
Package ‘cape’
January 9, 2024

Title Combined Analysis of Pleiotropy and Epistasis for Diversity
Outbred Mice

Version 3.1.2

Description Combined Analysis of Pleiotropy and Epistasis infers predictive
networks between genetic variants and phenotypes. It can be used with
standard two-parent populations as well as multi-parent populations, such
as the Diversity Outbred (DO) mice, Collaborative Cross (CC) mice, or the
multi-parent advanced generation intercross (MAGIC) population of Arabidopsis
thaliana. It uses complementary information of pleiotropic gene variants across
different phenotypes to resolve models of epistatic interactions between alleles.
To do this, cape reparametrizes main effect and interaction coefficients from
pairwise variant regressions into directed influence parameters. These
parameters describe how alleles influence each other, in terms of suppression
and enhancement, as well as how gene variants influence phenotypes. All of the
final interactions are reported as directed interactions between pairs of
parental alleles. For detailed descriptions of the methods used in this package
please see the following references.
Carter, G. W., Hays, M., Sherman, A. & Galitski, T. (2012) <doi:10.1371/journal.pgen.1003010>.
Tyler, A. L., Lu, W., Hen-
drick, J. J., Philip, V. M. & Carter, G. W. (2013) <doi:10.1371/journal.pcbi.1003270>.

License GPL-3

Encoding UTF-8

Depends R (>= 3.6)

Suggests testthat (>= 2.3.2), knitr (>= 1.29), rmarkdown, parallel

Imports abind, caTools, corpcor, doParallel, evd, foreach, here,
igraph, Matrix, pheatmap, pracma, propagate, qtl, qtl2,
qtl2convert, R6 (>= 2.4.1), RColorBrewer (>= 1.1-2), regress
(>= 1.3-21), shape (>= 1.4.5), stats, tools, utils, yaml (>=
2.2.1)

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation no

1

https://doi.org/10.1371/journal.pgen.1003010
https://doi.org/10.1371/journal.pcbi.1003270

2 R topics documented:

Author Anna Tyler [aut, cre],
Jake Emerson [aut],
Baha El Kassaby [aut],
Ann Wells [aut],
Georgi Kolishovski [aut],
Vivek Philip [aut],
Gregory Carter [aut]

Maintainer Anna Tyler <anna.tyler@jax.org>

Repository CRAN

Date/Publication 2024-01-09 11:00:06 UTC

R topics documented:
calc_delta_errors . 3
calc_emp_p . 4
calc_p . 4
Cape-class . 5
cape2mpp . 19
direct_influence . 20
error_prop . 21
get_covar . 22
get_eigentraits . 23
get_geno . 23
get_marker_location . 24
get_marker_name . 24
get_network . 25
get_pairs_for_pairscan . 26
get_pheno . 27
hist_pheno . 28
impute_missing_geno . 28
kinship . 30
load_input_and_run_cape . 31
marker2covar . 32
norm_pheno . 33
pairscan . 34
pheno2covar . 36
plink2cape . 36
plot_effects . 37
plot_full_network . 39
plot_network . 42
plot_pairscan . 43
plot_pheno_cor . 44
plot_singlescan . 45
plot_svd . 46
plot_variant_influences . 48
qnorm_pheno . 50
qtl2_to_cape . 50

calc_delta_errors 3

read_parameters . 51
read_population . 52
remove_ind . 53
remove_kin_ind . 54
remove_markers . 54
remove_missing_genotype_data . 55
remove_unused_markers . 56
run_cape . 57
select_eigentraits . 58
select_markers_for_pairscan . 59
select_pheno . 61
singlescan . 62
write_population . 63
write_variant_influences . 64

Index 66

calc_delta_errors Error propagation

Description

This function performs error propagation on coefficients and standard errors.

Usage

calc_delta_errors(markers, beta_m, se, beta_cov)

Arguments

markers The marker names being tested

beta_m The main-effects coefficient matrix for the pairwise regression of the given pair.

se The standard errors for the marker pair.

beta_cov The model covariance matrix from the pairwise regression

Value

Returns the error propagated coefficients and standard errors for m12 and m21

4 calc_p

calc_emp_p Calculate empirical p-values

Description

This function uses ecdf to calculate empirical p values given a null distribution and an observed
distribution

Usage

calc_emp_p(obs_dist, null_dist)

Arguments

obs_dist The observed distribution

null_dist The null distribution

Value

An empirical p value for each observed value

calc_p Calculate P Values for Interactions Based on Permutations

Description

Calculate P Values for Interactions Based on Permutations

Usage

calc_p(
data_obj,
pval_correction = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",

"none")
)

Arguments

data_obj A Cape data object
pval_correction

One of "holm", "fdr", "lfdr" or "none", indicating whether the p value correction
method used should be the Holm step-down procedure, false discovery rate,
local false discovery, or no correction rate respectively.

Cape-class 5

Value

The data object is returned with a new table called var_to_var_p_val. This table is the same as
var_to_var_influences, but with p value and adjusted p value columns appended.

Cape-class The CAPE data object

Description

The CAPE data object

The CAPE data object

Details

Class Cape defines a CAPE analysis object.

Slots

parameter_file string, full path to YAML file with initialization parameters
yaml_parameters string representing YAML CAPE parameters. See the vignette for more de-

scriptions of individual parameter settings.
results_path string, full path to directory for storing results (optional, a directory will be created

if one is not specified)
save_results Whether to save cape results. Defaults to FALSE.
use_saved_results Whether to use existing results from a previous run. This can save time if

re-running an analysis, but can lead to problems if the old run and new run have competing
settings. If errors arise, and use_saved_results is set to TRUE, try setting it to FALSE, or
deleting previous results.

pheno A matrix containing the traits to be analyzed. Traits are in columns and individuals are in
rows.

chromosome A vector the same length as the number of markers indicating which chromosome
each marker lives on.

marker_num A vector the same length as the number of markers indicating the index of each marker
marker_location A vector the same length as the number of markers indicating the genomic

position of each marker. The positions are primarily used for plotting and can be in base pairs,
centiMorgans, or dummy variables.

marker_selection_method A string indicating how markers should be selected for the pairscan.
Options are "top_effects" or "from_list." If "top_effects," markers are selected using main ef-
fect sizes. If "from_list" markers are specified using a vector of marker names. See select_markers_for_pairscan.

geno_names The dimnames of the genotype array. The genotype array is a three-dimensional array
in which rows are individuals, columns are alleles, and the third dimension houses the markers.
Genotypes are pulled for analysis using get_geno based on geno_names. Only the individu-
als, alleles, and markers listed in geno_names are taken from the genotype matrix. Functions
that remove markers and individuals from analysis always operate on geno_names in addition
to other relevant slots. The names of geno_names must be "mouse", "allele", "locus."

6 Cape-class

geno A three dimensional array holding genotypes for each animal for each allele at each marker.
The genotypes are continuously valued probabilities ranging from 0 to 1. The dimnames of
geno must be "mouse", "allele", and "locus," even if the individuals are not mice.

geno_for_pairscan A two-dimensional matrix holding the genotypes that will be analyzed in the
pairscan. Alleles are in columns and individuals are in rows. As in the geno array, values are
continuous probabilities ranging from 0 to 1.

peak_density The density parameter for select_markers_for_pairscan. Determines how densely
markers under an individual effect size peak are selected for the pairscan if marker_selection_method
is TRUE. Defaults to 0.5.

window_size The window size used by select_markers_for_pairscan. It specifies how many
markers are used to smooth effect size curves for automatic peak identification. If set to
NULL, window_size is determined automatically. Used when marker_selection_method is
TRUE.

tolerance The wiggle room afforded to select_markers_for_pairscan in finding a target num-
ber of markers. If num_alleles_in_pairscan is 100 and the tolerance is 5, the algorithm will
stop when it identifies anywhere between 95 and 105 markers for the pairscan.

ref_allele A string of length 1 indicating which allele to use as the reference allele. In two-
parent crosses, this is usually allele A. In DO/CC populations, we recommend using B as the
reference allele. B is the allele from the C57Bl6/J mouse, which is often used as a reference
strain.

alpha The significance level for calculating effect size thresholds in the singlescan. If singles-
can_perm is 0, this parameter is ignored.

covar_table A matrix of covariates with covariates in columns and individuals in rows. Must be
numeric.

num_alleles_in_pairscan The number of alleles to test in the pairwise scan. Because Cape is
computationally intensive, we usually need to test only a subset of available markers in the
pairscan, particularly if the kinship correction is being used.

max_pair_cor the maximum Pearson correlation between two markers. If their correlation ex-
ceeds this value, they will not be tested against each other in the pairscan. This threshold is
set to prevent false positive arising from testing highly correlated markers. If this value is set
to NULL, min_per_genotype must be specified.

min_per_genotype minimum The minimum number of individuals allowable per genotype com-
bination in the pair scan. If for a given marker pair, one of the genotype combinations is
underrepresented, the marker pair is not tested. If this value is NULL, max_pair_cor must be
specified.

pairscan_null_size The total size of the null distribution. This is DIFFERENT than the number
of permutations to run. Each permutation generates n choose 2 elements for the pairscan. So
for example, a permutation that tests 100 pairs of markers will generate a null distribution of
size 4950. This process is repeated until the total null size is reached. If the null size is set
to 5000, two permutations of 100 markers would be done to get to a null distribution size of
5000.

p_covar A vector of strings specifying the names of covariates derived from traits. See pheno2covar.

g_covar A vector of strings specifying the names of covariates derived from genetic markers. See
marker2covar.

Cape-class 7

p_covar_table A matrix holding the individual values for each trait-derived covariate. See pheno2covar.

g_covar_table A matrix holding the individual values for each marker-derived covariate. See
marker2covar.

model_family Indicates the model family of the phenotypes This can be either "gaussian" or "bino-
mial". If this argument is length 1, all phenotypes will be assigned to the same family. Pheno-
types can be assigned different model families by providing a vector of the same length as the
number of phenotypes, indicating how each phenotype should be modeled. See singlescan.

scan_what A string indicating whether "eigentraits", "normalized_traits", or "raw_traits" should
be analyzed. See get_pheno.

ET A matrix holding the eigentraits to be analyzed.

singular_values Added by get_eigentraits. A vector holding the singular values from the
singular value decomposition of the trait matrix. They are used in rotating the final direct influ-
ences back to trait space from eigentrait space. See get_eigentraits and direct_influence.

right_singular_vectors Added by get_eigentraits. A matrix containing the right singular
vectors from the singular value decomposition of the trait matrix. They are used in rotating
the final direct influences back to trait space from eigentrait space. See get_eigentraits and
direct_influence.

traits_scaled Whether the traits should be mean-centered and standardized before analyzing.

traits_normalized Whether the traits should be rank Z normalized before analyzing.

var_to_var_influences_perm added in error_prop The list of results from the error propaga-
tion of permuted coefficients.

var_to_var_influences added in error_prop The list of results from the error propagation of
coefficients.

pval_correction Options are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr",
"none"

linkage_blocks_collapsed A list containing assignments of markers to linkage blocks calcu-
lated by linkage_blocks_network and plot_network. In this list there can be multiple
markers assigned to a single linkage block.

linkage_blocks_full A list containing assignments of markers to linkage blocks when no link-
age blocks are calculated. In this list there can only be one marker per "linkage block". See
linkage_blocks_network and plot_network.

var_to_var_p_val The final table of cape interaction results calculated by error_prop.

max_var_to_pheno_influence The final table of cape direct influences of markers to traits calcu-
lated by direct_influence.

collapsed_net An adjacency matrix holding significant cape interactions between linkage blocks.
See plot_network and get_network.

full_net An adjacency matrix holding significant cape interactions between individual markers.
See plot_network and get_network.

use_kinship Whether to use a kinship correction in the analysis.

kinship_type Which type of kinship matrix to use. Either "overall" for the overall kinship matrix
or "ltco" for leave-two-chromosomes-out.

transform_to_phenospace whether to transform to phenospace or not.

