA

aggr(df)

sapply(df, function(x)sum(is.na(x)))
#> S.Length  S.Width P.Length  P.Width  Species 
#>       12       10       13       12        0

The data contains missing values across all variables, with some observations missing multiple values. The subsequent step involves variable imputation, and the following tables present the rounded first five imputation results for each variable.

For default model:

For xgboost model: