Package 'eurocordexr'

August 24, 2023

Type Package

Title Makes it Easier to Work with Daily 'netCDF' from EURO-CORDEX RCMs

Version 0.2.4

Maintainer Michael Matiu <michaelmatiu@gmail.com>

Description Daily 'netCDF' data from e.g. regional climate models (RCMs) are not trivial to work with. This package, which relies on 'data.table', makes it easier to deal with large data from RCMs, such as from EURO-CORDEX (<https://www.euro-cordex.net/>, <https://cordex.org/data-access/>). It has functions to extract single grid cells from rotated pole grids as well as the whole array in long format. Can handle non-standard calendars (360, noleap) and interpolate them to a standard one. Potentially works with many CF-conform 'netCDF' files.

License GPL-3

Encoding UTF-8

Depends R (>= 2.10)

Imports data.table, magrittr, ncdf4, ncdf4.helpers, fs, PCICt, lubridate

RoxygenNote 7.2.3

URL https://github.com/mitmat/eurocordexr

BugReports https://github.com/mitmat/eurocordexr/issues

LazyData true

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Michael Matiu [aut, cre] (<https://orcid.org/0000-0001-5289-0592>)

Repository CRAN

Date/Publication 2023-08-24 06:40:02 UTC

R topics documented:

al cala inconstante	2
check_inventory	
check_inventory_cmip5	3
compare_variables_in_inventory	4
get_inventory	5
get_inventory_cmip5	6
get_varnames	6
map_non_standard_calendar	7
nc_grid_to_dt	8
print.eurocordexr_inv	9
rotpole_nc_point_to_dt	10
shortnames_gcm	12
	13

Index

check_inventory

Perform some checks on the inventory

Description

Some simple checks for multiple time frequencies, domains, ensembles, downscale realizations, and completeness of simulation periods. Can also run compare_variables_in_inventory to check for completeness of variables for all models. These checks are meant as guides only, since one might not wish multiple elements of the above for climate model ensemble assessments.

Usage

```
check_inventory(data_inventory, check_hist = FALSE, check_vars = FALSE)
```

Arguments

data_inventory	A data.table as resulting from get_inventory.
check_hist	Boolean, if TRUE, tests that each rcp* has a corresponding historical run.
check_vars	Boolean, if TRUE, runs compare_variables_in_inventory to check if all variables are available in all models.

Details

The checks are

- for multiple time frequency (day, month, ...)
- for multiple domains (EUR-11, EUR-44, ...)
- for multiple ensembles (r1i1p1, r2i1p1, ...)
- for multiple downscale realizations (v1, v2, ..)

- for complete periods of simulations: historical usually goes approx. from 1950/70 2005, and rcp* from 2006 - 2100; evaluation is not checked, because it has very heterogeneous periods; cordex-adjust has historical and rcp* combined
- that each rcp* has a corresponding historical run (optional, off by default; otherwise problematic with merged hist and rcp runs, as in cordex-adjust)
- that all variables (tas, pr, ...) are available for all models (optional, off by default)

Value

An object of class "eurocordexr_inv_check" (an overloaded list) with results from the checks. Has a special print method, which shows a verbose summary of the results.

Examples

```
# some empty example files
fn_zip <- system.file("extdata", "inv-test-files.zip", package = "eurocordexr")
tmpdir <- tempdir()
unzip(fn_zip, exdir = tmpdir)
dat_inv <- get_inventory(fs::path(tmpdir, "testdata"))
check_inventory(dat_inv)
```

check_inventory_cmip5 Perform some checks on the inventory of CMIP5 files

Description

Some simple checks for multiple time frequencies, ensembles, and completeness of simulation periods. These checks are meant as guides only, since one might not wish multiple elements of the above for climate model ensemble assessments.

Usage

```
check_inventory_cmip5(data_inventory, check_hist = FALSE)
```

Arguments

data_inventoryA data.table as resulting from get_inventory.check_histBoolean, if TRUE, tests that each rcp* has a corresponding historical run.