8 Cape-class

Public fields

parameter_file full path to YAML file with initialization parameters.

yaml_parameters string representing YAML CAPE parameters. See the vignette for more de-
scriptions of individual parameter settings.

results_path string, full path to directory for storing results (optional, a directory will be created
if one is not specified).

save_results Whether to save cape results. Defaults to FALSE.

use_saved_results Whether to use existing results from a previous run. This can save time if
re-running an analysis, but can lead to problems if the old run and new run have competing
settings. If errors arise, and use_saved_results is set to TRUE, try setting it to FALSE, or
deleting previous results.

pheno A matrix containing the traits to be analyzed. Traits are in columns and individuals are in
rows.

chromosome A vector the same length as the number of markers indicating which chromosome
each marker lives on.

marker_num A vector the same length as the number of markers indicating the index of each
marker.

marker_location A vector the same length as the number of markers indicating the genomic
position of each marker. The positions are primarily used for plotting and can be in base pairs,
centiMorgans, or dummy variables.

geno_names The dimnames of the genotype array. The genotype array is a three-dimensional array
in which rows are individuals, columns are alleles, and the third dimension houses the markers.
Genotypes are pulled for analysis using get_geno based on geno_names. Only the individu-
als, alleles, and markers listed in geno_names are taken from the genotype matrix. Functions
that remove markers and individuals from analysis always operate on geno_names in addition
to other relevant slots. The names of geno_names must be "mouse", "allele", "locus."

geno A three dimensional array holding genotypes for each animal for each allele at each marker.
The genotypes are continuously valued probabilities ranging from 0 to 1. The dimnames of
geno must be "mouse", "allele", and "locus," even if the individuals are not mice.

peak_density The density parameter for select_markers_for_pairscan. Determines how densely
markers under an individual effect size peak are selected for the pairscan if marker_selection_method
is TRUE. Defaults to 0.5.

window_size The window size used by select_markers_for_pairscan. It specifies how many
markers are used to smooth effect size curves for automatic peak identification. If set to
NULL, window_size is determined automatically. Used when marker_selection_method is
TRUE.

tolerance The wiggle room afforded to select_markers_for_pairscan in finding a target num-
ber of markers. If num_alleles_in_pairscan is 100 and the tolerance is 5, the algorithm will
stop when it identifies anywhere between 95 and 105 markers for the pairscan.

ref_allele A string of length 1 indicating which allele to use as the reference allele. In two-
parent crosses, this is usually allele A. In DO/CC populations, we recommend using B as the
reference allele. B is the allele from the C57Bl6/J mouse, which is often used as a reference
strain.

Cape-class 9

alpha The significance level for calculating effect size thresholds in the singlescan. If singles-
can_perm is 0, this parameter is ignored.

covar_table A matrix of covariates with covariates in columns and individuals in rows. Must be
numeric.

num_alleles_in_pairscan The number of alleles to test in the pairwise scan. Because Cape is
computationally intensive, we usually need to test only a subset of available markers in the
pairscan, particularly if the kinship correction is being used.

max_pair_cor The maximum Pearson correlation between two markers. If their correlation ex-
ceeds this value, they will not be tested against each other in the pairscan. This threshold is
set to prevent false positive arising from testing highly correlated markers. If this value is set
to NULL, min_per_genotype must be specified.

min_per_genotype minimum The minimum number of individuals allowable per genotype com-
bination in the pair scan. If for a given marker pair, one of the genotype combinations is
underrepresented, the marker pair is not tested. If this value is NULL, max_pair_cor must be
specified.

pairscan_null_size The total size of the null distribution. This is DIFFERENT than the number
of permutations to run. Each permutation generates n choose 2 elements for the pairscan. So
for example, a permutation that tests 100 pairs of markers will generate a null distribution of
size 4950. This process is repeated until the total null size is reached. If the null size is set
to 5000, two permutations of 100 markers would be done to get to a null distribution size of
5000.

p_covar A vector of strings specifying the names of covariates derived from traits. See pheno2covar.

g_covar A vector of strings specifying the names of covariates derived from genetic markers. See
marker2covar.

p_covar_table A matrix holding the individual values for each trait-derived covariate. See pheno2covar.

g_covar_table A matrix holding the individual values for each marker-derived covariate. See
marker2covar.

model_family Indicates the model family of the phenotypes. This can be either "gaussian" or
"binomial". If this argument is length 1, all phenotypes will be assigned to the same fam-
ily. Phenotypes can be assigned different model families by providing a vector of the same
length as the number of phenotypes, indicating how each phenotype should be modeled. See
singlescan.

scan_what A string indicating whether "eigentraits", "normalized_traits", or "raw_traits" should
be analyzed. See get_pheno.

ET A matrix holding the eigentraits to be analyzed.

singular_values Added by get_eigentraits. A vector holding the singular values from the
singular value decomposition of the trait matrix. They are used in rotating the final direct influ-
ences back to trait space from eigentrait space. See get_eigentraits and direct_influence.

right_singular_vectors Added by get_eigentraits. A matrix containing the right singular
vectors from the singular value decomposition of the trait matrix. They are used in rotating
the final direct influences back to trait space from eigentrait space. See get_eigentraits and
direct_influence.

traits_scaled Whether the traits should be mean-centered and standardized before analyzing.

traits_normalized Whether the traits should be rank Z normalized before analyzing.

10 Cape-class

var_to_var_influences_perm added in error_prop. The list of results from the error propaga-
tion of permuted coefficients.

var_to_var_influences added in error_prop. The list of results from the error propagation of
coefficients.

pval_correction Options are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr",
"none".

var_to_var_p_val The final table of cape interaction results calculated by error_prop.

max_var_to_pheno_influence The final table of cape direct influences of markers to traits calcu-
lated by direct_influence.

full_net An adjacency matrix holding significant cape interactions between individual markers.
See plot_network and get_network.

use_kinship Whether to use a kinship correction in the analysis.

kinship_type which type of kinship matrix to use

transform_to_phenospace whether to transform to phenospace or not.

Active bindings

geno_for_pairscan geno for pairscan

marker_selection_method marker selection method

linkage_blocks_collapsed linkage blocks collapsed

linkage_blocks_full linkage blocks full

collapsed_net collapsed net

Methods

Public methods:
• Cape$assign_parameters()

• Cape$check_inputs()

• Cape$check_geno_names()

• Cape$new()

• Cape$plotSVD()

• Cape$plotSinglescan()

• Cape$plotPairscan()

• Cape$plotVariantInfluences()

• Cape$plotNetwork()

• Cape$plotFullNetwork()

• Cape$writeVariantInfluences()

• Cape$set_pheno()

• Cape$set_geno()

• Cape$create_covar_table()

• Cape$save_rds()

• Cape$read_rds()

Cape-class 11

Method assign_parameters(): Assigns variables from the parameter file to attributes in the
Cape object.

Usage:
Cape$assign_parameters()

Method check_inputs(): Checks the dimensionality of inputs and its consistency.

Usage:
Cape$check_inputs()

Method check_geno_names(): Checks genotype names.

Usage:
Cape$check_geno_names()

Method new(): Initialization method.

Usage:
Cape$new(
parameter_file = NULL,
yaml_parameters = NULL,
results_path = NULL,
save_results = FALSE,
use_saved_results = TRUE,
pheno = NULL,
chromosome = NULL,
marker_num = NULL,
marker_location = NULL,
geno_names = NULL,
geno = NULL,
.geno_for_pairscan = NULL,
peak_density = NULL,
window_size = NULL,
tolerance = NULL,
ref_allele = NULL,
alpha = NULL,
covar_table = NULL,
num_alleles_in_pairscan = NULL,
max_pair_cor = NULL,
min_per_genotype = NULL,
pairscan_null_size = NULL,
p_covar = NULL,
g_covar = NULL,
p_covar_table = NULL,
g_covar_table = NULL,
model_family = NULL,
scan_what = NULL,
ET = NULL,
singular_values = NULL,
right_singular_vectors = NULL,

12 Cape-class

traits_scaled = NULL,
traits_normalized = NULL,
var_to_var_influences_perm = NULL,
var_to_var_influences = NULL,
pval_correction = NULL,
var_to_var_p_val = NULL,
max_var_to_pheno_influence = NULL,
full_net = NULL,
use_kinship = NULL,
kinship_type = NULL,
transform_to_phenospace = NULL,
plot_pdf = NULL

)

Arguments:
parameter_file string, full path to YAML file with initialization parameters
yaml_parameters string representing YAML CAPE parameters. See the vignette for more

descriptions of individual parameter settings.
results_path string, full path to directory for storing results (optional, a directory will be

created if one is not specified)
save_results Whether to save cape results. Defaults to TRUE.
use_saved_results Whether to use existing results from a previous run. This can save time if

re-running an analysis, but can lead to problems if the old run and new run have competing
settings. If errors arise, and use_saved_results is set to TRUE, try setting it to FALSE, or
deleting previous results.

pheno A matrix containing the traits to be analyzed. Traits are in columns and individuals are
in rows.

chromosome A vector the same length as the number of markers indicating which chromosome
each marker lives on.

marker_num A vector the same length as the number of markers indicating the index of each
marker

marker_location A vector the same length as the number of markers indicating the genomic
position of each marker. The positions are primarily used for plotting and can be in base
pairs, centiMorgans, or dummy variables.

geno_names The dimnames of the genotype array. The genotype array is a three-dimensional
array in which rows are individuals, columns are alleles, and the third dimension houses
the markers. Genotypes are pulled for analysis using get_geno based on geno_names.
Only the individuals, alleles, and markers listed in geno_names are taken from the genotype
matrix. Functions that remove markers and individuals from analysis always operate on
geno_names in addition to other relevant slots. The names of geno_names must be "mouse",
"allele", "locus."

geno A three dimensional array holding genotypes for each animal for each allele at each
marker. The genotypes are continuously valued probabilities ranging from 0 to 1. The
dimnames of geno must be "mouse", "allele", and "locus," even if the individuals are not
mice.

.geno_for_pairscan A two-dimensional matrix holding the genotypes that will be analyzed
in the pairscan. Alleles are in columns and individuals are in rows. As in the geno array,
values are continuous probabilities ranging from 0 to 1.

Cape-class 13

peak_density The density parameter for select_markers_for_pairscan. Determines how
densely markers under an individual effect size peak are selected for the pairscan if marker_selection_method
is TRUE. Defaults to 0.5.

window_size The window size used by select_markers_for_pairscan. It specifies how
many markers are used to smooth effect size curves for automatic peak identification. If set
to NULL, window_size is determined automatically. Used when marker_selection_method
is TRUE.

tolerance The wiggle room afforded to select_markers_for_pairscan in finding a target
number of markers. If num_alleles_in_pairscan is 100 and the tolerance is 5, the algorithm
will stop when it identifies anywhere between 95 and 105 markers for the pairscan.

ref_allele A string of length 1 indicating which allele to use as the reference allele. In two-
parent crosses, this is usually allele A. In DO/CC populations, we recommend using B as
the reference allele. B is the allele from the C57Bl6/J mouse, which is often used as a
reference strain.

alpha The significance level for calculating effect size thresholds in the singlescan. If sin-
glescan_perm is 0, this parameter is ignored.

covar_table A matrix of covariates with covariates in columns and individuals in rows. Must
be numeric.

num_alleles_in_pairscan The number of alleles to test in the pairwise scan. Because Cape
is computationally intensive, we usually need to test only a subset of available markers in
the pairscan, particularly if the kinship correction is being used.

max_pair_cor the maximum Pearson correlation between two markers. If their correlation
exceeds this value, they will not be tested against each other in the pairscan. This threshold
is set to prevent false positive arising from testing highly correlated markers. If this value is
set to NULL, min_per_genotype must be specified.

min_per_genotype minimum The minimum number of individuals allowable per genotype
combination in the pair scan. If for a given marker pair, one of the genotype combinations
is underrepresented, the marker pair is not tested. If this value is NULL, max_pair_cor must
be specified.

pairscan_null_size The total size of the null distribution. This is DIFFERENT than the
number of permutations to run. Each permutation generates n choose 2 elements for the
pairscan. So for example, a permutation that tests 100 pairs of markers will generate a null
distribution of size 4950. This process is repeated until the total null size is reached. If the
null size is set to 5000, two permutations of 100 markers would be done to get to a null
distribution size of 5000.

p_covar A vector of strings specifying the names of covariates derived from traits. See pheno2covar.
g_covar A vector of strings specifying the names of covariates derived from genetic markers.

See marker2covar.
p_covar_table A matrix holding the individual values for each trait-derived covariate. See

pheno2covar.
g_covar_table A matrix holding the individual values for each marker-derived covariate. See

marker2covar.
model_family Indicates the model family of the phenotypes This can be either "gaussian" or

"binomial". If this argument is length 1, all phenotypes will be assigned to the same family.
Phenotypes can be assigned different model families by providing a vector of the same
length as the number of phenotypes, indicating how each phenotype should be modeled.
See singlescan.

14 Cape-class

scan_what A string indicating whether "eigentraits", "normalized_traits", or "raw_traits" should
be analyzed. See get_pheno.

