
Package ‘ggpmisc’
June 28, 2024

Type Package

Title Miscellaneous Extensions to 'ggplot2'

Version 0.6.0

Date 2024-06-26

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Description Extensions to 'ggplot2' respecting the grammar of graphics
paradigm. Statistics: locate and tag peaks and valleys; label plot with the
equation of a fitted polynomial or other types of models; labels
with P-value, R^2 or adjusted R^2 or information criteria for fitted models;
label with ANOVA table for fitted models; label with summary for fitted
models. Model fit classes for which suitable methods are provided by package
'broom' and 'broom.mixed' are supported. Scales and stats to build volcano
and quadrant plots based on outcomes, fold changes, p-values and false
discovery rates.

License GPL (>= 2)

LazyLoad TRUE

ByteCompile TRUE

Depends R (>= 4.0.0), ggpp (>= 0.5.8)

Imports grid, stats, ggplot2 (>= 3.5.0), scales (>= 1.3.0), rlang (>=
1.1.3), generics (>= 0.1.3), MASS (>= 7.3-60.0.1), confintr (>=
1.0.2), polynom (>= 1.4-1), quantreg (>= 5.97), lmodel2 (>=
1.7-3), splus2R (>= 1.3-5), multcomp (>= 1.4-25), multcompView
(>= 0.1-10), tibble (>= 3.2.1), plyr (>= 1.8.9), dplyr (>=
1.1.4), lubridate (>= 1.9.3)

Suggests knitr (>= 1.45), rmarkdown (>= 2.25), ggrepel (>= 0.9.5),
broom (>= 1.0.3), broom.mixed (>= 0.2.9.5), nlme (>= 3.1-160),
gginnards (>= 0.1.0-1), ggtext (>= 0.1.2), testthat, vdiffr

URL https://docs.r4photobiology.info/ggpmisc/,

https://github.com/aphalo/ggpmisc

BugReports https://github.com/aphalo/ggpmisc/issues

Encoding UTF-8

1

https://docs.r4photobiology.info/ggpmisc/
https://github.com/aphalo/ggpmisc
https://github.com/aphalo/ggpmisc/issues

2 Contents

RoxygenNote 7.3.1

VignetteBuilder knitr

NeedsCompilation no

Author Pedro J. Aphalo [aut, cre] (<https://orcid.org/0000-0003-3385-972X>),
Kamil Slowikowski [ctb] (<https://orcid.org/0000-0002-2843-6370>),
Samer Mouksassi [ctb] (<https://orcid.org/0000-0002-7152-6654>)

Repository CRAN

Date/Publication 2024-06-28 00:10:02 UTC

Contents
ggpmisc-package . 3
check_poly_formula . 5
coef.lmodel2 . 6
coefs2poly_eq . 7
confint.lmodel2 . 8
find_peaks . 9
keep_tidy . 11
Moved . 12
outcome2factor . 12
plain_label . 13
poly2character . 19
predict.lmodel2 . 20
scale_colour_logFC . 21
scale_colour_outcome . 24
scale_shape_outcome . 27
scale_x_logFC . 28
scale_y_Pvalue . 31
sprintf_dm . 33
stat_correlation . 34
stat_fit_augment . 40
stat_fit_deviations . 44
stat_fit_glance . 48
stat_fit_residuals . 52
stat_fit_tb . 56
stat_fit_tidy . 62
stat_ma_eq . 67
stat_ma_line . 73
stat_multcomp . 77
stat_peaks . 84
stat_poly_eq . 88
stat_poly_line . 98
stat_quant_band . 101
stat_quant_eq . 105
stat_quant_line . 114
swap_xy . 118

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2843-6370
https://orcid.org/0000-0002-7152-6654

ggpmisc-package 3

symmetric_limits . 119
typeset_numbers . 120
use_label . 120
xy_outcomes2factor . 123

Index 125

ggpmisc-package ggpmisc: Miscellaneous Extensions to ’ggplot2’

Description

Extensions to ’ggplot2’ respecting the grammar of graphics paradigm. Statistics: locate and tag
peaks and valleys; label plot with the equation of a fitted polynomial or other types of models; labels
with P-value, R^2 or adjusted R^2 or information criteria for fitted models; label with ANOVA
table for fitted models; label with summary for fitted models. Model fit classes for which suitable
methods are provided by package ’broom’ and ’broom.mixed’ are supported. Scales and stats to
build volcano and quadrant plots based on outcomes, fold changes, p-values and false discovery
rates.

Details

The new facilities for cleanly defining new stats and geoms added to ’ggplot2’ in version 2.0.0
and the support for nested data frames and lists and new syntax for mapping computed values to
aesthetics added to ’ggplot2’ in version 3.0.0 are used in this package’s code, as well as some
features added in more recent updates including 3.5.0. This means that current ’ggpmisc’ versions
require recent versions of ggplot2.

Extensions provided:

• Function for conversion of time series data into tibbles that can be plotted with ggplot.

• ggplot() method for time series data.

• Stats for locating and tagging "peaks" and "valleys" (local or global maxima and minima).

• Stat for generating labels from model fit objects, including formatted equations. By default
labels are R’s plotmath expressions but LaTeX, markdown and plain text formatted labels are
optionaly assembled.

• Stats for extracting information from a any model fit supported by package ’broom’ and using
it to generate various annotations and data labels.

• Stat for computing and generating labels for the results from multiple comparisons, including
adjusted P-values.

The stats for peaks and valleys are coded so as to work correctly both with numeric and POSIXct
variables mapped to the x aesthetic. Special handling was needed as text labels are generated from
the data.

4 ggpmisc-package

Note

The signatures of stat_peaks() and stat_valleys() from ’ggpmisc’ are identical to those of
stat_peaks and stat_valleys from package ’ggspectra’ but the variables returned are a subset as
special handling of values related to light spectra is missing. Furthermore the stat_peaks() and
stat_valleys() from package ’ggpmisc’ work correctly when date or datetime values are mapped
to the x statistic, while those from package ’ggspectra’ do not generate correct labels in this case.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

Other contributors:

• Kamil Slowikowski (ORCID) [contributor]

• Samer Mouksassi <samermouksassi@gmail.com> (ORCID) [contributor]

References

Package suite ’r4photobiology’ web site at https://www.r4photobiology.info/
Package ’ggplot2’ documentation at https://ggplot2.tidyverse.org/
Package ’ggplot2’ source code at https://github.com/tidyverse/ggplot2

See Also

Useful links:

• https://docs.r4photobiology.info/ggpmisc/

• https://github.com/aphalo/ggpmisc

• Report bugs at https://github.com/aphalo/ggpmisc/issues

Examples

library(tibble)

ggplot(lynx, as.numeric = FALSE) + geom_line() +
stat_peaks(colour = "red") +

stat_peaks(geom = "text", colour = "red", angle = 66,
hjust = -0.1, x.label.fmt = "%Y") +

ylim(NA, 8000)

formula <- y ~ poly(x, 2, raw = TRUE)
ggplot(cars, aes(speed, dist)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label("eq", "R2", "P"),

formula = formula,
parse = TRUE) +

labs(x = expression("Speed, "*x~("mph")),
y = expression("Stopping distance, "*y~("ft")))

formula <- y ~ x

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2843-6370
https://orcid.org/0000-0002-7152-6654
https://www.r4photobiology.info/
https://ggplot2.tidyverse.org/
https://github.com/tidyverse/ggplot2
https://docs.r4photobiology.info/ggpmisc/
https://github.com/aphalo/ggpmisc
https://github.com/aphalo/ggpmisc/issues

check_poly_formula 5

ggplot(PlantGrowth, aes(group, weight)) +
stat_summary(fun.data = "mean_se") +
stat_fit_tb(method = "lm",

method.args = list(formula = formula),
tb.type = "fit.anova",
tb.vars = c(Term = "term", "df", "M.S." = "meansq",

"italic(F)" = "statistic",
"italic(p)" = "p.value"),

tb.params = c("Group" = 1, "Error" = 2),
table.theme = ttheme_gtbw(parse = TRUE)) +

labs(x = "Group", y = "Dry weight of plants") +
theme_classic()

check_poly_formula Validate model formula as a polynomial

Description

Analyse a model formula to determine if it describes a polynomial with terms in order of increasing
powers, and fulfils the expectations of the algorithm used to generate the equation-label.

Usage

check_poly_formula(
formula,
x.name = "x",
warning.text = "'formula' not an increasing polynomial: 'eq.label' is NA!"

)

Arguments

formula A model formula in x.name.

x.name character The name of the explanatory variable in the formula.

warning.text character string.

Details

This validation check could fail to validate some valid formulas as it is difficult to test, or even list
all possible variations of valid formulas. Consequently, this function triggers a warning in case of
failure, not an error. Furthermore, the statistics only fail to build the correct equation label, but in
most cases other output is still usable with models that are not strictly polynomials.

Model formulas with and without an intercept term are accepted as valid, as +0, -1 and +1 are
accepted. If a single power term is included, it is taken as a transformation and any power is
accepted. If two or more terms are powers, they are expected in increasing order with no missing
intermediate terms. If poly() is used in the model formula, a single term is expected.

6 coef.lmodel2

This function checks that all power terms defined using ^ are protected with "as is" I(), as otherwise
they are not powers but instead part of the formula specification. It also checks that an argument is
passed to parameter raw of function poly() if present.