Details

The checks are

- for multiple time frequency (day, month, ...)
- for multiple ensembles (r1i1p1, r2i1p1, ...)

- for complete periods of simulations: here complete means at least 1860-2005 for historical and 2006-2099 for rcp*
- that each rcp* has a corresponding historical run (optional, off by default; otherwise problematic with merged hist and rcp runs)

Value

An object of class "eurocordexr_inv_check_cmip5" (an overloaded list) with results from the checks. Has a special print method, which shows a verbose summary of the results.

Examples

```
# some empty example files
fn_zip <- system.file("extdata", "inv-test-files-cmip5.zip", package = "eurocordexr")
tmpdir <- tempdir()
unzip(fn_zip, exdir = tmpdir)
dat_inv <- get_inventory_cmip5(fs::path(tmpdir, "testdata-cmip5"))
check_inventory_cmip5(dat_inv)
```

compare_variables_in_inventory

Compare an EURO-CORDEX inventory for different variables

Description

Casts the result from get_inventory for different variables in order to compare completeness of the inventory. Adds columns for checking equality of years and number of files.

Usage

```
compare_variables_in_inventory(data_inventory, vars = NULL)
```

Arguments

data_inventory	A data.table as resulting from get_inventor	ry.
vars	Character vector of variables to compare. data_inventory.	If NULL, will use all variables in

Value

The casted data.table with boolean columns if all years and number of files are equal for all variables.

get_inventory

Examples

Not run:

```
path <- "/mnt/CEPH_BASEDATA/METEO/SCENARIO"
dat <- get_inventory(path)
dat_compare <- compare_variables_in_inventory(dat, c("tas","rsds","pr"))</pre>
```

End(Not run)

get_inventory Get inventory from path containing EURO-CORDEX .nc files

Description

Returns a data.table with information by splitting the netcdf files into their components (GCM, RCM, variable, experiment, ...) and aggregates over years.

Usage

get_inventory(path, add_files = TRUE)

Arguments

path	Path that will be searched recursively for .nc files.
add_files	Boolean (default TRUE), if TRUE, will add a column containing lists of associated
	files with their full paths (useful e.g. for further processing).

Value

A data.table with the inventory information.

See Also

check_inventory for performing some checks.

Examples

```
# some empty example files
fn_zip <- system.file("extdata", "inv-test-files.zip", package = "eurocordexr")
tmpdir <- tempdir()
unzip(fn_zip, exdir = tmpdir)
dat_inv <- get_inventory(fs::path(tmpdir, "testdata", "mixed-vars"))
print(dat_inv)
```

get_inventory_cmip5 Get inventory from path containing CMIP5 GCMs .nc files

Description

Returns a data.table with information by splitting the netcdf files into their components (GCM, variable, experiment, ...) and aggregates over years.

Usage

get_inventory_cmip5(path, add_files = TRUE)

Arguments

path	Path that will be searched recursively for .nc files.
add_files	Boolean (default TRUE), if TRUE, will add a column containing lists of associated
	files with their full paths (useful e.g. for further processing).

Value

A data.table with the inventory information.

See Also

check_inventory_cmip5 for performing some checks.

Examples

```
# some empty example files
fn_zip <- system.file("extdata", "inv-test-files-cmip5.zip", package = "eurocordexr")
tmpdir <- tempdir()
unzip(fn_zip, exdir = tmpdir)
dat_inv <- get_inventory_cmip5(fs::path(tmpdir, "testdata-cmip5", "basic"))</pre>
```

```
print(dat_inv)
```

get_varnames Get variable names from netcdf file

Description

Wrapper around ncdf4.helpers::nc.get.variable.list.

Usage

get_varnames(filename)

Arguments

filename .nc file

Value

vector of variable names

Examples

```
# example data from EURO-CORDEX (cropped for size)
fn1 <- system.file("extdata", "test1.nc", package = "eurocordexr")
get_varnames(fn1)</pre>
```

map_non_standard_calendar

Create map indices from non-standard calendars

Description

Interpolates non-standard calendars (360 and noleap) to the standard Gregorian. Assumes daily data as input.