ET A matrix holding the eigentraits to be analyzed.
singular_values Added by get_eigentraits. A vector holding the singular values from

the singular value decomposition of the trait matrix. They are used in rotating the final
direct influences back to trait space from eigentrait space. See get_eigentraits and
direct_influence.

right_singular_vectors Added by get_eigentraits. A matrix containing the right singu-
lar vectors from the singular value decomposition of the trait matrix. They are used in rotat-
ing the final direct influences back to trait space from eigentrait space. See get_eigentraits
and direct_influence.

traits_scaled Whether the traits should be mean-centered and standardized before analyzing.
traits_normalized Whether the traits should be rank Z normalized before analyzing.
var_to_var_influences_perm added in error_prop The list of results from the error propa-

gation of permuted coefficients.
var_to_var_influences added in error_prop The list of results from the error propagation

of coefficients.
pval_correction Options are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr",

"none"
var_to_var_p_val The final table of cape interaction results calculated by error_prop.
max_var_to_pheno_influence The final table of cape direct influences of markers to traits

calculated by direct_influence.
full_net An adjacency matrix holding significant cape interactions between individual mark-

ers. See plot_network and get_network.
use_kinship Whether to use a kinship correction in the analysis.
kinship_type Which type of kinship matrix to use. Either "overall" or "ltco."
transform_to_phenospace whether to transform to phenospace or not.
plot_pdf logical. If TRUE, results are generated as pdf

Method plotSVD(): Plot Eigentraits

Usage:
Cape$plotSVD(filename)

Arguments:

filename filename of result plot

Method plotSinglescan(): Plot results of single-locus scans

Usage:
Cape$plotSinglescan(
filename,
singlescan_obj,
width = 20,
height = 6,
units = "in",
res = 300,
standardized = TRUE,

Cape-class 15

allele_labels = NULL,
alpha = alpha,
include_covars = TRUE,
line_type = "l",
pch = 16,
cex = 0.5,
lwd = 3,
traits = NULL

)

Arguments:

filename filename of result plot.
singlescan_obj a singlescan object from singlescan

width width of result plot, default is 20.
height height of result plot, default is 6.
units units of result plot, default is "in".
res resolution of result plot, default is 300.
standardized If TRUE t statistics are plotted. If FALSE, effect sizes are plotted, default is

TRUE
allele_labels A vector of labels for the alleles if different that those stored in the data_object.
alpha the alpha significance level. Lines for significance values will only be plotted if n_perm

> 0 when singlescan was run. And only alpha values specified in singlescan can be
plotted.

include_covars Whether to include covariates in the plot.
line_type as defined in plot
pch see the "points()" R function. Default is 16 (a point).
cex see the "points()" R function. Default is 0.5.
lwd line width, default is 3.
traits a vector of trait names to plot. Defaults to all traits.

Method plotPairscan(): Plot the result of the pairwise scan

Usage:
Cape$plotPairscan(
filename,
pairscan_obj,
phenotype = NULL,
show_marker_labels = TRUE,
show_alleles = FALSE

)

Arguments:

filename filename of result plot.
pairscan_obj a pairscan object from pairscan

phenotype The names of the phenotypes to be plotted. If NULL, all phenotypes are plotted.
show_marker_labels If TRUE marker labels are plotted along the axes. If FALSE, they are

omitted.

16 Cape-class

show_alleles If TRUE, the allele of each marker is indicated by color.

Method plotVariantInfluences(): Plot cape coefficients

Usage:
Cape$plotVariantInfluences(
filename,
width = 10,
height = 7,
p_or_q = p_or_q,
standardize = FALSE,
not_tested_col = "lightgray",
covar_width = NULL,
pheno_width = NULL

)

Arguments:
filename filename of result plot.
width width of result plot, default is 10.
height height of result plot, default is 7.
p_or_q A threshold indicating the maximum p value (or q value if FDR was used) of significant

interactions and main effects.
standardize Whether to plot effect sizes (FALSE) or standardized effect sizes (TRUE), default

is TRUE.
not_tested_col The color to use for marker pairs not tested. Takes the same values as pos_col

and neg_col, default is "lightgray".
covar_width See pheno_width. This is the same effect for covariates.
pheno_width Each marker and trait gets one column in the matrix. If there are many markers,

this makes the effects on the traits difficult to see. pheno_width increases the number of
columns given to the phenotypes. For example, if pheno_width = 11, the phenotypes will
be shown 11 times wider than individual markers.

Method plotNetwork(): Plots cape results as a circular network

Usage:
Cape$plotNetwork(
filename,
label_gap = 10,
label_cex = 1.5,
show_alleles = FALSE

)

Arguments:
filename filename of result plot.
label_gap A numeric value indicating the size of the gap the chromosomes and their labels,

default is 10.
label_cex A numeric value indicating the size of the labels, default is 1.5.
show_alleles TRUE show the alleles, FALSE does not show alleles. Default is FALSE.

Method plotFullNetwork(): Plot the final epistatic network in a traditional network view.

Cape-class 17

Usage:
Cape$plotFullNetwork(
filename,
zoom = 1.2,
node_radius = 0.3,
label_nodes = TRUE,
label_offset = 0.4,
label_cex = 0.5,
bg_col = "lightgray",
arrow_length = 0.1,
layout_matrix = "layout_with_kk",
legend_position = "topright",
edge_lwd = 1,
legend_radius = 2,
legend_cex = 0.7,
xshift = -1

)

Arguments:
filename filename of result plot.
zoom Allows the user to zoom in and out on the image if the network is either running off the

edges of the plot or too small in the middle of the plot, default is 1.2.
node_radius The size of the pie chart for each node, default is 0.3.
label_nodes A logical value indicating whether the nodes should be labeled. Users may want

to remove labels for large networks, default is TRUE.
label_offset The amount by which to offset the node labels from the center of the nodes,

default is 0.4.
label_cex The size of the node labels, default is 0.5.
bg_col The color to be used in pie charts for non-significant main effects. Takes the same

values as pos_col, default is "lightgray".
arrow_length The length of the head of the arrow, default is 0.1.
layout_matrix Users have the option of providing their own layout matrix for the network.

This should be a two column matrix indicating the x and y coordinates of each node in the
network, default is "layout_with_kk".

legend_position The position of the legend on the plot, default is "topright".
edge_lwd The thickness of the arrows showing the interactions, default is 1.
legend_radius The size of the legend indicating which pie piece corresponds to which traits,

default is 2.
legend_cex The size of the labels in the legend, default is 0.7.
xshift A constant by which to shift the x values of all nodes in the network, default is -1.

Method writeVariantInfluences(): Write significant cape interactions to a csv file.
Usage:
Cape$writeVariantInfluences(
filename,
p_or_q = 0.05,
include_main_effects = TRUE

)

18 Cape-class

Arguments:

filename filename of csv file
p_or_q A threshold indicating the maximum adjusted p value considered significant. If an FDR

method has been used to correct for multiple testing, this value specifies the maximum q
value considered significant, default is 0.05.

include_main_effects Whether to include main effects (TRUE) or only interaction effects
(FALSE) in the output table, default is TRUE.

Method set_pheno(): Set phenotype

Usage:

Cape$set_pheno(val)

Arguments:

val phenotype value.

Method set_geno(): Set genotype

Usage:

Cape$set_geno(val)

Arguments:

val genotype value.

Method create_covar_table(): Create covariate table

Usage:

Cape$create_covar_table(value)

Arguments:

value covariate values

Method save_rds(): Save to RDS file

Usage:

Cape$save_rds(object, filename)

Arguments:

object data to be saved.
filename filename of result RDS file.

Method read_rds(): Read RDS file

Usage:

Cape$read_rds(filename)

Arguments:

filename RDS filename to be read.

cape2mpp 19

Examples

Not run:
param_file <- "cape_parameters.yml"
results_path = "."
cape_obj <- read_population("cross.csv")
combined_obj <- cape2mpp(cape_obj)
pheno_obj <- combined_obj$data_obj
geno_obj <- combined_obj$geno_obj

data_obj <- Cape$new(parameter_file = param_file,
results_path = results_path, pheno = pheno_obj$pheno, chromosome = pheno_obj$chromosome,
marker_num = pheno_obj$marker_num, marker_location = pheno_obj$marker_location,
geno_names = pheno_obj$geno_names, geno = geno_obj)

End(Not run)

cape2mpp Converts a read_population object to a multi-parent object

Description

This function converts an object formatted for cape 1.0 to an object formatted for cape 2.0

Usage

cape2mpp(data_obj, geno_obj = NULL)

Arguments

data_obj a data_obj formatted for cape 1.0

geno_obj a genotype object. If geno_obj is NULL the genotype object is generated from
data_obj$geno.

Value

This function returns a list with two objects: list("data_obj" = data_obj, "geno_obj" = geno_obj)
These two objects must be separated again to run through cape.

20 direct_influence

direct_influence Calculate the significance of direct influences of variant pairs on phe-
notypes

Description

This function rotates the variant-to-eigentrait effects back to variant-to-phenotype effects. It multi-
plies the β-coefficient matrices of each variant (i) and each phenotype (j) (βj

i) by the singular value
matrices (V ·WT) obtained from the singular value decomposition performed in get_eigentraits.
βj
i = V ·WT . It also uses the permutation data from the pairwise scan (pairscan) to calculate an

empirical p value for the influence of each marker pair on each phenotype. The empirical p values
are then adjusted for multiple testing using Holm’s step-down procedure.

Usage

direct_influence(
data_obj,
pairscan_obj,
transform_to_phenospace = TRUE,
pval_correction = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",

"none"),
perm_data = NULL,
save_permutations = FALSE,
n_cores = 4,
path = ".",
verbose = FALSE

)

Arguments

data_obj a Cape object

pairscan_obj a pairscan object
transform_to_phenospace

A logical value. If TRUE, the influence of each marker on each eigentrait is
transformed to the influence of each marker on each of the original phenotypes.
If FALSE, no transformation is made. If the pair scan was done on eigentraits,
the influence of each marker on each eigentrait is calculated. If the pair scan
was done on raw phenotypes, the influence of each marker on each phenotype is
calculated. The default behavior is to transform variant influences on eigentraits
to variant influences on phenotypes.

pval_correction

One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none",
indicating whether the p value correction method used should be the Holm step-
down procedure, false discovery rate or local false discovery rate respectively.

perm_data The permutation data generated by pairscan.

error_prop 21

save_permutations

A logical value indicating whether the data from permutations should be saved.
Saving the permutations requires more memory but can be helpful in diagnos-
tics. If save_permutations is TRUE all permutation data are saved in an object
called "permutation.data.RDS".

n_cores The number of cores to use if using parallel computing

path The path in which to write output data

verbose A logical value indicating whether to write progress to standard out.

Value

This function returns data_obj with an additional list called max_var_to_pheno_influence. This list
has one element for each trait. Each element is a table with eight columns: marker: the marker
name conditioning_marker: the marker whose effect was conditioned on to achieve the maximum
main effect of marker. coef: the direct influence coefficient. se: the standard error of the direct
influence coefficient t_stat: the t statistic for the direct influence coefficient |t_stat|: the absolute
value of the t statistic emp_p: the empirical p value of the direct influence coefficient p_adjusted:
the adjusted p value of the direct influence coefficient.

error_prop Estimate Errors of Regression Coefficients

Description

This function uses error propagation formulas for quantities computed from regression coefficients
to estimate the error for all regression coefficients.

Usage

error_prop(
data_obj,
pairscan_obj,
perm = FALSE,
verbose = FALSE,
run_parallel = FALSE,
n_cores = 4,
just_m = FALSE

)

Arguments

data_obj a Cape object

pairscan_obj a pairscan object from pairscan

perm A logical value to indicate whether error propagation should be performed on
the test statistics (FALSE) or the permuted test statistics (TRUE).

22 get_covar

verbose A logical value to indicate whether the progress of the function should be printed
to the screen.

run_parallel boolean, default = FALSE

n_cores The number of cores to use if run_parallel is TRUE, default = 4

just_m If TRUE only the m12 and m21 values are calculated. If FALSE, the default,
the standard deviations are also calculated.

Value

This function returns the data object with a new list element: var_to_var_influences if perm is set
to FALSE and var_to_var_influences_perm if perm is set to TRUE. These tables include the errors
calculated for the marker1 to marker2 (m21) influences as well as the marker2 to marker1 (m12)
influences. These results are used by calc_p to calculate empirical p values.

get_covar Get covariate information

Description

This function returns information about the covariates specified for the cape run.

Usage

get_covar(data_obj)

Arguments

data_obj a Cape object

Value

Returns a list with the following elements: covar_names: a character vector holding the names of
the covariates covar_type: a character vector indicating whether each covariate derived from the
phenotype matrix ("p") or the genotype matrix ("g") covar_loc: A numeric vector indicating the
locations of each covariate covar_table: A matrix holding the individual values for each covariate.

get_eigentraits 23

get_eigentraits Calculate eigentraits

Description

This function uses singular value decomposition (SVD) to calculate eigentraits from the phenotype
matrix in the cape data object. It adds the eigentrait matrix to the data object along with the singular
values and the right singular vectors.