If the warning text is NULL or character(0) no warning is issued. The caller always receives a
length-1 logical as return value.

Value

A logical, TRUE if the formula describes an increasing polynomial, and FALSE otherwise. As a
side-effect a warning is triggered when validation fails.

Examples

check_poly_formula(y ~ 1)
check_poly_formula(y ~ x)
check_poly_formula(y ~ x^3)
check_poly_formula(y ~ x + 0)
check_poly_formula(y ~ x - 1)
check_poly_formula(y ~ x + 1)
check_poly_formula(y ~ x + I(x^2))
check_poly_formula(y ~ 1 + x + I(x^2))
check_poly_formula(y ~ I(x^2) + x)
check_poly_formula(y ~ x + I(x^2) + I(x^3))
check_poly_formula(y ~ I(x) + I(x^2) + I(x^3))
check_poly_formula(y ~ I(x^2) + I(x^3))
check_poly_formula(y ~ I(x^2) + I(x^4))
check_poly_formula(y ~ x + I(x^3) + I(x^2))

check_poly_formula(y ~ poly(x, 2, raw = TRUE)) # use for label
check_poly_formula(y ~ poly(x, 2)) # orthogonal polynomial

coef.lmodel2 Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by modeling
functions. coefficients is an alias for it.

Usage

S3 method for class 'lmodel2'
coef(object, method = "MA", ...)

Arguments

object a fitted model object.
method character One of the methods available in object.
... ignored by this method.

coefs2poly_eq 7

Details

Function lmodel2() from package ’lmodel2’ returns a fitted model object of class "lmodel2"
which differs from that returned by lm(). Here we implement a coef() method for objects of
this class. It differs from de generic method and that for lm objects in having an additional formal
parameter method that must be used to select estimates based on which of the methods supported
by lmodel2() are to be extracted. The returned object is identical in its structure to that returned
by coef.lm().

Value

A named numeric vector of length two.

See Also

lmodel2

coefs2poly_eq Format a polynomial as an equation

Description

Uses a vector of coefficients from a model fit of a polynomial to build the fitted model equation
with embedded coefficient estimates.

Usage

coefs2poly_eq(
coefs,
coef.digits = 3L,
coef.keep.zeros = TRUE,
decreasing = getOption("ggpmisc.decreasing.poly.eq", FALSE),
eq.x.rhs = "x",
lhs = "y~`=`~",
output.type = "expression",
decimal.mark = "."

)

Arguments

coefs numeric Terms always sorted by increasing powers.

coef.digits integer
coef.keep.zeros

logical This flag refers to trailing zeros.

decreasing logical It specifies the order of the terms in the returned character string; in
increasing (default) or decreasing powers.

eq.x.rhs character

8 confint.lmodel2

lhs character

output.type character One of "expression", "latex", "tex", "text", "tikz", "markdown".

decimal.mark character

Value

A character string.

Note

Terms with zero-valued coefficients are dropped from the polynomial.

Examples

coefs2poly_eq(c(1, 2, 0, 4, 5, 2e-5))
coefs2poly_eq(c(1, 2, 0, 4, 5, 2e-5), output.type = "latex")
coefs2poly_eq(0:2)
coefs2poly_eq(0:2, decreasing = TRUE)
coefs2poly_eq(c(1, 2, 0, 4, 5), coef.keep.zeros = TRUE)
coefs2poly_eq(c(1, 2, 0, 4, 5), coef.keep.zeros = FALSE)

confint.lmodel2 Confidence Intervals for Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. This a method for
objects inheriting from class "lmodel2".

Usage

S3 method for class 'lmodel2'
confint(object, parm, level = 0.95, method = "MA", ...)

Arguments

object a fitted model object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required. Currently only 0.95 accepted.

method character One of the methods available in object.

... ignored by this method.

find_peaks 9

Details

Function lmodel2() from package ’lmodel2’ returns a fitted model object of class "lmodel2"
which differs from that returned by lm(). Here we implement a confint() method for objects
of this class. It differs from the generic method and that for lm objects in having an additional
formal parameter method that must be used to select estimates based on which of the methods sup-
ported by lmodel2() are to be extracted. The returned object is identical in its structure to that
returned by confint.lm().

Value

A data frame with two rows and three columns.

See Also

lmodel2

find_peaks Find local maxima or global maximum (peaks)

Description

This method finds peaks (local maxima) in a vector, using a user selectable span and size threshold
relative to the tallest peak (global maximum).

Usage

find_peaks(x, ignore_threshold = 0, span = 3, strict = FALSE, na.rm = FALSE)

Arguments

x numeric vector.
ignore_threshold

numeric value between 0.0 and 1.0 indicating the size threshold below which
peaks will be ignored, or a negative value >= -1, to ignore peaks above a thresh-
old. These values are relative to the range of x.

span a peak is defined as an element in a sequence which is greater than all other
elements within a window of width span centered at that element. The default
value is 3, meaning that a peak is bigger than both of its neighbors. span = NULL
extends the span to the whole length of x.

strict logical flag: if TRUE, an element must be strictly greater than all other values
in its window to be considered a peak. Default: TRUE.

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

10 find_peaks

Details

This function is a wrapper built onto function peaks from splus2R and handles non-finite (including
NA) values differently than peaks, instead of giving an error when na.rm = FALSE and x contains
NA values, NA values are replaced with the smallest finite value in x. span = NULL is treated as a
special case and returns max(x).

Value

A vector of logical values. Values that are TRUE correspond to local peaks in vector x and can be
used to extract the rows corresponding to peaks from a data frame.

Note

The default for parameter strict is FALSE in functions peaks() and find_peaks(), as in stat_peaks()
and in stat_valleys(), while the default in peaks is strict = TRUE.

See Also

peaks

Examples

lynx is a time.series object
lynx_num.df <-

try_tibble(lynx,
col.names = c("year", "lynx"),
as.numeric = TRUE) # years -> as numeric

which(find_peaks(lynx_num.df$lynx, span = 31))
lynx_num.df[find_peaks(lynx_num.df$lynx, span = 15),]
lynx_num.df[find_peaks(lynx_num.df$lynx, span = NULL),]
lynx_num.df[find_peaks(lynx_num.df$lynx,

span = 31,
ignore_threshold = 0.75),]

lynx_datetime.df <-
try_tibble(lynx,

col.names = c("year", "lynx")) # years -> POSIXct

which(find_peaks(lynx_datetime.df$lynx, span = 31))
lynx_datetime.df[find_peaks(lynx_datetime.df$lynx, span = 31),]
lynx_datetime.df[find_peaks(lynx_datetime.df$lynx,

span = 31,
ignore_threshold = 0.75),]

keep_tidy 11

keep_tidy Tidy, glance or augment an object keeping a trace of its origin

Description

Methods implemented in package ’broom’ to tidy, glance and augment the output from model
fits return a consistently organized tibble with generic column names. Although this simplifies
later steps in the data analysis and reporting, it drops key information needed for interpretation.
keep_tidy() makes it possible to retain fields from the model fit object passed as argument to
parameter x in the attribute "fm". The class of x is always stored, and by default also fields "call",
"terms", "formula", "fixed" and "random" if available.

Usage

keep_tidy(x, ..., to.keep = c("call", "terms", "formula", "fixed", "random"))

keep_glance(x, ..., to.keep = c("call", "terms", "formula", "fixed", "random"))

keep_augment(
x,
...,
to.keep = c("call", "terms", "formula", "fixed", "random")

)

Arguments

x An object for which tidy(), glance and/or augment method is available.

... Other named arguments passed along to tidy(), glance or augment.

to.keep character vector of field names in x to copy to attribute "fm" of the tibble re-
turned by tidy(), glance or augment.

Details

Functions keep_tidy(), keep_glance or keep_augment are simple wrappers of the generic meth-
ods which make it possible to add to the returned values an attribute named "fm" preserving user
selected fields and class of the model fit object. Fields names in to.keep missing in x are silently
ignored.

Examples

these examples can only be run if package 'broom' is available

if (requireNamespace("broom", quietly = TRUE)) {

library(broom)

mod <- lm(mpg ~ wt + qsec, data = mtcars)

12 outcome2factor

attr(keep_tidy(mod), "fm")[["class"]]
attr(keep_glance(mod), "fm")[["class"]]
attr(keep_augment(mod), "fm")[["class"]]

attr(keep_tidy(summary(mod)), "fm")[["class"]]

library(MASS)
rmod <- rlm(mpg ~ wt + qsec, data = mtcars)
attr(keep_tidy(rmod), "fm")[["class"]]

}

Moved Moved to package ’gginnards’

Description

Some stats, geoms and the plot layer manipulation functions have been moved from package ’ggp-
misc’ to a separate new package called ’gginnards’.

Details

To continue using any of these functions and methods, simply run at the R prompt or add to your
script library(gginnards), after installing package ’gginnards’.

See Also

gginnards-package, geom_null, stat_debug_group, stat_debug_panel, geom_debug and delete_layers.

outcome2factor Convert numeric ternary outcomes into a factor

Description

Convert numeric ternary outcomes into a factor

Usage

outcome2factor(x, n.levels = 3L)

threshold2factor(x, n.levels = 3L, threshold = 0)

plain_label 13

Arguments

x a numeric vector of -1, 0, and +1 values, indicating down-regulation, uncertain
response or up-regulation, or a numeric vector that can be converted into such
values using a pair of thresholds.

n.levels numeric Number of levels to create, either 3 or 2.

threshold numeric vector Range enclosing the values to be considered uncertain.