Usage

```
map_non_standard_calendar(times)
```

Arguments

times Vector of class PCICt (will be truncated to days).

Value

A data.table with columns:

- dates_full: sequence of standard dates from min to max date in input times as data.table::IDate
- dates_pcict_inter: which dates in PCICt from times correspond to the standard dates
- idx_pcict: the index associated to the input times to be used for mapping e.g. values

See Also

Can be used internally in rotpole_nc_point_to_dt and nc_grid_to_dt by setting the respective arguments.

Examples

```
# example data from EURO-CORDEX (cropped for size)
# non-standard calendar (360)
fn2 <- system.file("extdata", "test2.nc", package = "eurocordexr")
ncobj <- ncdf4::nc_open(fn2)
# read as PCICt-class
times <- ncdf4.helpers::nc.get.time.series(ncobj, "tasmin")
str(times)
dtx <- map_non_standard_calendar(times)
dtx[58:64]</pre>
```

nc_grid_to_dt Convert a netcdf array to long format as data.table

Description

Extracts a variable from netcdf, and returns a data.table with cell index, date, values, and optionally: coordinates.

Usage

```
nc_grid_to_dt(
   filename,
   variable,
   icell_raster_pkg = TRUE,
   add_xy = FALSE,
   interpolate_to_standard_calendar = FALSE,
   date_range,
   verbose = FALSE
)
```

Arguments

filename	Complete path to .nc file.
variable	Name of the variable to extract from filename (character).
icell_raster_pk	g
	Boolean, if TRUE, cell indices will be ordered as if you were extracting the data with the raster package.
add_xy	Boolean, if TRUE, adds columns with x and y coordinates.
interpolate_to_standard_calendar	
	Boolean, if TRUE will use map_non_standard_calendar to interpolate values to a standard calendar.
date_range	(optional) two-element vector of class Date (min, max), which will be used to extract only parts of the netcdf file
verbose	Boolean, if TRUE, prints more information.

8

Details

Coordinates are usually not put in the result, because it saves space. It is recommended to merge them after the final operations. The unique cell index is more efficient. However, if you plan to merge to data extracted with the raster package (assuming the same grid), then cell indices might differ. Set icell_raster_pkg to TRUE, to have the same cell indices. Note that raster and ncdf4 have different concepts of coordinates (cell corner vs. cell center), so merging based on coordinates can produce arbitrary results (besides rounding issues).

Value

A data.table with columns:

- icell: Cell index
- date: Date of class Date, if file has a standard calendar. Date as character, if it has a non-standard calendar (360, noleap) and if interpolate_to_standard_calendar is set to FALSE. If interpolate_to_standard_calendar is TRUE, it's always of class Date.
- variable: Values, column is renamed to input variable
- (optional) x,y: Coordinates of netcdf dimensions, will be renamed to dimension names found in array named after input variable

Warning

Netcdf files can be huge, so loading everything in memory can rapidly crash your R session. Think first about subsetting or aggregating (e.g. using CDO: https://code.mpimet.mpg.de/projects/cdo/).

See Also

The raster and terra packages can also open netcdf files and create data.frames with raster::as.data.frame or terra::as.data.frame. But, it does not handle non-standard calendars, and returns a data.frame, which is slower than data.table.

Examples

```
# example data from EURO-CORDEX (cropped for size)
fn1 <- system.file("extdata", "test1.nc", package = "eurocordexr")
dat <- nc_grid_to_dt(fn1)
str(dat)</pre>
```

print.eurocordexr_inv Print an inventory

Description

Modified data.table::print.data.table to print an inventory from get_inventory and get_inventory_cmip5 more nicely by removing some columns.

Usage

```
## S3 method for class 'eurocordexr_inv'
print(x, all_cols = F, ...)
```

Arguments

х	data.table to print
all_cols	Boolean (default FALSE), if TRUE, will print all columns available
	<pre>passed on to data.table::print.data.table</pre>

Value

x invisibly, used for side effects: prints to console

See Also

print.default

rotpole_nc_point_to_dt

Extract time series of a single grid cell of a rot-pole daily netcdf to data.table

Description

Creates a data.table from a rotated pole netcdf (as usually found in RCMs), which includes values and date. Useful for extracting e.g. the series for a station. Requires that dimension variables in netcdf file contain rlon and rlat, and that it contains daily data.