Usage

get_eigentraits(data_obj, scale_pheno = TRUE, normalize_pheno = TRUE)

Arguments

data_obj a Cape object

scale_pheno A logical value indicating whether to mean-center and standardize the traits.
normalize_pheno

A logical value indicating whether to rankZ normalize the phenotypes.

Details

If scale_pheno is TRUE, the phenotypes are mean-centered and standardized before running the
svd.

Because we use SVD in this step, there can be no missing values in the phenotype matrix. Any
individuals with missing values are removed with a message.

Value

Returns the data object with the eigentraits, singular values, and right singular vectors added.

get_geno Gets the geno object

Description

This is an internal function returns the genotype matrix for scanning as defined by the markers and
individuals specified in

Usage

get_geno(data_obj, geno_obj)

24 get_marker_name

Arguments

data_obj a Cape object

geno_obj a genotype object.

Value

Returns the genotype array matching the markers and individuals specified in data_obj$geno_names

get_marker_location Get marker genomic position

Description

Given a vector of marker names or numbers, this function returns the genomic coordinates for each
marker, not including the chromosome number, which is retrieved using get_marker_chr.

Usage

get_marker_location(data_obj, markers)

Arguments

data_obj a Cape object

markers A vector of marker names

Value

A vector the same length as the input markers vector indicating the genomic coordinate of each
marker.

get_marker_name Get marker names

Description

Given a vector of marker numbers, this function returns the name of each marker.

Usage

get_marker_name(data_obj, markers)

Arguments

data_obj a Cape object

markers A vector of marker numbers

get_network 25

Value

A vector the same length as the input markers vector indicating the name of each marker

get_network Convert the final results to an adjacency matrix.

Description

This function converts the significant cape interactions to an adjacency matrix, which is then used
by plot_network

Usage

get_network(
data_obj,
geno_obj,
p_or_q = 0.05,
min_std_effect = 0,
standardize = FALSE,
collapse_linked_markers = TRUE,
threshold_power = 1,
verbose = FALSE,
plot_linkage_blocks = FALSE

)

Arguments

data_obj a Cape object

geno_obj a genotype object

p_or_q A threshold indicating the maximum adjusted p value considered significant. If
an fdr method has been used to correct for multiple testing, this value specifies
the maximum q value considered significant.

min_std_effect This numerical value offers an additional filtering method. If specified, only
interactions with standardized effect sizes greater then the min_std_effect will
be returned.

standardize A logical value indicating whether the values returned in the adjacency matrix
should be effect sizes (FALSE) or standardized effect sizes (TRUE). Defaults to
FALSE.

collapse_linked_markers

A logical value. If TRUE markers are combined into linkage blocks based on
correlation. If FALSE, each marker is treated as an independent observation.

threshold_power

A numerical value indicating the power to which to raise the marker correlation
matrix. This parameter is used in linkage_blocks_network to determine soft
thresholding in determining linkage block structure. Larger values result in more

26 get_pairs_for_pairscan

splitting of linkage blocks. Smaller values result in less splitting. The default
value of 1 uses the unmodified correlation matrix to determine linkage block
structure.

verbose A logical value indicating whether to print algorithm progress to standard out.
plot_linkage_blocks

A logical value indicating whether to plot heatmaps showing the marker corre-
lation structure and where the linkage block boundaries were drawn.

Value

This function returns the data object with an adjacency matrix defining the final cape network based
on the above parameters. The network is put into the slot collapsed_net if collapse_linked_markers
is set to TRUE, and full_net if collapse_linked_markers is set to FALSE. run_cape automatically
requests both networks be generated.

get_pairs_for_pairscan

Select marker pairs for pairscan

Description

This function selects which marker pairs can be tested in the pair scan. Even if all markers are
linearly independent, some marker pairs may have insufficient recombination between them to pop-
ulate all genotype combinations. Marker pairs for which genotype combinations have insufficient
numbers of individuals are not tested. This function determines which marker pairs have sufficient
representation in all genotype combinations.

Usage

get_pairs_for_pairscan(
gene,
covar_names = NULL,
max_pair_cor = NULL,
min_per_genotype = NULL,
run_parallel = FALSE,
n_cores = 4,
verbose = FALSE

)

Arguments

gene A two dimensional genotype matrix with rows containing individuals and columns
containing markers. Each entry is a value between 0 and 1 indicating the geno-
type of each individual at each marker.

covar_names A character vector indicating which covariates should be tested.

get_pheno 27

max_pair_cor A numeric value between 0 and 1 indicating the maximum Pearson correla-
tion that two markers are allowed. If the correlation between a pair of mark-
ers exceeds this threshold, the pair is not tested. If this value is set to NULL,
min_per_genotype must have a numeric value.

min_per_genotype

The minimum number of individuals allowable per genotype. If for a given
marker pair, one of the genotypes is underrepresented, the marker pair is not
tested. If this value is NULL, max_pair_cor must have a numeric value.

run_parallel A logical value indicating whether multiple processors should be used.

n_cores The number of cores to be used if run_parallel is TRUE

verbose A logical value. If TRUE, the script prints a message to the screen to indicate
that it is running. If FALSE, no message is printed.

Details

One and only one of min_per_genotype or max_pair_cor should be specified. We recommend that
if you have continuous genotype probabilities, you use max_pair_cor. If both values are specified,
this function will preferentially use max_pair_cor.

Value

This function returns a two-column matrix of marker pairs. This matrix is then used as an argu-
ment in one_pairscan_parallel, pairscan_null_kin, pairscan_null and pairscan to specify
which marker pairs should be tested.

get_pheno Get the phenotype matrix

Description

This function can return a number of different trait matrices depending on the arguments.

Usage

get_pheno(
data_obj,
scan_what = c("eigentraits", "normalized_traits", "raw_traits"),
covar = NULL

)

Arguments

data_obj a Cape object

28 impute_missing_geno

scan_what A character string. One of "eigentraits", "normalized.trait", or "raw_traits." If
"eigentraits" the function returns the eigentraits matrix. If "normalized_traits"
the function returns the trait matrix after mean-centering and normalizing. If
"raw.trait" the function returns the trait matrix before mean-centering and nor-
malization were applied.

covar A character value indicating which, if any, covariates the traits should be ad-
justed for. If covariates are specified, the function fits a linear model to specify
the traits with the covariates and returns the matrix of residuals (i.e. the traits
after adjusting for the covariates).

Value

A matrix in which each column is a trait, and each row is an individual. The values correspond to
the argument settings described above.

hist_pheno Plot trait histograms

Description

This function plots histograms of the traits held in the pheno slot of the data object.

Usage

hist_pheno(data_obj, pheno_which = NULL, pheno_labels = NULL)

Arguments

data_obj A Cape object

pheno_which A vector of strings indicating which traits to plot. Defaults to all traits.

pheno_labels A vector of strings providing alternate names for the traits in the plot if the
names in the data object are not good for plotting

impute_missing_geno Impute missing genotype data using k nearest neighbors

Description

This function uses k nearest neighbors to impute missing genotype data on a per chromosome basis.
If missing genotypes remain after imputations the user can prioritize whether to remove individuals,
markers, or whichever has fewer missing values.

impute_missing_geno 29

Usage

impute_missing_geno(
data_obj,
geno_obj = NULL,
k = 10,
ind_missing_thresh = 0,
marker_missing_thresh = 0,
prioritize = c("fewer", "ind", "marker"),
max_region_size = NULL,
min_region_size = NULL,
run_parallel = FALSE,
verbose = FALSE,
n_cores = 2

)

Arguments

data_obj a Cape object

geno_obj a genotype object

k The number of nearest neighbors to use to impute missing data. Defaults to 10.
ind_missing_thresh

percent A percentage of acceptable missing data. After imputation if an individ-
ual is missing more data than the percent specified, it will be removed.

marker_missing_thresh

A percentage of acceptable missing data. After imputation if a marker is missing
more data than the percent specified, it will be removed.

prioritize How to prioritize removal of rows and columns with missing data. "ind" = re-
move individuals with missing data exceeding the threshold before considering
markers to remove. "marker" = remove markers with missing data exceeding the
threshold before considering individuals to remove. "fewer" = Determine how
much data will be removed by prioritizing individuals or markers. Remove data
in whichever order removes the least amount of data.

max_region_size

maximum number of markers to be used in calculating individual similarity.
Defaults to the minimum chromosome size.

min_region_size

minimum number of markers to be used in calculating individual similarity De-
faults to the maximum chromosome size.

run_parallel A logical value indicating whether to run the process in parallel

verbose A logical value indicating whether to print progress to the screen.

n_cores integer number of available CPU cores to use for parallel processing

Details

This function is run by run_cape and runs automatically if a kinship correction is specified and
there are missing values in the genotype object.

30 kinship

The prioritize parameter can be a bit confusing. If after imputation, there is one marker for which
all data are missing, it makes sense to remove that one marker rather than all individuals with
missing data, since all individuals would be removed. Similarly, if there is one individual with
massive amounts of missing data, it makes sense to remove that individual, rather than all markers
that individual is missing. We recommend always using the default "fewer" option here unless you
know for certain that you want to prioritize individuals or markers for removal. There is no need
to specify max_region_size or min_region_size, but advanced users may want to specify them.
There is a trade-off between the time it takes to calculate a distance matrix for a large matrix
and the time it takes to slide through the genome imputing markers. This function does not yet
support imputation of covariates. If individuals are genotyped very densely, the user may want to
specify max_region_size to be smaller than the maximum chromosome size to speed calculation of
similarity matrices.

Value

This function returns a list that includes both the data_obj and geno_obj These objects must then be
separated again to continue through the cape analysis.

Examples

Not run:
combined_obj <- impute_missing_geno(data_obj, geno_obj)
new_data_obj <- combined_obj$data_obj
noew_geno_obj <- combined_obj$geno_obj

End(Not run)

kinship Calculate the kinship matrix

Description

This function produces a realized relationship matrix (kinship matrix) for use in adjusting for the
effect of inbred relatedness. We use the R/qtl2 function calc_kinship.

Usage

kinship(
data_obj,
geno_obj,
type = c("overall"),
n_cores = 4,
pop = c("MPP", "2PP", "RIL"),
results_path = NULL

)

load_input_and_run_cape 31

Arguments

data_obj a Cape object

geno_obj a genotype object

type type of kinship correction. Default is overall.

n_cores The number of cores. Defaults to 4.

pop population type, "MPP" (multi-parental population), "2PP" (2 parents), "RIL"
(recombinant inbred line)

results_path Optional path to where temporary files will be saved. If NULL, the path is taken
from data_obj$results_path.

Details

Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P, Sen Ś, Yandell BS, Churchill GA (2018)
R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multi-parent
populations. Genetics 211:495-502 doi:10.1534/genetics.118.301595

This uses the function probs_doqtl_to_qtl2 from qtl2convert: Karl W Broman (2019). qtl2convert:
Convert Data among R/qtl2, R/qtl, and DOQTL. https://kbroman.org/qtl2/, https://github.
com/rqtl/qtl2convert/. And genoprob_to_alleleprob from qtl2.

Value

This function returns an n by n matrix, where n is the number of individuals in the test population.
The entries of the matrix represent the level of relatedness between pairs of individuals. For more
information see Kang, H. M. et al. Efficient control of population structure in model organism
association mapping. Genetics 178, 1709–1723 (2008).

load_input_and_run_cape

Loads input and run CAPE

Description

This function loads the input file path and runs cape It is used to run CAPE from a non R script
(python)

Usage

load_input_and_run_cape(
input_file = NULL,
yaml_params = NULL,
results_path = NULL,
run_parallel = FALSE,
results_file = "cross.RDS",
p_or_q = 0.05,
n_cores = 4,

https://kbroman.org/qtl2/
https://github.com/rqtl/qtl2convert/
https://github.com/rqtl/qtl2convert/

32 marker2covar

initialize_only = FALSE,
verbose = TRUE,
param_file = NULL,
create_report = FALSE,
qtl_id_col = NULL,
qtl_na_strings = "-"

)

Arguments

input_file data input to be loaded

yaml_params a parameter set up in the form of a YAML string

results_path path to the results

run_parallel boolean, if TRUE runs certain parts of the code as parallel blocks

results_file the name of the saved data_obj RDS file. The base name is used as the base
name for all saved RDS files.

p_or_q A threshold indicating the maximum adjusted p value considered

n_cores integer, default is 4
initialize_only

boolean, default: FALSE

verbose boolean, output goes to stdout

param_file path to yml parameter file for running cape

create_report boolean, if true we create the corresponding HTML report page

qtl_id_col argument for read_population, an optional column number for individual IDs

qtl_na_strings argument for read_population, an optional string for missing values

marker2covar Creates a covariate from a genetic marker

Description

Occasionally, researchers may want to condition marker effects on another genetic marker. For
example, the HLA locus in humans has very strong effects on immune phenotypes, and can swamp
smaller effects from other markers. It can be helpful to condition on markers in the HLA region to
find genetic modifiers of these markers.