Details

These functions convert the numerically encoded values into a factor with the three levels "down",
"uncertain" and "up", or into a factor with two levels de and uncertain as expected by de-
fault by scales scale_colour_outcome, scale_fill_outcome and scale_shape_outcome. When
n.levels = 2 both -1 and +1 are merged to the same level of the factor with label "de".

Note

These are convenience functions that only save some typing. The same result can be achieved by
a direct call to factor and comparisons. These functions aim at making it easier to draw volcano
and quadrant plots.

See Also

Other Functions for quadrant and volcano plots: FC_format(), scale_colour_outcome(), scale_shape_outcome(),
scale_y_Pvalue(), xy_outcomes2factor()

Other scales for omics data: scale_colour_logFC(), scale_shape_outcome(), scale_x_logFC(),
xy_outcomes2factor()

Examples

outcome2factor(c(-1, 1, 0, 1))
outcome2factor(c(-1, 1, 0, 1), n.levels = 2L)

threshold2factor(c(-0.1, -2, 0, +5))
threshold2factor(c(-0.1, -2, 0, +5), n.levels = 2L)
threshold2factor(c(-0.1, -2, 0, +5), threshold = c(-1, 1))

plain_label Format numbers as character labels

Description

These functions format numeric values as character labels including the symbol for statistical pa-
rameter estimates suitable for adding to plots. The labels can be formatted as strings to be parsed
as plotmath expressions, or encoded using LaTeX or Markdown.

14 plain_label

Usage

plain_label(
value,
value.name,
digits = 3,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

italic_label(
value,
value.name,
digits = 3,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

bold_label(
value,
value.name,
digits = 3,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

p_value_label(
value,
small.p = getOption("ggpmisc.small.p", default = FALSE),
subscript = "",
superscript = "",
digits = 4,
fixed = NULL,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

f_value_label(
value,
df1 = NULL,
df2 = NULL,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

plain_label 15

t_value_label(
value,
df = NULL,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

z_value_label(
value,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

S_value_label(
value,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

mean_value_label(
value,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

var_value_label(
value,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

sd_value_label(
value,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

16 plain_label

)

se_value_label(
value,
digits = 4,
fixed = FALSE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

r_label(
value,
method = "pearson",
small.r = getOption("ggpmisc.small.r", default = FALSE),
digits = 3,
fixed = TRUE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

rr_label(
value,
small.r = getOption("ggpmisc.small.r", default = FALSE),
digits = 3,
fixed = TRUE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

adj_rr_label(
value,
small.r = getOption("ggpmisc.small.r", default = FALSE),
digits = 3,
fixed = TRUE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

rr_ci_label(
value,
conf.level,
range.brackets = c("[", "]"),
range.sep = NULL,
digits = 2,
fixed = TRUE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

plain_label 17

r_ci_label(
value,
conf.level,
small.r = getOption("ggpmisc.small.r", default = FALSE),
range.brackets = c("[", "]"),
range.sep = NULL,
digits = 2,
fixed = TRUE,
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

Arguments

value numeric The value of the estimate.

value.name character The symbol used to represent the value, or its name.

digits integer Number of digits to which numeric values are formatetd.

fixed logical Interpret digits as indicating a number of digits after the decimal mark
or as the number of significant digits.

output.type character One of "expression", "latex", "tex", "text", "tikz", "markdown".

decimal.mark character Defaults to the value of R option "OutDec".

small.p, small.r
logical If TRUE use lower case (p and r, r2) instead of upper case (P and R, R2),

subscript, superscript
character Text for a subscript and superscript to P symbol.

df, df1, df2 numeric The degrees of freedom of the estimate.

method character The method used to estimate correlation, which selects the symbol
used for the value.

conf.level numeric critical P-value expressed as fraction in [0..1].

range.brackets, range.sep
character Strings used to format a range.

Value

A character string with formatting, encoded to be parsed as an R plotmath expression, as plain text,
as markdown or to be used with LaTeX within math mode.

See Also

sprintf_dm

18 plain_label

Examples

plain_label(value = 123, value.name = "n", output.type = "expression")
plain_label(value = 123, value.name = "n", output.type = "markdown")
plain_label(value = 123, value.name = "n", output.type = "latex")
italic_label(value = 123, value.name = "n", output.type = "expression")
italic_label(value = 123, value.name = "n", output.type = "markdown")
italic_label(value = 123, value.name = "n", output.type = "latex")
bold_label(value = 123, value.name = "n", output.type = "expression")
bold_label(value = 123, value.name = "n", output.type = "markdown")
bold_label(value = 123, value.name = "n", output.type = "latex")

p_value_label(value = 0.345, digits = 2, output.type = "expression")
p_value_label(value = 0.345, digits = Inf, output.type = "expression")
p_value_label(value = 0.345, digits = 6, output.type = "expression")
p_value_label(value = 0.345, output.type = "markdown")
p_value_label(value = 0.345, output.type = "latex")
p_value_label(value = 0.345, subscript = "Holm")
p_value_label(value = 1e-25, digits = Inf, output.type = "expression")

f_value_label(value = 123.4567, digits = 2, output.type = "expression")
f_value_label(value = 123.4567, digits = Inf, output.type = "expression")
f_value_label(value = 123.4567, digits = 6, output.type = "expression")
f_value_label(value = 123.4567, output.type = "markdown")
f_value_label(value = 123.4567, output.type = "latex")
f_value_label(value = 123.4567, df1 = 3, df2 = 123,

digits = 2, output.type = "expression")
f_value_label(value = 123.4567, df1 = 3, df2 = 123,

digits = 2, output.type = "latex")

t_value_label(value = 123.4567, digits = 2, output.type = "expression")
t_value_label(value = 123.4567, digits = Inf, output.type = "expression")
t_value_label(value = 123.4567, digits = 6, output.type = "expression")
t_value_label(value = 123.4567, output.type = "markdown")
t_value_label(value = 123.4567, output.type = "latex")
t_value_label(value = 123.4567, df = 12,

digits = 2, output.type = "expression")
t_value_label(value = 123.4567, df = 123,

digits = 2, output.type = "latex")

r_label(value = 0.95, digits = 2, output.type = "expression")
r_label(value = -0.95, digits = 2, output.type = "expression")
r_label(value = 0.0001, digits = 2, output.type = "expression")
r_label(value = -0.0001, digits = 2, output.type = "expression")
r_label(value = 0.1234567890, digits = Inf, output.type = "expression")
r_label(value = 0.95, digits = 2, method = "pearson")
r_label(value = 0.95, digits = 2, method = "kendall")
r_label(value = 0.95, digits = 2, method = "spearman")

rr_label(value = 0.95, digits = 2, output.type = "expression")
rr_label(value = 0.0001, digits = 2, output.type = "expression")
rr_label(value = 1e-17, digits = Inf, output.type = "expression")

poly2character 19

adj_rr_label(value = 0.95, digits = 2, output.type = "expression")
adj_rr_label(value = 0.0001, digits = 2, output.type = "expression")

rr_ci_label(value = c(0.3, 0.4), conf.level = 0.95)
rr_ci_label(value = c(0.3, 0.4), conf.level = 0.95, output.type = "text")
rr_ci_label(value = c(0.3, 0.4), conf.level = 0.95, range.sep = ",")

r_ci_label(value = c(-0.3, 0.4), conf.level = 0.95)
r_ci_label(value = c(-0.3, 0.4), conf.level = 0.95, output.type = "text")
r_ci_label(value = c(-0.3, 0.4), conf.level = 0.95, range.sep = ",")
r_ci_label(value = c(-1.0, 0.4), conf.level = 0.95, range.sep = ",")

poly2character Convert a polynomial into character string

Description

Differs from polynom::as.character.polynomial() in that trailing zeros are preserved.

Usage

poly2character(
x,
decreasing = getOption("ggpmisc.decreasing.poly.eq", FALSE),
digits = 3,
keep.zeros = TRUE

)

Arguments

x a polynomial object.

decreasing logical It specifies the order of the terms; in increasing (default) or decreasing
powers.

digits integer Giving the number of significant digits to use for printing.

keep.zeros logical It indicates if zeros are to be retained in the formatted coefficients.

Value

A character string.

Note

This is an edit of the code in package ’polynom’ so that trailing zeros are retained during the
conversion. It is not defined using a different name so as not to interfere with the original.

20 predict.lmodel2

Examples

poly2character(1:3)
poly2character(1:3, decreasing = TRUE)

predict.lmodel2 Model Predictions

Description

predict is a generic function for predictions from the results of various model fitting functions.
predict.lmodel2 is the method for model fit objects of class "lmodel2".

Usage

S3 method for class 'lmodel2'
predict(
object,
method = "MA",
newdata = NULL,
interval = c("none", "confidence"),
level = 0.95,
...

)

Arguments

object a fitted model object.

method character One of the methods available in object.

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

interval Type of interval calculation.

level the confidence level required. Currently only 0.95 accepted.

... ignored by this method.