Usage

```
rotpole_nc_point_to_dt(
   filename,
   variable,
   point_lon,
   point_lat,
   interpolate_to_standard_calendar = FALSE,
   verbose = FALSE,
   add_grid_coord = FALSE
)
```

Arguments

filename	Complete path to .nc file.	
variable	Name of the variable to extract from filename (character).	
point_lon	Numeric longitude of the point to extract (decimal degrees).	
point_lat	Numeric latitude of the point to extract (decimal degrees).	
interpolate_to_standard_calendar		
	Boolean, if TRUE will use map_non_standard_calendar to interpolate values to a standard calendar.	
verbose	Boolean, if TRUE, will print more information.	
add_grid_coord	Boolean, if TRUE, will add columns to the result which give the longitude and latitude of the underlying grid.	

Details

Calculates the euclidean distance, and takes the grid cell with minimal distance to point_lon and point_lat. Requires that the .nc file contains variables lon[rlon, rlat] and lat[rlon, rlat].

Value

A data.table with two columns: the dates in date, and the values in a variable named after input variable. The date column is of class Date, unless the .nc file has a non-standard calendar (360, noleap) and interpolate_to_standard_calendar is set to FALSE, in which it will be character. If add_grid_coord is set to TRUE, then two more columns named grid_lon and grid_lat.

Examples

```
# example data from EURO-CORDEX (cropped for size)
```

```
# standard calendar
fn1 <- system.file("extdata", "test1.nc", package = "eurocordexr")</pre>
dt1 <- rotpole_nc_point_to_dt(</pre>
  filename = fn1,
  variable = "tasmin",
  point_lon = 11.31,
  point_lat = 46.5,
  verbose = TRUE
)
# non-standard calendar (360)
fn2 <- system.file("extdata", "test2.nc", package = "eurocordexr")</pre>
# read as is
dt2 <- rotpole_nc_point_to_dt(fn2, "tasmin", 11.31, 46.5)</pre>
str(dt2) # chr date
dt2[86:94, ] # e.g. 30th of February in 360 calendar
# interpolate to standard
dt3 <- rotpole_nc_point_to_dt(fn2, "tasmin", 11.31, 46.5,
                               interpolate_to_standard_calendar = TRUE)
```

```
str(dt3) # class Date
dt3[86:94, ] # standard calender
```

shortnames_gcm Abbreviations for RCM and GCM names

Description

character vectors with short names of RCM and GCMs, with the long RCM/GCM names as vectornames, so it can be used for renaming:

Usage

shortnames_gcm

shortnames_rcm

Format

An object of class character of length 8.

An object of class character of length 12.

Examples

```
# for example from inventory
fn_zip <- system.file("extdata", "inv-test-files.zip", package = "eurocordexr")
tmpdir <- tempdir()
unzip(fn_zip, exdir = tmpdir)
dat_inv <- get_inventory(fs::path(tmpdir, "testdata"))
# compare
cbind(dat_inv$gcm, shortnames_gcm[dat_inv$gcm])
cbind(dat_inv$institute_rcm, shortnames_rcm[dat_inv$institute_rcm])
```

Index

* datasets shortnames_gcm, 12

check_inventory, 2, 5
check_inventory_cmip5, 3, 6
compare_variables_in_inventory, 2, 4

data.table, 7-11
data.table::print.data.table, 9, 10
Date, 9, 11

get_inventory, 2-4, 5, 9
get_inventory_cmip5, 6, 9
get_varnames, 6

map_non_standard_calendar, 7, 8, 11

nc_grid_to_dt, 7, 8
ncdf4.helpers::nc.get.variable.list, 6

print.default, 10
print.eurocordexr_inv, 9

rotpole_nc_point_to_dt, 7, 10

shortnames_gcm, 12
shortnames_rcm (shortnames_gcm), 12