Usage

marker2covar(
data_obj,
geno_obj,
singlescan_obj = NULL,
covar_thresh = NULL,
markers = NULL

)

norm_pheno 33

Arguments

data_obj a Cape object

geno_obj a genotype object

singlescan_obj It is possible to automatically identify markers to use as covariates based on their
large main effects. If this is desired, a singlescan object is required.

covar_thresh If designating markers as covariates based on their main effect size is desired, the
covar_thresh indicates the main effect size above which a marker is designated
as a covariate.

markers Marker covariates can also be designated manually. markers takes in a vector of
marker names or numbers and assigns the designated markers as covariates.

Value

This function returns the data object with additional information specifying which markers are to
be used as covariates. this information can be retrieved with get_covar.

See Also

get_covar

norm_pheno Mean-center and normalize phenotypes

Description

This function is a wrapper for mean-centering normalizing and standardizing the trait matrix. in a
data_obj.

Usage

norm_pheno(data_obj, mean_center = TRUE)

Arguments

data_obj a Cape object mean_center a logical value indicating whether the traits should
be mean centered. If FALSE, the traits are only normalized.

mean_center mean center

Value

the data object is returned. The pheno slot of the data object will have normalized and/or mean-
centered traits. The function also preserves the original trait matrix in a slot called raw_pheno.

34 pairscan

pairscan This function performs the pairwise scan on all markers.

Description

This function performs the pairwise regression on all selected marker pairs. The phenotypes used
can be either eigentraits or raw phenotypes. Permutation testing is also performed.

Usage

pairscan(
data_obj,
geno_obj = NULL,
scan_what = c("eigentraits", "raw_traits"),
pairscan_null_size = NULL,
max_pair_cor = NULL,
min_per_genotype = NULL,
kin_obj = NULL,
num_pairs_limit = 1e+06,
num_perm_limit = 1e+07,
overwrite_alert = TRUE,
run_parallel = FALSE,
n_cores = 4,
verbose = FALSE

)

Arguments

data_obj a Cape object

geno_obj a genotype object

scan_what A character string uniquely identifying whether eigentraits or raw traits should
be scanned. Options are "eigentraits", "raw_traits"

pairscan_null_size

The total size of the null distribution. This is DIFFERENT than the number of
permutations to run. Each permutation generates n choose 2 elements for the
pairscan. So for example, a permutation that tests 100 pairs of markers will
generate a null distribution of size 4950. This process is repeated until the total
null size is reached. If the null size is set to 5000, two permutations of 100
markers would be done to get to a null distribution size of 5000.

max_pair_cor A numeric value between 0 and 1 indicating the maximum Pearson correla-
tion that two markers are allowed. If the correlation between a pair of mark-
ers exceeds this threshold, the pair is not tested. If this value is set to NULL,
min_per_genotype must have a numeric value.

min_per_genotype

The minimum number of individuals allowable per genotype combination. If
for a given marker pair, one of the genotype combinations is underrepresented,

pairscan 35

the marker pair is not tested. If this value is NULL, max_pair_cor must have a
numeric value.

kin_obj a kinship object calculated by kinship.

num_pairs_limit

A number indicating the maximum number of pairs to scan. If the number of
pairs exceeds this threshold, the function asks for confirmation before proceed-
ing with the pairwise scan.

num_perm_limit A number indicating the maximum number of total permutations that will be
performed. If the number of total permutations exceeds this threshold, the func-
tion asks for confirmation before proceeding with the pairwise scan.

overwrite_alert

If TRUE raises a warning to users not to overwrite their data object with a sin-
glescan object. A warning necessary after a new version of cape began separat-
ing results from different functions into different results objects

run_parallel Whether to run the analysis on parallel CPUs

n_cores The number of CPUs to use if run_parallel is TRUE

verbose Whether to write progress to the screen

Details

Not all marker pairs are necessarily tested. Before markers are tested for interaction, they are
checked for several conditions. Pairs are discarded if (1) at least one of the markers is on the
X chromosome, or (2) there are fewer than min_per_genotype individuals in any of the genotype
combinations.

Value

This function returns an object assigned to pairscan_obj in run_cape.

The results object is a list of five elements: ref_allele: The allele used as the reference for the
tests. max_pair_cor: The maximum pairwise correlation between marker pairs pairscan_results: A
list with one element per trait. The element for each trait is a list of the following three elements:
pairscan_effects: the effect sizes from the linear models pairscan_se: the standard errors from the
linear models model_covariance: the model covariance from the linear models. pairscan_perm:
The same structure as pairscan_results, but for the permuted data. pairs_tested_perm: A matrix of
the marker pairs used in the permutation tests.

See Also

select_markers_for_pairscan, plot_pairscan

36 plink2cape

pheno2covar Create a covariate from a trait

Description

This function takes a variable from the phenotype matrix for example, diet treatment or sex and
converts it to a covariate.

Usage

pheno2covar(data_obj, pheno_which)

Arguments

data_obj a Cape object

pheno_which vector of trait names to be used as covariates

Value

Returns the data object with the specified traits removed from the phenotype matrix and transferred
where they will be used as covariates. Information about assigned covariates can be retrieved with
get_covar.

plink2cape Convert plink2 files to cape format

Description

Convert plink2 files to cape format

Usage

plink2cape(
ped = "test.ped",
map = "test.map",
pheno = "test.pheno",
out = "out.csv",
missing_genotype = "0",
no_fid = FALSE,
no_parents = FALSE,
no_sex = FALSE,
no_pheno = FALSE,
verbose = FALSE,
overwrite = FALSE

)

plot_effects 37

Arguments

ped full path to the ped file

map full path to the map file

pheno full path to the pheno file

out full path to the output file

missing_genotype

default is "0"

no_fid boolean, default is FALSE

no_parents boolean, default is FALSE

no_sex boolean, default is FALSE

no_pheno boolean, default is FALSE

verbose boolean, default is FALSE, gives some happy little progress messages

overwrite boolean, default is FALSE, will only remove the existing file if this is set to
TRUE

Details

For further information about PLINK and its file formats, see https://zzz.bwh.harvard.edu/
plink/

Value

A list with two elements: data_obj and geno_obj These objects are formatted for use in cape and
must then be separated to use in run_cape.

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC (2007) PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

plot_effects Plot Interaction Effects

Description

This function plots phenotypic effects of individual cape interactions. It serves as a wrapper for
the functions plot_lines plot_bars plot_points, and plot_int_heat. Each of those functions
plots individual cape interactions in different forms.

https://zzz.bwh.harvard.edu/plink/
https://zzz.bwh.harvard.edu/plink/

38 plot_effects

Usage

plot_effects(
data_obj,
geno_obj,
marker1,
marker2 = NULL,
pheno_type = "normalized",
plot_type = c("l", "p", "b", "h"),
error_bars = "none",
ymin = NULL,
ymax = NULL,
covar = NULL,
marker1_label = NULL,
marker2_label = NULL,
bin_continuous_genotypes = TRUE,
ref_centered = TRUE,
gen_model1 = "Additive",
gen_model2 = "Additive",
bins_marker1 = 50,
bins_marker2 = 50

)

Arguments

data_obj A Cape object

geno_obj A genotype object

marker1 A string indicating the name of the source marker in the interaction. This can
also be the name of a covariate.

marker2 Another string indicating the name of the source marker in the interaction. This
can also be the name of a covariate. Optional.

pheno_type One of "eigentraits", "normalized_traits", or "raw_traits", indicating which traits
to plot.

plot_type A letter referring to the desired style of the plot. The choices are the following:
"l" - line plots, "p" = points, "b" - bar plots, "h" - heat map.

error_bars The type of error bars to plot. Choices are "none" (the default), "se" for standard
error, or "sd" for standard deviation.

ymin A minimum value for the y axes across all plots. If NULL, each y axis will be
determined independently

ymax A maximum value for the y axes across all plots. If NULL, each y axis will be
dertermined independently

covar A vector of strings indicating which covariates, if any, the traits should be ad-
justed for. If NULL, the covariates specified in the data_obj are used as default.
To prevent adjusting for covariates, use "none".

marker1_label A string to use as the label for marker1 If NULL, the string used for marker1
will be used.

plot_full_network 39

marker2_label A string to use as the label for marker2 If NULL, the string used for marker2
will be used.

bin_continuous_genotypes

If TRUE, genotypes (and covariate) values will be binned into 0, 0.5, and 1
values. This reduces the number of bins that traits need to be divided into,
especially if there are only one or two individuals with a 0.49 genotype, for
example. Binning may not be desirable when using the heatmap.

ref_centered A logical value indicating whether to center the values on the reference allele.
Defaults to TRUE.

gen_model1 One of "Additive", "Dominant", or "Recessive" indicating how the genotype
should be coded for the first marker. If Additive, genotypes are coded as 0 for
homozygous reference allele, 1 for homozygous alternate allele, and 0.5 for het-
erozygous. If Dominant, any allele probability greater than 0.5 is set to 1. If
recessive, any allele probability less than or equal to 0.5 is set to 0. In other
words, for the dominant coding, heterozygotes are grouped with the homozy-
gous alternate genotypes: 0 vs. (0.5,1). This shows the effect of having any
dose of the alternate allele. With a recessive coding, heterozygotes are grouped
with the homozygous reference genotypes: (0, 0.5) vs. 1. This shows the effect
of having two copies of the alternate allele vs. having fewer than two copies.

gen_model2 The same as gen_model1, but for the second marker.

bins_marker1 Only used for heatmap plotting. The number of bins for marker1 if it is a con-
tinuously valued marker or covariate. The bins are used to fit a linear model and
predict outcomes for a 2D grid of marker1 and marker2 values. This argument
can also be a vector of bin values for binning at specific values.

bins_marker2 The same as bins_marker1, but for marker2.

Details

The "h" option calls plot_int_heat, which fits linear models to each trait and both markers speci-
fied. It uses those models to predict phenotype values along continuously valued genotype bins and
plots the predicted values as a heatmap.

Value

None

plot_full_network Plot the final epistatic network in a traditional network view.

Description

This function plots the final results in a layout different to both plot_variant_influences and
plot_network. In this view, the network is plotted with a traditional network layout. The genomic
position information in plot_network is lost, but in this view it is easier to see the structure of
the overall network in terms of hubs and peripheral nodes. In this view, each node is plotted as
a pie-chart, and the main effects of the node are indicated as positive, negative, or not-significant

40 plot_full_network

(gray). Significant interactions are shown arrows between nodes and colored based on whether they
are positive or negative interactions. Colors for positive and negative main effects and interactions
are specified in the arguments. The function get_network must be run before plotting the network.

Usage

plot_full_network(
data_obj,
p_or_q = 0.05,
collapsed_net = TRUE,
main = NULL,
color_scheme = c("DO/CC", "other"),
pos_col = "brown",
neg_col = "blue",
bg_col = "gray",
light_dark = "f",
node_border_lwd = 1,
layout_matrix = NULL,
zoom = 1,
xshift = 0,
yshift = 0,
node_radius = 1,
label_nodes = TRUE,
label_offset = 0,
label_cex = 1,
legend_radius = 1,
legend_cex = 1,
legend_position = "topleft",
arrow_offset = node_radius,
arrow_length = 0.2,
edge_lwd = 2

)

Arguments

data_obj A Cape object
p_or_q The maximum p value (or q value if FDR was used) for significant main effects

and interactions.
collapsed_net A logical value indicating whether to show the network condensed into linkage

blocks (TRUE) or each individual marker (FALSE)
main A title for the plot
color_scheme either "DO/CC" or "other". "DO/CC" uses the official "DO/CC" colors for the

DO/CC alleles http://www.csbio.unc.edu/CCstatus/index.py?run=AvailableLines.
information "other" uses an unrelated color palette for multiple alleles.

pos_col The color to use for positive main effects and interactions must be one of "green",
"purple", "red", "orange", "blue", "brown", "yellow", "gray" see get_color

neg_col The color to use for negative main effects and interactions takes the same values
as pos_col.

http://www.csbio.unc.edu/CCstatus/index.py?run=AvailableLines.information
http://www.csbio.unc.edu/CCstatus/index.py?run=AvailableLines.information

plot_full_network 41

bg_col The color to be used in pie charts for non-significant main effects. Takes the
same values as pos_col

light_dark Indicates whether pos_col, neg_col, and bg_col should be selected from light
colors ("l"), dark colors ("d") or the full spectrum from light to dark ("f")

node_border_lwd

The thickness of the lines around the pie charts

layout_matrix Users have the option of providing their own layout matrix for the network. This
should be a two column matrix indicating the x and y coordinates of each node
in the network.

zoom Allows the user to zoom in and out on the image if the network is either running
off the edges of the plot or too small in the middle of the plot.

xshift A constant by which to shift the x values of all nodes in the network.

yshift A constant by which to shift the y values of all nodes in the network.

node_radius The size of the pie chart for each node.

label_nodes A logical value indicating whether the nodes should be labeled. Users may want
to remove labels for large networks.

label_offset The amount by which to offset the node labels from the center of the nodes.

label_cex The size of the node labels

legend_radius The size of the legend indicating which pie piece corresponds to which traits.

legend_cex The size of the labels in the legend.
legend_position

The position of the legend on the plot

arrow_offset The distance from the center of the node to the arrow head.

arrow_length The length of the head of the arrow

edge_lwd The thickness of the arrows showing the interactions.