Details

Function lmodel2() from package ’lmodel2’ returns a fitted model object of class "lmodel2"
which differs from that returned by lm(). Here we implement a predict() method for objects
of this class. It differs from the generic method and that for lm objects in having an additional for-
mal parameter method that must be used to select which of the methods supported by lmodel2()
are to be used in the prediction. The returned object is similar in its structure to that returned by
predict.lm() but lacking names or rownames.

scale_colour_logFC 21

Value

If interval = "none" a numeric vector is returned, while if interval = "confidence" a data
frame with columns fit, lwr and upr is returned.

See Also

lmodel2

scale_colour_logFC Colour and fill scales for log fold change data

Description

Continuous scales for colour and fill aesthetics with defaults suitable for values expressed as
log2 fold change in data and fold-change in tick labels. Supports tick labels and data expressed
in any combination of fold-change, log2 fold-change and log10 fold-change. Supports addition of
units to legend title passed as argument to the name formal parameter.

Usage

scale_colour_logFC(
name = "Abundance of y%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.05, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
midpoint = NULL,
low.colour = "dodgerblue2",
mid.colour = "grey50",
high.colour = "red",
na.colour = "black",
aesthetics = "colour",
...

)

scale_color_logFC(
name = "Abundance of y%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.05, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,

22 scale_colour_logFC

midpoint = NULL,
low.colour = "dodgerblue2",
mid.colour = "grey50",
high.colour = "red",
na.colour = "black",
aesthetics = "colour",
...

)

scale_fill_logFC(
name = "Abundance of y%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.05, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
midpoint = 1,
low.colour = "dodgerblue2",
mid.colour = "grey50",
high.colour = "red",
na.colour = "black",
aesthetics = "fill",
...

)

Arguments

name The name of the scale without units, used for the legend title.

breaks The positions of ticks or a function to generate them. Default varies depending
on argument passed to log.base.labels. if supplied as a numeric vector they
should be given using the data as passed to parameter data.

labels The tick labels or a function to generate them from the tick positions. The default
is function that uses the arguments passed to log.base.data and log.base.labels
to generate suitable labels.

limits limits One of: NULL to use the default scale range from ggplot2. A numeric
vector of length two providing limits of the scale, using NA to refer to the ex-
isting minimum or maximum. A function that accepts the existing (automatic)
limits and returns new limits. The default is function symmetric_limits()
which keep 1 at the middle of the axis..

oob Function that handles limits outside of the scale limits (out of bounds). The
default squishes out-of-bounds values to the boundary.

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. The default is
to expand the scale by 15% on each end for log-fold-data, so as to leave space
for counts annotations.

scale_colour_logFC 23

log.base.labels, log.base.data
integer or logical Base of logarithms used to express fold-change values in tick
labels and in data. Use FALSE for no logarithm transformation.

midpoint numeric Value at the middle of the colour gradient, defaults to FC = 1, assuming
data is expressed as logarithm.

low.colour, mid.colour, high.colour, na.colour
character Colour definitions to use for the gradient extremes and middle.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics =
c("colour", "fill").

... other named arguments passed to scale_y_continuous.

Details

These scales only alter default arguments of scale_colour_gradient2() and scale_fill_gradient2().
Please, see documentation for scale_continuous for details. The name argument supports the use
of "%unit" at the end of the string to automatically add a units string, otherwise user-supplied val-
ues for names, breaks, and labels work as usual. Tick labels in the legend are built based on the
transformation already applied to the data (log2 by default) and a possibly different log transforma-
tion (default is fold-change with no transformation). The default for handling out of bounds values
is to "squish" them to the extreme of the scale, which is different from the default used in ’ggplot2’.

See Also

Other scales for omics data: outcome2factor(), scale_shape_outcome(), scale_x_logFC(),
xy_outcomes2factor()

Examples

set.seed(12346)
my.df <- data.frame(x = rnorm(50, sd = 4), y = rnorm(50, sd = 4))
we assume that both x and y values are expressed as log2 fold change

ggplot(my.df, aes(x, y, colour = y)) +
geom_point(shape = "circle", size = 2.5) +
scale_x_logFC() +
scale_y_logFC() +
scale_colour_logFC()

ggplot(my.df, aes(x, y, fill = y)) +
geom_point(shape = "circle filled", colour = "black", size = 2.5) +
scale_x_logFC() +
scale_y_logFC() +
scale_fill_logFC()

my.labels <-
scales::trans_format(function(x) {log10(2^x)}, scales::math_format())

ggplot(my.df, aes(x, y, colour = y)) +
geom_point() +

24 scale_colour_outcome

scale_x_logFC(labels = my.labels) +
scale_y_logFC(labels = my.labels) +
scale_colour_logFC(labels = my.labels)

ggplot(my.df, aes(x, y, colour = y)) +
geom_point() +
scale_x_logFC(log.base.labels = 2) +
scale_y_logFC(log.base.labels = 2) +
scale_colour_logFC(log.base.labels = 2)

ggplot(my.df, aes(x, y, colour = y)) +
geom_point() +
scale_x_logFC(log.base.labels = 10) +
scale_y_logFC(log.base.labels = 10) +
scale_colour_logFC(log.base.labels = 10)

ggplot(my.df, aes(x, y, colour = y)) +
geom_point() +
scale_x_logFC(log.base.labels = 10) +
scale_y_logFC(log.base.labels = 10) +
scale_colour_logFC(log.base.labels = 10,

labels = FC_format(log.base.labels = 10,
log.base.data = 2L,
fmt = "% .*g"))

override default arguments.
ggplot(my.df, aes(x, y, colour = y)) +

geom_point() +
scale_x_logFC() +
scale_y_logFC() +
scale_colour_logFC(name = "Change",

labels = function(x) {paste(2^x, "fold")})

scale_colour_outcome Colour and fill scales for ternary outcomes

Description

Manual scales for colour and fill aesthetics with defaults suitable for the three way outcome from
some statistical tests.

Usage

scale_colour_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",

scale_colour_outcome 25

de.colour = "goldenrod",
na.colour = "black",
values = "outcome:updown",
drop = TRUE,
aesthetics = "colour"

)

scale_color_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
values = "outcome:updown",
drop = TRUE,
aesthetics = "colour"

)

scale_fill_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
values = "outcome:both",
drop = TRUE,
aesthetics = "fill"

)

Arguments

... other named arguments passed to scale_colour_manual.

name The name of the scale, used for the axis-label.
ns.colour, down.colour, up.colour, de.colour

The colour definitions to use for each of the three possible outcomes.

na.colour colour definition used for NA.

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value. In addition
the special values "outcome:updown", "outcome:de" and "outcome:both" set
predefined values, with "outcome:both" as default.

drop logical Should unused factor levels be omitted from the scale? The default,

26 scale_colour_outcome

TRUE, uses the levels that appear in the data; FALSE uses all the levels in the
factor.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics =
c("colour", "fill").

Details

These scales only alter the breaks, values, and na.value default arguments of scale_colour_manual()
and scale_fill_manual(). Please, see documentation for scale_manual for details.

Note

In ’ggplot2’ (3.3.4, 3.3.5, 3.3.6) scale_colour_manual() and scale_fill_manual() do not obey
drop, most likely due to a bug as this worked in version 3.3.3 and earlier. This results in spureous
levels in the plot legend when using versions 3.3.4, 3.3.5, 3.3.6 of ’ggplot2’.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_shape_outcome(),
scale_y_Pvalue(), xy_outcomes2factor()

Examples

set.seed(12346)
outcome <- sample(c(-1, 0, +1), 50, replace = TRUE)
my.df <- data.frame(x = rnorm(50),

y = rnorm(50),
outcome2 = outcome2factor(outcome, n.levels = 2),
outcome3 = outcome2factor(outcome))

ggplot(my.df, aes(x, y, colour = outcome3)) +
geom_point() +
scale_colour_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, colour = outcome2)) +
geom_point() +
scale_colour_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, fill = outcome3)) +
geom_point(shape = 21) +
scale_fill_outcome() +
theme_bw()

scale_shape_outcome 27

scale_shape_outcome Shape scale for ternary outcomes

Description

Manual scales for colour and fill aesthetics with defaults suitable for the three way outcome from
some statistical tests.

Usage

scale_shape_outcome(
...,
name = "Outcome",
ns.shape = "circle filled",
up.shape = "triangle filled",
down.shape = "triangle down filled",
de.shape = "square filled",
na.shape = "cross"

)

Arguments

... other named arguments passed to scale_manual.

name The name of the scale, used for the axis-label.
ns.shape, down.shape, up.shape, de.shape

The shapes to use for each of the three possible outcomes.

na.shape Shape used for NA.