Details

For most networks, the default options will be fine, but there is a lot of room for modification if
changes are desired

Value

This function invisibly returns a list of length two. The first element contains the igraph network
object. The second contains the layout matrix for the network. This can be passed in as an argument
("layout_matrix") which provides more control to the user in the layout. Other network layouts from
igraph can also be passed in here.

References

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal,
Complex Systems 1695. 2006. https://igraph.org/

https://igraph.org/

42 plot_network

plot_network Plots cape results as a circular network

Description

This script plots cape results in a circular network. The chromosomes are arranged in a circle.
Main effects are shown in concentric circles around the chromosomes, with each trait in its own
circle. Main effects can either be colored as negative or positive, or with parental allele colors for
multi-parent populations.

Usage

plot_network(
data_obj,
marker_pairs = NULL,
collapsed_net = TRUE,
trait = NULL,
trait_labels = NULL,
color_scheme = c("DO/CC", "other"),
main_lwd = 4,
inter_lwd = 3,
label_cex = 1.5,
percent_bend = 15,
chr_gap = 1,
label_gap = 5,
positive_col = "brown",
negative_col = "blue",
show_alleles = TRUE

)

Arguments

data_obj a Cape object

marker_pairs a two-column matrix identifying which marker pairs should be plotted. This is
particularly useful if the network is very dense. The default value, NULL, plots
all marker pairs.

collapsed_net A logical value indicating whether to plot all individual SNPs or linkage blocks
calculated by linkage_blocks_network.

trait A character vector indicating which traits to plot. The default NULL value plots
all traits.

trait_labels A character vector indicating the names of the traits in case the names from the
data object are not great for plotting.

color_scheme A character value of either "DO/CC" or other indicating the color scheme of
main effects. If "DO/CC" allele effects can be plotted with the DO/CC colors.

main_lwd A numeric value indicating the line width for the main effect lines

plot_pairscan 43

inter_lwd A numeric value indicating the line width for the interaction lines

label_cex A numeric value indicating the size of the labels

percent_bend A numeric value indicating the amount that the arrows for the interaction effects
should be bent. A value of 0 will plot straight lines.

chr_gap A numeric value indicating the size of the gap plotted between chromosomes.

label_gap A numeric value indicating the size of the gap the chromosomes and their labels.

positive_col One of c("green", "purple", "red", "orange", "blue", "brown", "yellow", "gray")
indicating the color for positive interactions.

negative_col One of c("green", "purple", "red", "orange", "blue", "brown", "yellow", "gray")
indicating the color for negative interactions. show_alleles A logical value indi-
cating whether to color main effects by their allele values (TRUE) or by whether
they are positive or negative (FALSE)

show_alleles boolean, default is TRUE

Details

Interaction effects are shown as arrows linking chromosomal positions. They are colored based on
whether they are positive or negative.

plot_pairscan Plot the result of the pairwise scan

Description

This function plots the results of the pairwise scan. It plots a matrix of the the interactions between
all pairs of markers.

Usage

plot_pairscan(
data_obj,
pairscan_obj,
phenotype = NULL,
standardized = FALSE,
show_marker_labels = FALSE,
show_chr = TRUE,
label_chr = TRUE,
show_alleles = TRUE,
allele_labels = NULL,
pos_col = "brown",
neg_col = "blue",
color_scheme = c("DO/CC", "other"),
pdf_label = "Pairscan.Regression.pdf"

)

44 plot_pheno_cor

Arguments

data_obj a Cape object

pairscan_obj a pairscan object from pairscan

phenotype The names of the phenotypes to be plotted. If NULL, all phenotypes are plotted.

standardized If TRUE, the standardized effects are plotted. IF FALSE, the effect sizes are
plotted.

show_marker_labels

If TRUE marker labels are plotted along the axes. If FALSE, they are omitted.

show_chr If TRUE, the chromosome boundaries are shown

label_chr If TRUE, the chromosomes are labeled

show_alleles If TRUE, the allele of each marker is indicated by color.

allele_labels Labels for the alleles if other than those stored in the data object.

pos_col The color to use for positive main effects and interactions must be one of "green",
"purple", "red", "orange", "blue", "brown", "yellow", "gray" see get_color

neg_col The color to use for negative main effects and interactions takes the same values
as pos_col.

color_scheme either "DO/CC" or "other". "DO/CC" uses the official "DO/CC" colors for the
DO/CC alleles http://www.csbio.unc.edu/CCstatus/index.py?run=AvailableLines.
information "other" uses an unrelated color palette for multiple alleles.

pdf_label Label for the resulting file. Defaults to "Pairscan.Regression.pdf" if plotting to
pdf, "Pairscan.Regression.jpg" otherwise.

Value

Plots to a pdf

plot_pheno_cor Plot trait pairs against each other

Description

This function plots pairs of traits against each other to visualize the correlations between traits.

Usage

plot_pheno_cor(
data_obj,
pheno_which = NULL,
color_by = NULL,
group_labels = NULL,
text_cex = 1,
pheno_labels = NULL,
pt_cex = 1

)

http://www.csbio.unc.edu/CCstatus/index.py?run=AvailableLines.information
http://www.csbio.unc.edu/CCstatus/index.py?run=AvailableLines.information

plot_singlescan 45

Arguments

data_obj a Cape object

pheno_which A vector of trait names to plot. The default is to plot all traits.

color_by A character string indicating a value to color the traits by, for example sex or
treatment. It must be one of the covariates. See pheno2covar.

group_labels A vector of names for the legend indicating the groups for the colored dots.

text_cex A numeric value indicating the size of the text

pheno_labels A vector of names for traits to appear in the plot in case the column names are
not very pretty.

pt_cex A numeric value indicating the size of the points.

plot_singlescan Plot results of single-locus scans

Description

This function plots the results of singlescan

Usage

plot_singlescan(
data_obj,
singlescan_obj,
chr = NULL,
traits = NULL,
alpha = c(0.01, 0.05),
standardized = TRUE,
color_scheme = c("DO/CC", "other"),
allele_labels = NULL,
include_covars = TRUE,
show_selected = FALSE,
line_type = "l",
lwd = 1,
pch = 16,
cex = 1,
covar_label_size = 0.7

)

Arguments

data_obj a Cape object

singlescan_obj a singlescan object from singlescan

chr a vector of chromosome names to include in the plot. Defaults to all chromo-
somes.

46 plot_svd

traits a vector of trait names to plot. Defaults to all traits.

alpha the alpha significance level. Lines for significance values will only be plotted
if n_perm > 0 when singlescan was run. And only alpha values specified in
singlescan can be plotted.

standardized If TRUE t statistics are plotted. If FALSE, effect sizes are plotted.

color_scheme A character value of either "DO/CC" or other indicating the color scheme of
main effects. If "DO/CC" allele effects can be plotted with the DO/CC colors.

allele_labels A vector of labels for the alleles if different than those stored in the data_object.

include_covars Whether to include covariates in the plot.

show_selected If TRUE will indicate which markers were selected for the pairscan. In order
for these to be plotted, select_markers_for_pairscan must be run first.

line_type as defined in plot

lwd line width, default is 1

pch see the "points()" R function. Default is 16 (a point).

cex see the "points()" R function. Default is 1.
covar_label_size

default is 0.7

plot_svd Plots eigentraits

Description

This function plots the results of the singular value decomposition (SVD) on the phenotypes. Gray
bars indicate the amount of phenotypic variance accounted for by each eigentrait.

Usage

plot_svd(
data_obj,
orientation = c("vertical", "horizontal"),
neg_col = "blue",
pos_col = "brown",
light_dark = "f",
pheno_labels = NULL,
cex_barplot_axis = 1.7,
cex_barplot_labels = 2,
cex_barplot_title = 1.7,
main = "Eigentrait Contributions to Phenotypes",
cex_main = 2,
main_x = 0.5,
main_y = 0.5,
cex_ET = 1.7,
ET_label_x = 0.5,

plot_svd 47

ET_label_y = 0.5,
pheno_label_pos = 0.5,
cex_pheno = 1.7,
pheno_srt = 90,
percent_total_variance_x = 0.5,
percent_total_variance_y = 0.5,
cex_color_scale = 1,
cex_var_accounted = 2,
var_accounted_x = 0,
var_accounted_y = 0,
show_var_accounted = FALSE,
just_selected_et = FALSE

)

Arguments

data_obj a Cape object

orientation string, ("vertical", "horizontal")

neg_col The color to use for negative main effects and interactions takes the same values
as pos_col.

pos_col The color to use for positive main effects and interactions must be one of "green",
"purple", "red", "orange", "blue", "brown", "yellow", "gray" see get_color

light_dark Indicates whether pos_col, neg_col, and bg_col should be selected from light
colors ("l"), dark colors ("d") or the full spectrum from light to dark ("f")

pheno_labels Vector of phenotype names if other than what is stored in the data object
cex_barplot_axis

Size of axis for the bar plot
cex_barplot_labels

Size of labels for the bar plot
cex_barplot_title

Size of the barplot title

main Title for the plot. Defaults to "Eigentrait Contributions to Phenotypes"

cex_main Size of the overall title

main_x x shift for the overall title

main_y y shift for the overall title

cex_ET Size of the eigentrait labels

ET_label_x x shift for the eigentrait labels

ET_label_y y shift for the eigentrait labels
pheno_label_pos

x shift for the trait labels

cex_pheno size of the trait labels

pheno_srt Rotation factor for the trait labels
percent_total_variance_x

x shift for the percent total variance labels

48 plot_variant_influences

percent_total_variance_y

y shift for the percent total variance labels
cex_color_scale

label size for the color scal
cex_var_accounted

size for the variance accounted for labels
var_accounted_x

x shift for the variance accounted axis label
var_accounted_y

x shift for the variance accounted axis label
show_var_accounted

logical
just_selected_et

logical

Details

Below the bars is a heatmap indicating how each trait contributes to each eigentrait. Colors can be
adjusted to suit preferences.

Value

list("data_obj" = data_obj, "geno_obj" = geno_obj)

plot_variant_influences

Plot cape coefficients

Description

This function plots the the cape coefficients between pairs of markers as a heat map. The interactions
are shown in the main part of the heatmap while the main effects are shown on the right hand side.
Directed interactions are read from the y axis to the x axis. For example an interaction from marker1
to marker2 will be shown in the row corresponding to marker1 and the column corresponding to
marker2. Similarly, if marker1 has a main effect on any traits, these will be shown in the row for
marker1 and the trait columns.