Details

These scales only alter the values, and na.value default arguments of scale_shape_manual().
Please, see documentation for scale_manual for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_colour_outcome(),
scale_y_Pvalue(), xy_outcomes2factor()

Other scales for omics data: outcome2factor(), scale_colour_logFC(), scale_x_logFC(),
xy_outcomes2factor()

Examples

set.seed(12346)
outcome <- sample(c(-1, 0, +1), 50, replace = TRUE)
my.df <- data.frame(x = rnorm(50),

y = rnorm(50),
outcome2 = outcome2factor(outcome, n.levels = 2),

28 scale_x_logFC

outcome3 = outcome2factor(outcome))

ggplot(my.df, aes(x, y, shape = outcome3)) +
geom_point() +
scale_shape_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3)) +
geom_point() +
scale_shape_outcome(guide = FALSE) +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome2)) +
geom_point(size = 2) +
scale_shape_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3, fill = outcome2)) +
geom_point() +
scale_shape_outcome() +
scale_fill_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3, fill = outcome2)) +
geom_point() +
scale_shape_outcome(name = "direction") +
scale_fill_outcome(name = "significance") +
theme_bw()

scale_x_logFC Position scales for log fold change data

Description

Continuous scales for x and y aesthetics with defaults suitable for values expressed as log2 fold
change in data and fold-change in tick labels. Supports tick labels and data expressed in any
combination of fold-change, log2 fold-change and log10 fold-change. Supports addition of units to
axis labels passed as argument to the name formal parameter.

Usage

scale_x_logFC(
name = "Abundance of x%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.05, add = 0),

scale_x_logFC 29

log.base.labels = FALSE,
log.base.data = 2L,
...

)

scale_y_logFC(
name = "Abundance of y%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.05, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
...

)

Arguments

name The name of the scale without units, used for the axis-label.

breaks The positions of ticks or a function to generate them. Default varies depending
on argument passed to log.base.labels. if supplied as a numeric vector they
should be given using the data as passed to parameter data.

labels The tick labels or a function to generate them from the tick positions. The default
is function that uses the arguments passed to log.base.data and log.base.labels
to generate suitable labels.

limits limits One of: NULL to use the default scale range from ggplot2. A numeric
vector of length two providing limits of the scale, using NA to refer to the ex-
isting minimum or maximum. A function that accepts the existing (automatic)
limits and returns new limits. The default is function symmetric_limits()
which keep 1 at the middle of the axis..

oob Function that handles limits outside of the scale limits (out of bounds). The
default squishes out-of-bounds values to the boundary.

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. The default is
to expand the scale by 15% on each end for log-fold-data, so as to leave space
for counts annotations.

log.base.labels, log.base.data
integer or logical Base of logarithms used to express fold-change values in tick
labels and in data. Use FALSE for no logarithm transformation.

... other named arguments passed to scale_y_continuous.

Details

These scales only alter default arguments of scale_x_continuous() and scale_y_continuous().
Please, see documentation for scale_continuous for details. The name argument supports the
use of "%unit" at the end of the string to automatically add a units string, otherwise user-supplied

30 scale_x_logFC

values for names, breaks, and labels work as usual. Tick labels are built based on the transformation
already applied to the data (log2 by default) and a possibly different log transformation (default is
fold-change with no transformation). The default for handling out of bounds values is to "squish"
them to the extreme of the scale, which is different from the default used in ’ggplot2’.

See Also

Other scales for omics data: outcome2factor(), scale_colour_logFC(), scale_shape_outcome(),
xy_outcomes2factor()

Examples

set.seed(12346)
my.df <- data.frame(x = rnorm(50, sd = 4), y = rnorm(50, sd = 4))
we assume that both x and y values are expressed as log2 fold change

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_logFC()

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format())) +
scale_y_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format()))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(log.base.labels = 2) +
scale_y_logFC(log.base.labels = 2)

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC("A concentration%unit", log.base.labels = 10) +
scale_y_logFC("B concentration%unit", log.base.labels = 10)

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC("A concentration%unit", breaks = NULL) +
scale_y_logFC("B concentration%unit", breaks = NULL)

taking into account that data are expressed as log2 FC.
ggplot(my.df, aes(x, y)) +

geom_point() +
scale_x_logFC("A concentration%unit", breaks = log2(c(1/100, 1, 100))) +
scale_y_logFC("B concentration%unit", breaks = log2(c(1/100, 1, 100)))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scale_y_Pvalue 31

scales::math_format())) +
scale_y_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format()))

override "special" default arguments.
ggplot(my.df, aes(x, y)) +

geom_point() +
scale_x_logFC("A concentration",

breaks = waiver(),
labels = waiver()) +

scale_y_logFC("B concentration",
breaks = waiver(),
labels = waiver())

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_logFC() +
geom_quadrant_lines() +
stat_quadrant_counts(size = 3.5)

scale_y_Pvalue Convenience scale for P-values

Description

Scales for y aesthetic mapped to P-values as used in volcano plots with transcriptomics and metabolomics
data.

Usage

scale_y_Pvalue(
...,
name = expression(italic(P) - plain(value)),
transform = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-20),
oob = NULL,
expand = NULL

)

scale_y_FDR(
...,
name = "False discovery rate",
transform = NULL,
breaks = NULL,
labels = NULL,

32 scale_y_Pvalue

limits = c(1, 1e-10),
oob = NULL,
expand = NULL

)

scale_x_Pvalue(
...,
name = expression(italic(P) - plain(value)),
transform = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-20),
oob = NULL,
expand = NULL

)

scale_x_FDR(
...,
name = "False discovery rate",
transform = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-10),
oob = NULL,
expand = NULL

)

Arguments

... other named arguments passed to scale_y_continuous.

name The name of the scale without units, used for the axis-label.

transform Either the name of a transformation object, or the object itself. Use NULL for
the default.

breaks The positions of ticks or a function to generate them. Default varies depending
on argument passed to log.base.labels.

labels The tick labels or a function to generate them from the tick positions. The default
is function that uses the arguments passed to log.base.data and log.base.labels
to generate suitable labels.

limits Use one of: NULL to use the default scale range, a numeric vector of length two
providing limits of the scale; NA to refer to the existing minimum or maximum;
a function that accepts the existing (automatic) limits and returns new limits.

oob Function that handles limits outside of the scale limits (out of bounds). The
default squishes out-of-bounds values to the boundary.

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. The default is
to expand the scale by 15% on each end for log-fold-data, so as to leave space
for counts annotations.

sprintf_dm 33

Details

These scales only alter default arguments of scale_x_continuous() and scale_y_continuous().
Please, see documentation for scale_continuous for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_colour_outcome(),
scale_shape_outcome(), xy_outcomes2factor()

Examples

set.seed(12346)
my.df <- data.frame(x = rnorm(50, sd = 4),

y = 10^-runif(50, min = 0, max = 20))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_Pvalue()

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_FDR(limits = c(NA, 1e-20))

sprintf_dm Format numeric values as strings

Description

Using sprintf flexibly format numbers as character strings encoded for parsing into R expressions
or using LaTeX or markdown notation.

Usage

sprintf_dm(fmt, ..., decimal.mark = getOption("OutDec", default = "."))

value2char(
value,
digits = Inf,
format = "g",
output.type = "expression",
decimal.mark = getOption("OutDec", default = ".")

)

34 stat_correlation

Arguments

fmt character as in sprintf().

... as in sprintf().

decimal.mark character If NULL or NA no substitution is attempted and the value returned by
sprintf() is returned as is.

value numeric The value of the estimate.

digits integer Number of digits to which numeric values are formatted.

format character One of "e", "f" or "g" for exponential, fixed, or significant digits for-
matting.

output.type character One of "expression", "latex", "tex", "text", "tikz", "markdown".

Details

These functions are used to format the character strings returned, which can be used as labels in
plots. Encoding used for the formatting is selected by the argument passed to output.type, thus,
supporting different R graphic devices.

See Also

sprintf

Examples

sprintf_dm("%2.3f", 2.34)
sprintf_dm("%2.3f", 2.34, decimal.mark = ",")

value2char(2.34)
value2char(2.34, digits = 3, format = "g")
value2char(2.34, digits = 3, format = "f")
value2char(2.34, output.type = "text")
value2char(2.34, output.type = "text", format = "f")
value2char(2.34, output.type = "text", format = "g")

stat_correlation Annotate plot with correlation test

Description

stat_correlation() applies stats::cor.test() respecting grouping with method = "pearson"
default but alternatively using "kendall" or "spearman" methods. It generates labels for correla-
tion coefficients and p-value, coefficient of determination (R^2) for method "pearson" and number
of observations.

stat_correlation 35

Usage

stat_correlation(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
...,
method = "pearson",
n.min = 2L,
alternative = "two.sided",
exact = NULL,
r.conf.level = ifelse(method == "pearson", 0.95, NA),
continuity = FALSE,
small.r = getOption("ggpmisc.small.r", default = FALSE),
small.p = getOption("ggpmisc.small.p", default = FALSE),
coef.keep.zeros = TRUE,
r.digits = 2,
t.digits = 3,
p.digits = 3,
CI.brackets = c("[", "]"),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
output.type = NULL,
boot.R = ifelse(method == "pearson", 0, 999),
na.rm = FALSE,
parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

method character One of "pearson", "kendall" or "spearman".

n.min integer Minimum number of distinct values in the variables for fitting to the
attempted.

alternative character One of "two.sided", "less" or "greater".

36 stat_correlation

exact logical Whether an exact p-value should be computed. Used for Kendall’s tau
and Spearman’s rho.

r.conf.level numeric Confidence level for the returned confidence interval. If set to NA com-
putation of CI is skipped.

continuity logical If TRUE , a continuity correction is used for Kendall’s tau and Spear-
man’s rho when not computed exactly.

small.r, small.p
logical Flags to switch use of lower case r and p for coefficient of correlation
(only for method = "pearson") and p-value.

coef.keep.zeros

logical Keep or drop trailing zeros when formatting the correlation coefficients
and t-value, z-value or S-value (see note below).

r.digits, t.digits, p.digits
integer Number of digits after the decimal point to use for R, r.squared, tau or
rho and P-value in labels. If Inf, use exponential notation with three decimal
places.

CI.brackets character vector of length 2. The opening and closing brackets used for the CI
label.

label.x, label.y
numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical displacement step-size used
between labels for different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".

boot.R interger The number of bootstrap resamples. Set to zero for no bootstrap esti-
mates for the CI.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic can be used to annotate a plot with the correlation coefficient and the outcome of its test
of significance. It supports Pearson, Kendall and Spearman methods to compute correlation. This
statistic generates labels as R expressions by default but LaTeX (use TikZ device), markdown (use
package ’ggtext’) and plain text are also supported, as well as numeric values for user-generated text
labels. The character labels include the symbol describing the quantity together with the numeric

stat_correlation 37

value. For the confidence interval (CI) the default is to follow the APA recommendation of using
square brackets.

The value of parse is set automatically based on output-type, but if you assemble labels that
need parsing from numeric output, the default needs to be overridden. By default the value of
output.type is guessed from the name of the geometry.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. cor.test() is always applied
to the variables mapped to the x and y aesthetics, so the scales used for x and y should both be
continuous scales rather than discrete.

Aesthetics

stat_correaltion() requires x and y. In addition, the aesthetics understood by the geom ("text"
is the default) are understood and grouping respected.

Computed variables

If output.type is "numeric" the returned tibble contains the columns listed below with variations
depending on the method. If the model fit function used does not return a value, the variable is set
to NA_real_.

x,npcx x position
y,npcy y position
r, and cor, tau or rho numeric values for correlation coefficient estimates
t.value and its df, z.value or S.value numeric values for statistic estimates
p.value, n numeric values.
r.conf.level numeric value, as fraction of one.
r.confint.low Confidence interval limit for r.
r.confint.high Confidence interval limit for r.
grp.label Set according to mapping in aes.
method.label Set according method used.
method, test character values

If output.type different from "numeric" the returned tibble contains in addition to the columns
listed above those listed below. If the numeric value is missing the label is set to character(0L).

r.label, and cor.label, tau.label or rho.label Correlation coefficient as a character string.
t.value.label, z.value.label or S.value.label t-value and degrees of freedom, z-value or S-value as

a character string.
p.value.label P-value for test against zero, as a character string.
r.confint.label, and cor.conint.label, tau.confint.label or rho.confint.label Confidence interval for

r (only with method = "pearson").
n.label Number of observations used in the fit, as a character string.
grp.label Set according to mapping in aes, as a character string.

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the last examples below.

38 stat_correlation

Note

Currently coef.keep.zeros is ignored, with trailing zeros always retained in the labels but not
protected from being dropped by R when character strings are parsed into expressions.

See Also

cor.test for details on the computations.

Examples

generate artificial data
set.seed(4321)
x <- (1:100) / 10
y <- x + rnorm(length(x))
my.data <- data.frame(x = x,

y = y,
y.desc = - y,
group = c("A", "B"))

by default only R is displayed
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_correlation()

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(small.r = TRUE)

ggplot(my.data, aes(x, y.desc)) +
geom_point() +
stat_correlation(label.x = "right")

non-default methods
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_correlation(method = "kendall")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(method = "spearman")

use_label() can map a user selected label
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_correlation(use_label("R2"))

use_label() can assemble and map a combined label
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_correlation(use_label("R", "P", "n", "method"))

ggplot(my.data, aes(x, y)) +

stat_correlation 39

geom_point() +
stat_correlation(use_label("R", "R.CI"))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(use_label("R", "R.CI"),

r.conf.level = 0.95)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(use_label("R", "R.CI"),

method = "kendall",
r.conf.level = 0.95)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(use_label("R", "R.CI"),

method = "spearman",
r.conf.level = 0.95)

manually assemble and map a specific label using paste() and aes()
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_correlation(aes(label = paste(after_stat(r.label),

after_stat(p.value.label),
after_stat(n.label),
sep = "*\", \"*")))

manually format and map a specific label using sprintf() and aes()
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_correlation(aes(label = sprintf("%s*\" with \"*%s*\" for \"*%s",

after_stat(r.label),
after_stat(p.value.label),
after_stat(t.value.label))))

Inspecting the returned data using geom_debug()
This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics with after_stat().

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

the whole of computed data
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +

40 stat_fit_augment

geom_point() +
stat_correlation(geom = "debug", method = "pearson")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", method = "kendall")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", method = "spearman")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", output.type = "numeric")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", output.type = "markdown")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", output.type = "LaTeX")

stat_fit_augment Augment data with fitted values and statistics

Description

stat_fit_augment fits a model and returns a "tidy" version of the model’s data with prediction
added, using ’augmnent() methods from packages ’broom’, ’broom.mixed’, or other sources. The
prediction can be added to the plot as a curve.

Usage

stat_fit_augment(
mapping = NULL,
data = NULL,
geom = "smooth",
method = "lm",
method.args = list(formula = y ~ x),
n.min = 2L,
augment.args = list(),
level = 0.95,

stat_fit_augment 41

y.out = ".fitted",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character or function.
method.args, augment.args

list of arguments to pass to method and to to broom::augment.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

level numeric Level of confidence interval to use (0.95 by default)

y.out character (or numeric) index to column to return as y.

position The position adjustment to use for overlapping points on this layer

na.rm logical indicating whether NA values should be stripped before the computation
proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_augment together with stat_fit_glance and stat_fit_tidy, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by ’broom’.
In contrast to stat_poly_eq which can generate text or expression labels automatically, for these
functions the mapping of aesthetic label needs to be explicitly supplied in the call, and labels built
on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

42 stat_fit_augment

Warning!

Not all ‘glance()‘ methods are defined in package ’broom’. ‘glance()‘ specializations for mixed
models fits of classes ‘lme‘, ‘nlme‘, ‘lme4‘, and many others are defined in package ’broom.mixed’.

Handling of grouping

stat_fit_augment applies the function given by method separately to each group of observations;
in ggplot2 factors mapped to aesthetics generate a separate group for each level. Because of this,
stat_fit_augment is not useful for annotating plots with results from t.test() or ANOVA or
ANCOVA. In such cases use instead stat_fit_tb() which applies the model fitting per panel.

Computed variables

The output of augment() is returned as is, except for y which is set based on y.out and y.observed
which preserves the y returned by the generics::augment methods. This renaming is needed so
that the geom works as expected.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug. An example is shown below.

Note

The statistic stat_fit_augment can be used only with methods that accept formulas under any for-
mal parameter name and a data argument. Use ggplot2::stat_smooth() instead of stat_fit_augment
in production code if the additional features are not needed.

Although arguments passed to parameter augment.args will be passed to [generics::augment()]
whether they are silently ignored or obeyed depends on each specialization of [augment()], so do
carefully read the documentation for the version of [augment()] corresponding to the ‘method‘ used
to fit the model.

See Also

broom and broom.mixed for details on how the tidying of the result of model fits is done.

Other ggplot statistics for model fits: stat_fit_deviations(), stat_fit_glance(), stat_fit_residuals(),
stat_fit_tb(), stat_fit_tidy()

Examples

Package 'broom' needs to be installed to run these examples.
We check availability before running them to avoid errors.

if (requireNamespace("broom", quietly = TRUE)) {
broom.installed <- TRUE
library(broom)
library(quantreg)

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {
library(gginnards)

stat_fit_augment 43

Regression by panel, inspecting data
ggplot(mtcars, aes(x = disp, y = mpg)) +

geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x),
geom = "debug",
summary.fun = colnames)

}
}

Regression by panel example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x))

Residuals from regression by panel example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method = "lm",
method.args = list(formula = y ~ x),
y.out = ".resid")

Regression by group example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_point() +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x))

Residuals from regression by group example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method.args = list(formula = y ~ x),
y.out = ".resid")

Weighted regression example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x,
weights = quote(weight)))

Residuals from weighted regression example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
geom_hline(yintercept = 0, linetype = "dotted") +

44 stat_fit_deviations

stat_fit_augment(geom = "point",
method.args = list(formula = y ~ x,

weights = quote(weight)),
y.out = ".resid")

Quantile regression
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
stat_fit_augment(method = "rq")

stat_fit_deviations Residuals from model fit as segments

Description

stat_fit_deviations fits a linear model and returns fitted values and residuals ready to be plotted
as segments.

Usage

stat_fit_deviations(
mapping = NULL,
data = NULL,
geom = "segment",
method = "lm",
method.args = list(),
n.min = 2L,
formula = NULL,
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_fit_fitted(
mapping = NULL,
data = NULL,
geom = "point",
method = "lm",
method.args = list(),
n.min = 2L,
formula = NULL,
position = "identity",

stat_fit_deviations 45

na.rm = FALSE,
orientation = NA,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method function or character If character, "lm", "rlm", "lqs", "rq" and the name of a
function to be matched, possibly followed by the fit function’s method argu-
ment separated by a colon (e.g. "rq:br"). Functions implementing methods
must accept arguments to parameters formula, data, weights and method. A
fitted() method must exist for the returned model fit object class.

method.args named list with additional arguments.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

formula a "formula" object. Using aesthetic names instead of original variable names.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

This stat can be used to automatically highlight residuals as segments in a plot of a fitted model
equation. This stat only generates the residuals, the predicted values need to be separately added
to the plot, so to make sure that the same model formula is used in all steps it is best to save the
formula as an object and supply this object as argument to the different statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. In other words, it respects the
grammar of graphics and consequently within the model formula names of aesthetics like x and
y should be used instead of the original variable names. This helps ensure that the model is fitted
to the same data as plotted in other layers.