Usage

plot_variant_influences(
data_obj,
p_or_q = 0.05,
min_std_effect = 0,
plot_all_vals = FALSE,
standardize = FALSE,
color_scheme = c("DO/CC", "other"),
pos_col = "brown",

plot_variant_influences 49

neg_col = "blue",
not_tested_col = "lightgray",
show_marker_labels = FALSE,
show_chr = TRUE,
label_chr = TRUE,
show_alleles = TRUE,
scale_effects = c("log10", "sqrt", "none"),
pheno_width = NULL,
covar_width = NULL,
covar_labels = NULL,
phenotype_labels = NULL,
show_not_tested = TRUE

)

Arguments

data_obj a Cape object

p_or_q A threshold indicating the maximum p value (or q value if FDR was used) of
significant interactions and main effects

min_std_effect An optional filter. The plot will exclude all pairs with standardized effects below
the number set here.

plot_all_vals If TRUE will plot all values regardless of significant

standardize Whether to plot effect sizes (FALSE) or standardized effect sizes (TRUE)

color_scheme A character value of either "DO/CC" or other indicating the color scheme of
main effects. If "DO/CC" allele effects can be plotted with the DO/CC colors.

pos_col The color to use for positive main effects and interactions must be one of "green",
"purple", "red", "orange", "blue", "brown", "yellow", "gray" see get_color

neg_col The color to use for negative main effects and interactions takes the same values
as pos_col.

not_tested_col The color to use for marker pairs not tested. Takes the same values as pos_col
and neg_col

show_marker_labels

Whether to write the marker labels on the plot

show_chr Whether to show chromosome boundaries

label_chr Whether to label chromosomes if plotted

show_alleles If TRUE, the allele of each marker is indicated by color.

scale_effects One of "log10", "sqrt", "none." If some effects are very large, scaling them can
help show contrasts between smaller values. The default is no scaling.

pheno_width Each marker and trait gets one column in the matrix. If there are many markers,
this makes the effects on the traits difficult to see. pheno_width increases the
number of columns given to the phenotypes. For example, if pheno_width = 11,
the phenotypes will be shown 11 times wider than individual markers.

covar_width See pheno_width. This is the same effect for covariates.

covar_labels Labels for covariates if different from those stored in the data object.

50 qtl2_to_cape

phenotype_labels

Labels for traits if different from those stored in the data object
show_not_tested

Whether to color the marker pairs that were not tested. If FALSE, they will not
be colored in.

Value

This function invisibly returns the variant influences matrix. shown in the heat map.

qnorm_pheno Plot trait distributions

Description

This function plots the quantiles of each trait against quantiles of a theoretical normal distribution.
This provides a way to check whether traits are normally distributed

Usage

qnorm_pheno(data_obj, pheno_which = NULL, pheno_labels = NULL)

Arguments

data_obj a Cape object

pheno_which A vector of trait names to plot. The default is to plot all traits.

pheno_labels A vector of names for traits to appear in the plot in case the column names are
not very pretty.

qtl2_to_cape Convert qtl2 object to cape format

Description

This function converts a data object constructed by qtl2 using the read_cross() function to cape
format. It returns a list in which the first element is the cape data object, and the second element is
the cape genotype object.

Usage

qtl2_to_cape(cross, genoprobs = NULL, map = NULL, covar = NULL, verbose = TRUE)

read_parameters 51

Arguments

cross a cross object created by the R/qtl2 function read_cross()

genoprobs an optional argument for providing previously calculated genoprobs. if this pa-
rameter is missing, genoprobs are calculated by qtl_to_cape.

map The qtl2 map. This can be omitted if the map is included in the cross object
as either pmap or gmap. By default the physical map (pmap) is used. If it is
missing, the genetic map is used. A provided map will be used preferentially
over a map included in the cross object.

covar Optional matrix of any covariates to be included in the analysis.

verbose A logical value indicating whether to print progress to the screen. Defaults to
TRUE.

Value

This function returns a list of two elements. The first element is a cape data object. The second
element is a cape genotype object.

References

Carter, G. W., Hays, M., Sherman, A., & Galitski, T. (2012). Use of pleiotropy to model genetic
interactions in a population. PLoS genetics, 8(10), e1003010. doi:10.1371/journal.pgen.1003010

Broman, Karl W., Daniel M. Gatti, Petr Simecek, Nicholas A. Furlotte, Pjotr Prins, Śaunak Sen,
Brian S. Yandell, and Gary A. Churchill. "R/qtl2: software for mapping quantitative trait loci with
high-dimensional data and multiparent populations." Genetics 211, no. 2 (2019): 495-502.

read_parameters Read the parameter file, add missing entries

Description

This function returns reads in the YAML file and checks for any parameters that might not be
included. This may not matter for the given run, but it’s handy to be able to check for any and all
potential variables.

Usage

read_parameters(filename = "cape.parameters.yml", yaml_parameters = NULL)

Arguments

filename full path to the .yml file holding CAPE parameters (is not needed if yaml_parameters
is provided)

yaml_parameters

yaml string holding CAPE parameters (can be NULL)

52 read_population

Value

Returns a named list with all possible options

read_population Reads in data in the R/qtl csv format

Description

This function reads in a data file in the r/qtl format It converts letter genotypes to numbers if re-
quired. It parses the data into a data object. if filename is left empty, the script will ask the use to
choose a file. phenotypes can be specified with a vector of column numbers or character strings.
For each phenotype specified with a name, the script will find its location.

Usage

read_population(
filename = NULL,
pheno_col = NULL,
geno_col = NULL,
id_col = NULL,
delim = ",",
na_strings = "-",
check_chr_order = TRUE,
verbose = TRUE

)

Arguments

filename The name of the file to read in

pheno_col Column numbers of desired traits. The default behavior is to read in all traits.

geno_col Column numbers of desired markers. The default behavior is to read in all mark-
ers.

id_col The column number of an ID column. This is helpful to specify if the individual
IDs are strings. Strings are only allowed in the ID column. All other trait data
must be numeric.

delim column delimiter for the file, default is ","

na_strings a character string indicating how NA values are specified, default is "-"
check_chr_order

boolean, default is TRUE

verbose A logical value indicating whether to print progress and cross information to the
screen. Defaults to TRUE.

Value

This function returns a cape object in a former cape format. It must be updated using cape2mpp

remove_ind 53

References

Broman et al. (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890
doi:10.1093/bioinformatics/btg112

Examples

Not run:
cape_obj <- read_population("cross.csv")
combined_obj <- cape2mpp(cape_obj)
data_obj <- combined_obj$data_obj
geno_obj <- combined_obj$geno_obj

End(Not run)

remove_ind Remove individuals

Description

Remove individuals

Usage

remove_ind(data_obj, ind_to_remove = NULL, names_to_remove = NULL)

Arguments

data_obj a Cape object

ind_to_remove Indices of individuals to remove
names_to_remove

Names of individuals to remove Only one of ind_to_remove or names_to_remove
should be specified.

Value

an updated cape data object with specified individuals removed.

Examples

Not run:
#remove males
covar_info <- get_covar(data_obj)
male_idx <- which(covar_info$covar_table[,"sex"] == 1)
data_obj <- remove_ind(data_obj, ind_to_remove = male_idx)

End(Not run)

54 remove_markers

remove_kin_ind Removes individuals from the kinship object to match the cape.obj

Description

Removes individuals from the kinship object to match the cape.obj

Usage

remove_kin_ind(data_obj, kin_obj)

Arguments

data_obj a Cape object

kin_obj a kinship object

Value

updated kinship object

remove_markers Removes genetic markers

Description

Removes genetic markers

Usage

remove_markers(data_obj, markers_to_remove)

Arguments

data_obj a Cape object
markers_to_remove

A vector of marker names to be removed.

Examples

Not run:
#remove markers on chromosome 1
marker_idx <- which(data_obj$chromosome == 1)
data_obj <- remove_markers(data_obj, marker_idx)

End(Not run)

remove_missing_genotype_data 55

remove_missing_genotype_data

Removes individuals and/or markers with missing data

Description

Because there an be no missing data when calculating the kinship correction, we need a way to
remove either individuals or markers with missing data. We also need a way to calculate which of
these options will remove the least amount of data.

Usage

remove_missing_genotype_data(
data_obj,
geno_obj = NULL,
ind_missing_thresh = 0,
marker_missing_thresh = 0,
prioritize = c("fewer", "ind", "marker")

)

Arguments

data_obj a Cape object

geno_obj a genotype object

ind_missing_thresh

Allowable amount of missing information for an individual. If 10 default, all
individuals with any missing data at all will be removed.

marker_missing_thresh

Allowable amount of missing information for a marker. If 10 default, all markers
with any missing data at all will be removed.

prioritize the basis prioritization is one of "fewer" = calculate whether removing individu-
als or markers will remove fewer data points, and start with that. "ind" = remove
individuals with missing data before considering markers with missing data.
"marker" = remove markers with missing data before considering individuals.

Details

For example, if there is one marker with no data at all, we would rather remove that one marker,
than all individuals with missing data. Alternatively, if there is one individual with very sparse
genotyping, we would prefer to remove that single individual, rather than all markers with missing
data.

This function provides a way to calculate whether individuals or markers should be prioritized when
removing data. It then removes those individuals or markers.

56 remove_unused_markers

Value

The cape object is returned with individuals and markers removed. After this step, the function
get_geno should return an array with no missing data if ind_missing_thresh and marker_missing_thresh
are both 0. If these numbers are higher, no individual or marker will be missing more than the set
percentage of data.

details All missing genotype data must either be imputed or removed if using the kinship cor-
rection. Running impute_missing_geno prior to running remove_missing_genotype_data en-
sures that the least possible amount of data are removed before running cape. In some cases,
there will be missing genotype data even after running impute_missing_geno, in which case,
remove_missing_genotype_data still needs to be run. The function run_cape automatically runs
these steps when use_kinship is set to TRUE.

See Also

get_geno, impute_missing_geno, run_cape

Examples

Not run:
#remove entries with more than 10\
#removal of markers
data_obj <- remove_missing_genotype_data(data_obj, geno_obj,
marker_missing_thresh = 10, ind_missing_thresh = 10,
prioritize = "marker")

#remove markers with more than 5\
#more than 50\
#missing data, prioritizing removal of individuals.
data_obj <- remove_missing_genotype_data(data_obj, geno_obj,
ind_missing_thresh = 10, marker_missing_thresh = 50,
prioritize = "ind")

#remove entries witn any missing data prioritizing whichever
#method removes the least amount of data
data_obj <- remove_missing_genotype_data(data_obj, geno_obj)

End(Not run)

remove_unused_markers Take out markers not used in cape

Description

This function removes any markers that are not used in cape. This includes markers on the sex
chromosomes, mitochondrial markers, and any invariant markers.

run_cape 57

Usage

remove_unused_markers(data_obj, geno_obj, verbose = FALSE)

Arguments

data_obj a Cape object

geno_obj a genotype object

verbose A logical value indicating whether to print progress to the screen. Default is
FALSE

Value

an updated Cape object (data_obj)

run_cape Runs CAPE

Description

This function takes in a data object and genotype object that have been formatted for cape, as well
as a string identifying a parameter file. It runs cape on the data using the parameters specified in the
file.

Usage

run_cape(
pheno_obj,
geno_obj,
results_file = "cross.RDS",
p_or_q = 0.05,
n_cores = 4,
initialize_only = FALSE,
verbose = TRUE,
run_parallel = FALSE,
param_file = NULL,
yaml_params = NULL,
results_path = NULL,
plot_pdf = TRUE

)

Arguments

pheno_obj the cape object holding the phenotype data returned by

geno_obj the genotype object

results_file the name of the saved data_obj RDS file. The base name is used as the base
name for all saved RDS files.

58 select_eigentraits

p_or_q A threshold indicating the maximum adjusted p value considered significant.
Or, if FDR p value correction is used, the the maximum q value considered
significant.

n_cores The number of CPUs to use if run_parallel is set to TRUE
initialize_only,

If TRUE, cape will not be run. Instead an initialized data object will be re-
turned. This data object will contain normalized and mean-centered trait values,
and eigentraits, and will have covariates specified. However, the singlescan,
pairscan, etc. will not be run.

verbose Whether progress should be printed to the screen

run_parallel boolean, if TRUE runs certain parts of the code as parallel blocks

param_file yaml full path to the parameter file

yaml_params yaml string containing the parameters. Either the param_file or yaml_params
can be null.

results_path path that results should be written to.

plot_pdf boolean, TRUE by default. If FALSE no pdf will be generated by the analysis.

Details

This function assumes you already have all required libraries and functions loaded.

Value

This function invisibly returns the data object with all final data included. In addition, data saved to
the data_obj$results_path directory

Examples

Not run:
final_data_obj <- run_cape(pheno_obj, geno_obj)

End(Not run)

select_eigentraits Assign selected eigentraits in the Cape object

Description

This function is used to identify which eigentraits will be analyzed in the Cape run. After eigentrait
decomposition of n traits, there will be n eigentraits. If there are more than two eigentraits, the
user may wish to analyze a subset of them. This function specifies which of the eigentraits will be
analyzed by Cape. It does this by subsetting the ET matrix to only those eigentraits specified. The
traits not selected are deleted from the object.

select_markers_for_pairscan 59

Usage

select_eigentraits(data_obj, traits_which = c(1, 2))

Arguments

data_obj a Cape object

traits_which A vector of integers, of at least length two specifying which eigentraits should
be analyzed.