46 stat_fit_deviations

Computed variables

Data frame with same nrow as data as subset for each group containing five numeric variables.

x x coordinates of observations

x.fitted x coordinates of fitted values

y y coordinates of observations

y.fitted y coordinates of fitted values

To explore the values returned by this statistic we suggest the use of geom_debug. An example is
shown below, where one can also see in addition to the computed values the default mapping of the
fitted values to aesthetics xend and yend.

Note

In the case of method = "rq" quantiles are fixed at tau = 0.5 unless method.args has length > 0.
Parameter orientation is redundant as it only affects the default for formula but is included for
consistency with ggplot2.

See Also

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_glance(), stat_fit_residuals(),
stat_fit_tb(), stat_fit_tidy()

Examples

generate artificial data
library(MASS)

set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x, y)

plot residuals from linear model
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = y ~ x) +
stat_fit_deviations(method = "lm", formula = y ~ x, colour = "red") +
geom_point()

plot residuals from linear model with y as explanatory variable
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = y ~ x, orientation = "y") +
stat_fit_deviations(method = "lm", formula = x ~ y, colour = "red") +
geom_point()

as above using orientation
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", orientation = "y") +
stat_fit_deviations(orientation = "y", colour = "red") +
geom_point()

stat_fit_deviations 47

both regressions and their deviations
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm") +
stat_fit_deviations(colour = "blue") +
geom_smooth(method = "lm", orientation = "y", colour = "red") +
stat_fit_deviations(orientation = "y", colour = "red") +
geom_point()

give a name to a formula
my.formula <- y ~ poly(x, 3, raw = TRUE)

plot linear regression
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, colour = "red") +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = stats::lm, colour = "red") +
geom_point()

plot robust regression
ggplot(my.data, aes(x, y)) +

stat_smooth(method = "rlm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = "rlm", colour = "red") +
geom_point()

plot robust regression with weights indicated by colour
my.data.outlier <- my.data
my.data.outlier[6, "y"] <- my.data.outlier[6, "y"] * 10
ggplot(my.data.outlier, aes(x, y)) +

stat_smooth(method = MASS::rlm, formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = "rlm",

mapping = aes(colour = after_stat(weights)),
show.legend = TRUE) +

scale_color_gradient(low = "red", high = "blue", limits = c(0, 1),
guide = "colourbar") +

geom_point()

plot quantile regression (= median regression)
ggplot(my.data, aes(x, y)) +

stat_quantile(formula = my.formula, quantiles = 0.5) +
stat_fit_deviations(formula = my.formula, method = "rq", colour = "red") +
geom_point()

plot quantile regression (= "quartile" regression)
ggplot(my.data, aes(x, y)) +

stat_quantile(formula = my.formula, quantiles = 0.75) +
stat_fit_deviations(formula = my.formula, colour = "red",

method = "rq", method.args = list(tau = 0.75)) +
geom_point()

48 stat_fit_glance

inspecting the returned data with geom_debug()
gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

plot, using geom_debug() to explore the after_stat data
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, geom = "debug") +
geom_point()

if (gginnards.installed)
ggplot(my.data.outlier, aes(x, y)) +
stat_smooth(method = MASS::rlm, formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = "rlm", geom = "debug") +
geom_point()

stat_fit_glance One row summary data frame for a fitted model

Description

stat_fit_glance fits a model and returns a "tidy" version of the model’s fit, using ’glance()
methods from packages ’broom’, ’broom.mixed’, or other sources.

Usage

stat_fit_glance(
mapping = NULL,
data = NULL,
geom = "text_npc",
method = "lm",
method.args = list(formula = y ~ x),
n.min = 2L,
glance.args = list(),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = 0.075,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_fit_glance 49

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character or function.
method.args, glance.args

list of arguments to pass to method and to [generics::glance()], respectively.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

label.x, label.y
numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_glance together with stat_fit_tidy and stat_fit_augment, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by package
’broom’. In contrast to stat_poly_eq which can generate text or expression labels automatically,
for these functions the mapping of aesthetic label needs to be explicitly supplied in the call, and
labels built on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Value

The output of the glance() methods is returned almost as is in the data object, as a data frame. The
names of the columns in the returned data are consistent with those returned by method glance()

50 stat_fit_glance

from package ’broom’, that will frequently differ from the name of values returned by the print
methods corresponding to the fit or test function used. To explore the values returned by this statistic
including the name of variables/columns, which vary depending on the model fitting function and
model formula we suggest the use of geom_debug. An example is shown below.

Warning!

Not all ‘glance()‘ methods are defined in package ’broom’. ‘glance()‘ specializations for mixed
models fits of classes ‘lme‘, ‘nlme‘, ‘lme4‘, and many others are defined in package ’broom.mixed’.

Handling of grouping

stat_fit_glance applies the function given by method separately to each group of observations,
and factors mapped to aesthetics, including x and y, create a separate group for each factor level.
Because of this, stat_fit_glance is not useful for annotating plots with results from t.test(),
ANOVA or ANCOVA. In such cases use the stat_fit_tb() statistic which applies the model
fitting per panel.

Model formula required

The current implementation works only with methods that accept a formula as argument and which
have a data parameter through which a data frame can be passed. For example, lm() should
be used with the formula interface, as the evaluation of x and y needs to be delayed until the
internal data object of the ggplot is available. With some methods like stats::cor.test() the
data embedded in the "ggplot" object cannot be automatically passed as argument for the data
parameter of the test or model fit function. Please, for annotations based on stats::cor.test()
use stat_correlation().

Note

Although arguments passed to parameter glance.args will be passed to [generics::glance()] whether
they are silently ignored or obeyed depends on each specialization of [glance()], so do carefully read
the documentation for the version of [glance()] corresponding to the ‘method‘ used to fit the model.

See Also

broom and broom.mixed for details on how the tidying of the result of model fits is done.

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_residuals(),
stat_fit_tb(), stat_fit_tidy()

Examples

package 'broom' needs to be installed to run these examples

if (requireNamespace("broom", quietly = TRUE)) {
broom.installed <- TRUE
library(broom)
library(quantreg)

Inspecting the returned data using geom_debug()

stat_fit_glance 51

if (requireNamespace("gginnards", quietly = TRUE)) {
library(gginnards)

ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

method.args = list(formula = y ~ x),
geom = "debug")

}
}

if (broom.installed)
Regression by panel example

ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x),

mapping = aes(label = sprintf('italic(r)^2~"="~%.3f~~italic(P)~"="~%.2g',
after_stat(r.squared), after_stat(p.value))),

parse = TRUE)

Regression by group example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
stat_smooth(method = "lm") +
geom_point() +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

after_stat(r.squared), after_stat(p.value))),
parse = TRUE)

Weighted regression example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x, weights = quote(weight)),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

after_stat(r.squared), after_stat(p.value))),
parse = TRUE)

correlation test
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
stat_fit_glance(method = "cor.test",

52 stat_fit_residuals

label.y = "bottom",
method.args = list(formula = ~ x + y),

mapping = aes(label = sprintf('r[Pearson]~"="~%.3f~~italic(P)~"="~%.2g',
after_stat(estimate), after_stat(p.value))),

parse = TRUE)

if (broom.installed)
ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
stat_fit_glance(method = "cor.test",

label.y = "bottom",
method.args = list(formula = ~ x + y, method = "spearman", exact = FALSE),
mapping = aes(label = sprintf('r[Spearman]~"="~%.3f~~italic(P)~"="~%.2g',

after_stat(estimate), after_stat(p.value))),
parse = TRUE)

Quantile regression by group example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm") +
geom_point() +
stat_fit_glance(method = "rq",

label.y = "bottom",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf('AIC = %.3g, BIC = %.3g',

after_stat(AIC), after_stat(BIC))))

stat_fit_residuals Residuals from a model fit

Description

stat_fit_residuals fits a linear model and returns residuals ready to be plotted as points.

Usage

stat_fit_residuals(
mapping = NULL,
data = NULL,
geom = "point",
method = "lm",
method.args = list(),
n.min = 2L,
formula = NULL,
resid.type = NULL,
weighted = FALSE,
position = "identity",
na.rm = FALSE,

stat_fit_residuals 53

orientation = NA,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.
geom The geometric object to use display the data
method function or character If character, "lm", "rlm", "rq" and the name of a function

to be matched, possibly followed by the fit function’s method argument sepa-
rated by a colon (e.g. "rq:br"). Functions implementing methods must accept
arguments to parameters formula, data, weights and method. A residuals()
method must exist for the returned model fit object class.

method.args named list with additional arguments.
n.min integer Minimum number of distinct values in the explanatory variable (on the

rhs of formula) for fitting to the attempted.
formula a "formula" object. Using aesthetic names instead of original variable names.
resid.type character passed to residuals() as argument for type (defaults to "working"

except if weighted = TRUE when it is forced to "deviance").
weighted logical If true weighted residuals will be returned.
position The position adjustment to use for overlapping points on this layer
na.rm a logical indicating whether NA values should be stripped before the computa-

tion proceeds.
orientation character Either "x" or "y" controlling the default for formula.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This

is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

This stat can be used to automatically plot residuals as points in a plot. At the moment it supports
only linear models fitted with function lm() or rlm(). It applies to the fitted model object methods
residuals or weighted.residuals depending on the argument passed to parameter weighted.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. In other words, it respects the
grammar of graphics and consequently within the model formula names of aesthetics like x and
y should be used instead of the original variable names, while data is automatically passed the
data frame. This helps ensure that the model is fitted to the same data as plotted in other layers.