Value

updated Cape object

See Also

plot_svd

Examples

Not run:
data_obj <- selecct_eigentraits(data_obj, traits_which = 1:3)

End(Not run)

select_markers_for_pairscan

Select markers for the pairwise scan.

Description

This function selects markers for the pairwise scan. Beause Cape is computationally intensive,
pairscans should not be run on large numbers of markers. As a rule of thumb, 1500 markers in
a population of 500 individuals takes about 24 hours to run without the kinship correction. The
kinship correction increases the time of the analysis, and users may wish to reduce the number
of markers scanned even further to accommodate the extra computational burden of the kinship
correction.

Usage

select_markers_for_pairscan(
data_obj,
singlescan_obj,
geno_obj,
specific_markers = NULL,
num_alleles = 50,
peak_density = 0.5,

60 select_markers_for_pairscan

window_size = NULL,
tolerance = 5,
plot_peaks = FALSE,
verbose = FALSE,
pdf_filename = "Peak.Plots.pdf"

)

Arguments

data_obj a Cape object

singlescan_obj a singlescan object from singlescan.

geno_obj a genotype object
specific_markers

A vector of marker names specifying which markers should be selected. If
NULL, the function uses main effect size to select markers.

num_alleles The target number of markers to select if using main effect size

peak_density The fraction of markers to select under each peak exceeding the current thresh-
old. Should be set higher for populations with low LD. And should be set lower
for populations with high LD. Defaults to 0.5, corresponding to 50% of markers
selected under each peak.

window_size The number of markers to use in a smoothing window when calculating main
effect peaks. If NULL, the window size is selected automatically based on the
number of markers with consecutive rises and falls of main effect size.

tolerance The allowable deviation from the target marker number in number of markers.
For example, If you ask the function to select 100 markers, an set the tolerance
to 5, the algorithm will stop when it has selected between 95 and 105 markers.

plot_peaks Whether to plot the singlescan peaks identified by bin_curve. This can be
helpful in determining whether the window_size and peak_density parameters
are optimal for the population.

verbose Whether progress should be printed to the screen

pdf_filename If plot_peaks is TRUE, this argument specifies the filename to which the peaks
are plotted.

Details

This function can select markers either from a pre-defined list input as the argument specific_markers,
or can select markers based on their main effect size.

To select markers based on main effect size, this function first identifies effect score peaks using an
automated peak detection algorithm. It finds the peaks rising above a starting threshold and sam-
ples markers within each peak based on the user-defined sampling density peak_density. Setting
peak_density to 0.5 will result in 50% of the markers in a given peak being sampled uniformly
at random. Sampling reduces the redundancy among linked markers tested in the pairscan. If LD
is relatively low in the population, this density can be increased to 1 to include all markers under a
peak. If LD is high, the density can be decreased to reduce redundancy further.

The algorithm compares the number of markers sampled to the target defined by the user in the
argument num_alleles. If fewer than the target have been selected, the threshold is lowered, and

select_pheno 61

the process is repeated until the target number of alleles have been selected (plus or minus the
number set in tolerance).

If the number of target alleles exceeds the number of markers genotyped, all alleles will be selected
automatically.

Value

Returns the Cape object with a new matrix called geno_for_pairscan containing the genotypes of
the selected markers for each individual.

See Also

bin_curve, singlescan

select_pheno This function selects the phenotypes in a Cape object

Description

Updates the pheno object to include only ‘pheno_which‘ columns. Optionally scale and/or normal-
ize traits.

Usage

select_pheno(
data_obj,
pheno_which,
min_entries = 5,
scale_pheno = FALSE,
rank_norm_pheno = FALSE

)

Arguments

data_obj a Cape object

pheno_which vector of names from the parameters YAML file. This vector should include
both traits and covariates. The covariates are assigned after trait selection.

min_entries minimum number of data entries the phenotype needs to have for it to be in-
cluded. If any trait has fewer than min_entries, It will be removed with a warn-
ing.

scale_pheno if TRUE then phenotypes are mean-centered and standardized
rank_norm_pheno

if TRUE then phenotypes are rank Z normalized

Value

updated Cape object

62 singlescan

Examples

Not run:
data_obj <- select_pheno(data_obj, pheno_which = c("BW_24", "INS_24", "log_GLU_24"))

End(Not run)

singlescan Runs marker regression on each individual genetic marker

Description

This function performs marker regression to associate individual markers with traits (or eigentraits).
If n_perm is greater than 0, permutations are run to determine effect size thresholds for the alpha
values provided. The default alpha values are 0.05 and 0.01. Covariates are specified in the cape
parameter file.

Usage

singlescan(
data_obj,
geno_obj,
kin_obj = NULL,
n_perm = 0,
alpha = c(0.01, 0.05),
model_family = "gaussian",
run_parallel = FALSE,
n_cores = 4,
verbose = FALSE,
overwrite_alert = TRUE

)

Arguments

data_obj a Cape object

geno_obj a genotype object.

kin_obj a kinship object. If NULL, the kinship correction is not performed.

n_perm integer number of permutations. Permutation results are only used in plot_singlescan.
They are not used for any other piece of the Cape analysis and may be safely
omitted. The default number of permutations is 0.

alpha significance level if permutations are being run. If permutations are run effect
size thresholds for each alpha level are cacluated using the extreme value distri-
bution.

write_population 63

model_family A vector indicating the model family of the phenotypes. This can be either
"gaussian" or "binomial." If length 1, all phenotypes will be assigned to the
same family. Phenotypes can be assigned different model families by providing
a vector of the same length as the number of phenotypes, indicating how each
phenotype should be modeled.

run_parallel Whether to run on parallel CPUs
n_cores The number of CPUs to use if run_parallel is TRUE
verbose Whether to print progress to the screen
overwrite_alert

Used

Details

model_family indicates the model family of the phenotypes This can be either "gaussian" or "bino-
mial". If this argument is length 1, all phenotypes will be assigned to the same family. Phenotypes
can be assigned different model families by providing a vector of the same length as the number of
phenotypes, indicating how each phenotype should be modeled.

Value

Returns a list of the singlescan results. The list is of length seven, and has the following ele-
ments: alpha: The alpha values set in the argument alpha alpha_thresh: The calculated effect size
thresholds at each alpha if permutations are run. ref_allele: The allele used as the reference allele
singlescan_effects: The effect sizes (beta coefficients) from the single-locus linear models singles-
can_t_stats: The t statistics from the single-locus linear models locus.p_vals: Marker-level p values
locus_score_scores: Marker-level test statistics.

See Also

plot_singlescan

write_population Save the cross data in R/qtl CSV format

Description

This function writes out a cape object in a csv format readable both by read_population in Cape
or by read.cross in R/qtl.

Usage

write_population(
data_obj,
geno_obj,
ref_allele = "A",
na = NA,
filename = "capeData.csv"

)

64 write_variant_influences

Arguments

data_obj a Cape object

geno_obj a genotype object

ref_allele a character, e.g., "A", that represents the reference allele in the data object

na either NA or a character used to represent a missing data value in the output

filename absolute or relative path to the output file’s destination

Value

Writes a file to the destination path

References

Broman et al. (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890
doi:10.1093/bioinformatics/btg112

Examples

Not run:
write_population(data_obj, geno_obj)

End(Not run)

write_variant_influences

Write significant cape interactions to a csv file

Description

This function takes in the final data object and writes the variant influences that are at or below the
specified significance level.

Usage

write_variant_influences(
data_obj,
p_or_q = 0.05,
include_main_effects = TRUE,
filename = "Variant.Influences.csv",
delim = ",",
mark_covar = FALSE,
write_file = TRUE

)

write_variant_influences 65

Arguments

data_obj a Cape object

p_or_q A threshold indicating the maximum adjusted p value considered significant. If
an FDR method has been used to correct for multiple testing, this value specifies
the maximum q value considered significant.

include_main_effects

Whether to include main effects (TRUE) or only interaction effects (FALSE) in
the output table.

filename A character vector specifying the name of the file.

delim A character string indicating the delimiter in the data file. The default indicates
a comma-separated file (",").

mark_covar A logical value. If TRUE, an asterisk is appended the names of markers used as
covariates in the pair scan.

write_file A logical value indicating whether the table should be written to a file or simply
returned.

Details

The columns of the output file are the following: Source: The marker that is the source of the
directed interaction Chr: The chromosome on which the source marker lives Position: The genomic
position of the source marker Target: If the effect is an interaction, this column lists the marker that
is the target of the directed interaction. If the effect is a main effect, this column lists the trait that is
the target of the main effect. Chr: The chromosome on which the target marker lives. If the effect
is a main effect, this is listed as 0. Position: The genomic position of the target marker. If the effect
is a main effect, this is listed as 1. Conditioning: If the effect is a main effect, this column identifies
the marker on which the main effect marker was conditioned when it had it’s largest main effect.
Chr: If the effect is a main effect, this column lists the chromosome on which the conditioning
marker lives Position: If the effect is a main effect, this column lists the genomic position of the
conditioning marker. Effect: The effect size of the effect, either main effect or interaction. SE: The
standard error of the effect, either main effect or interaction. |Effect|/SE: The standardized effect
P_empirical: The empirical p value calculated from permutations p_adjusted: The p value adjusted
by the method specified in the parameter file.

Value

If write_file is TRUE, this function writes the results table to a file and invisibly returns the table. If
write_file is FALSE, the function returns the results table without writing to file.

Examples

Not run:
inf_table <- write_variant_influences(data_obj)

End(Not run)

Index

bin_curve, 60, 61

calc_delta_errors, 3
calc_emp_p, 4
calc_p, 4, 22
Cape, 4, 20–25, 27–29, 31, 33, 34, 36, 38, 40,

42, 44, 45, 47, 49, 50, 53–55, 57,
59–62, 64, 65

Cape (Cape-class), 5
Cape-class, 5
cape2mpp, 19, 52

direct_influence, 7, 9, 10, 14, 20

error_prop, 7, 10, 14, 21

get_color, 40, 44, 47, 49
get_covar, 22, 33, 36
get_eigentraits, 7, 9, 14, 20, 23
get_geno, 5, 8, 12, 23, 56
get_marker_chr, 24
get_marker_location, 24
get_marker_name, 24
get_network, 7, 10, 14, 25, 40
get_pairs_for_pairscan, 26
get_pheno, 7, 9, 14, 27

hist_pheno, 28

impute_missing_geno, 28, 56

kinship, 30, 35

linkage_blocks_network, 7, 25, 42
load_input_and_run_cape, 31

marker2covar, 6, 7, 9, 13, 32

norm_pheno, 33

one_pairscan_parallel, 27

pairscan, 15, 20, 21, 27, 34, 44
pairscan_null, 27
pairscan_null_kin, 27
pheno2covar, 6, 7, 9, 13, 36, 45
plink2cape, 36
plot_bars, 37
plot_effects, 37
plot_full_network, 39
plot_int_heat, 37, 39
plot_lines, 37
plot_network, 7, 10, 14, 25, 39, 42
plot_pairscan, 35, 43
plot_pheno_cor, 44
plot_points, 37
plot_singlescan, 45, 62, 63
plot_svd, 46, 59
plot_variant_influences, 39, 48

qnorm_pheno, 50
qtl2_to_cape, 50

read_parameters, 51
read_population, 19, 52, 63
remove_ind, 53
remove_kin_ind, 54
remove_markers, 54
remove_missing_genotype_data, 55, 56
remove_unused_markers, 56
run_cape, 26, 29, 35, 37, 56, 57

select_eigentraits, 58
select_markers_for_pairscan, 5, 6, 8, 13,

35, 46, 59
select_pheno, 61
singlescan, 6, 7, 9, 13, 15, 45, 46, 60, 61, 62

write_population, 63
write_variant_influences, 64

66

	calc_delta_errors
	calc_emp_p
	calc_p
	Cape-class
	cape2mpp
	direct_influence
	error_prop
	get_covar
	get_eigentraits
	get_geno
	get_marker_location
	get_marker_name
	get_network
	get_pairs_for_pairscan
	get_pheno
	hist_pheno
	impute_missing_geno
	kinship
	load_input_and_run_cape
	marker2covar
	norm_pheno
	pairscan
	pheno2covar
	plink2cape
	plot_effects
	plot_full_network
	plot_network
	plot_pairscan
	plot_pheno_cor
	plot_singlescan
	plot_svd
	plot_variant_influences
	qnorm_pheno
	qtl2_to_cape
	read_parameters
	read_population
	remove_ind
	remove_kin_ind
	remove_markers
	remove_missing_genotype_data
	remove_unused_markers
	run_cape
	select_eigentraits
	select_markers_for_pairscan
	select_pheno
	singlescan
	write_population
	write_variant_influences
	Index