54 stat_fit_residuals

Computed variables

Data frame with same value of nrow as data as subset for each group containing five numeric
variables.

x x coordinates of observations or x residuals from fitted values,

y y coordinates of observations or y residuals from fitted values,

x.resid residuals from fitted values,

y.resid residuals from fitted values,

weights the weights passed as input to lm or those computed by rlm

.

For orientation = "x", the default, stat(y.resid) is copied to variable y, while for orientation
= "y" stat(x.resid) is copied to variable x.

Note

How weights are applied to residuals depends on the method used to fit the model. For ordinary
least squares (OLS), weights are applied to the squares of the residuals, so the weighted residuals are
obtained by multiplying the "deviance" residuals by the square root of the weights. When residuals
are penalized differently to fit a model, the weighted residuals need to be computed accordingly.
Say if we use the absolute value of the residuals instead of the squared values, weighted residuals
are obtained by multiplying the residuals by the weights.

See Also

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_glance(),
stat_fit_tb(), stat_fit_tidy()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x, y)

plot residuals from linear model
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = y ~ x)

ggplot(my.data, aes(x, y)) +
geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = y ~ x, weighted = TRUE)

plot residuals from linear model with y as explanatory variable
ggplot(my.data, aes(x, y)) +

geom_vline(xintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = x ~ y) +

stat_fit_residuals 55

coord_flip()

give a name to a formula
my.formula <- y ~ poly(x, 3, raw = TRUE)

plot residuals from linear model
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula) +
coord_flip()

ggplot(my.data, aes(x, y)) +
geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, resid.type = "response")

plot residuals from robust regression
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, method = "rlm")

plot residuals with weights indicated by colour
my.data.outlier <- my.data
my.data.outlier[6, "y"] <- my.data.outlier[6, "y"] * 10
ggplot(my.data.outlier, aes(x, y)) +

stat_fit_residuals(formula = my.formula, method = "rlm",
mapping = aes(colour = after_stat(weights)),
show.legend = TRUE) +

scale_color_gradient(low = "red", high = "blue", limits = c(0, 1),
guide = "colourbar")

plot weighted residuals with weights indicated by colour
ggplot(my.data.outlier) +

stat_fit_residuals(formula = my.formula, method = "rlm",
mapping = aes(x = x,

y = stage(start = y, after_stat = y * weights),
colour = after_stat(weights)),

show.legend = TRUE) +
scale_color_gradient(low = "red", high = "blue", limits = c(0, 1),

guide = "colourbar")

plot residuals from quantile regression (median)
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, method = "rq")

plot residuals from quantile regression (upper quartile)
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, method = "rq",
method.args = list(tau = 0.75))

inspecting the returned data
gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

56 stat_fit_tb

if (gginnards.installed)
library(gginnards)

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
stat_fit_residuals(formula = my.formula, resid.type = "working",

geom = "debug")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
stat_fit_residuals(formula = my.formula, method = "rlm",

geom = "debug")

stat_fit_tb Model-fit summary or ANOVA

Description

stat_fit_tb fits a model and returns a "tidy" version of the model’s summary or ANOVA table,
using ’tidy() methods from packages ’broom’, ’broom.mixed’, or other ’broom’ extensions. The
annotation is added to the plots in tabular form.

Usage

stat_fit_tb(
mapping = NULL,
data = NULL,
geom = "table_npc",
method = "lm",
method.args = list(formula = y ~ x),
n.min = 2L,
tidy.args = list(),
tb.type = "fit.summary",
tb.vars = NULL,
tb.params = NULL,
digits = 3,
p.digits = digits,
label.x = "center",
label.y = "top",
position = "identity",
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 1,
parse = FALSE,
na.rm = FALSE,

stat_fit_tb 57

show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character.
method.args, tidy.args

lists of arguments to pass to method and to tidy().

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

tb.type character One of "fit.summary", "fit.anova" or "fit.coefs".
tb.vars, tb.params

character or numeric vectors, optionally named, used to select and/or rename
the columns or the parameters in the table returned.

digits integer indicating the number of significant digits to be used for all numeric
values in the table.

p.digits integer indicating the number of decimal places to round p-values to, with those
rounded to zero displayed as the next larger possible value preceded by "<". If
p.digits is outside the range 1..22 no rounding takes place.

label.x, label.y
numeric Coordinates in data units or with range 0..1, expressed in "normalized
parent coordinates" or as character strings depending on the geometry used.
If too short they will be recycled. They set the x and y coordinates at the
after_stat stage.

position The position adjustment to use for overlapping points on this layer

table.theme NULL, list or function A ’gridExtra’ ttheme definition, or a constructor for a
ttheme or NULL for default.

table.rownames, table.colnames
logical flag to enable or disabling printing of row names and column names.

table.hjust numeric Horizontal justification for the core and column headings of the table.

parse If TRUE, the labels will be parsed into expressions and displayed as described
in ?plotmath.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

58 stat_fit_tb

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_tb() Applies a model fitting function per panel, using the grouping factors from aes-
thetic mappings in the fitted model. This is suitable, for example for analysis of variance used to
test for differences among groups.

The argument to method can be any fit method for which a suitable tidy() method is available,
including non-linear regression. Fit methods retain their default arguments unless overridden.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. In other words, it respects the
grammar of graphics and consequently within arguments passed through method.args names of
aesthetics like x and y should be used instead of the original variable names. The plot’s default
data is used by default, which helps ensure that the model is fitted to the same data as plotted in
other layers.

Value

A tibble with columns named fm.tb (a tibble returned by tidy() with possibly renamed and subset
columns and rows, within a list), fm.tb.type (copy of argument passed to tb.type), fm.class
(the class of the fitted model object), fm.method (the fit function’s name), fm.call (the call if
available), x and y.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug.

Computed variables

The output of tidy() is returned as a single "cell" in a tibble (i.e., a tibble nested within a tibble).
The returned data object contains a single tibble, containing the result from a single model fit to all
data in a panel. If grouping is present, it is ignored in the sense of returning a single table, but the
grouping aesthetic can be a term in the fitted model.

See Also

broom, broom.mixed, and tidy for details on how the tidying of the result of model fits is done.
See geom_table for details on how inset tables respond to mapped aesthetics and table themes. For
details on predefined table themes see ttheme_gtdefault.

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_glance(),
stat_fit_residuals(), stat_fit_tidy()

Examples

Package 'broom' needs to be installed to run these examples.
We check availability before running them to avoid errors.
broom.installed <- requireNamespace("broom", quietly = TRUE)

if (broom.installed)
library(broom)

stat_fit_tb 59

data for examples
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
covariate <- sqrt(x) + rnorm(9)
group <- factor(c(rep("A", 4), rep("B", 5)))
my.df <- data.frame(x, group, covariate)

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

covariate is a numeric or continuous variable
Linear regression fit summary, all defaults
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

we can use geom_debug() and str() to inspect the returned value
and discover the variables that can be mapped to aesthetics with
after_stat()
if (broom.installed && gginnards.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(geom = "debug", summary.fun = str) +
expand_limits(y = 70)

Linear regression fit summary, with default formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.summary") +
expand_limits(y = 70)

Linear regression fit summary, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(digits = 2,

p.digits = 4,
tb.params = c("intercept" = 1, "covariate" = 2),
tb.vars = c(Term = 1, Estimate = 2,

"italic(s)" = 3, "italic(t)" = 4,
"italic(P)" = 5),

parse = TRUE) +
expand_limits(y = 70)

Linear regression ANOVA table, with default formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +

60 stat_fit_tb

stat_fit_tb(tb.type = "fit.anova") +
expand_limits(y = 70)

Linear regression ANOVA table, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova",

tb.params = c("Covariate" = 1, 2),
tb.vars = c(Effect = 1, d.f. = 2,

"M.S." = 4, "italic(F)" = 5,
"italic(P)" = 6),

parse = TRUE) +
expand_limits(y = 67)

Linear regression fit coeficients, with default formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.coefs") +
expand_limits(y = 67)

Linear regression fit coeficients, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.coefs",

tb.params = c(a = 1, b = 2),
tb.vars = c(Term = 1, Estimate = 2)) +

expand_limits(y = 67)

x is also a numeric or continuous variable
Polynomial regression, with default formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ poly(x, 2))) +
expand_limits(y = 70)

Polynomial regression, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ poly(x, 2)),

tb.params = c("x^0" = 1, "x^1" = 2, "x^2" = 3),
tb.vars = c("Term" = 1, "Estimate" = 2, "S.E." = 3,

"italic(t)" = 4, "italic(P)" = 5),
parse = TRUE) +

expand_limits(y = 70)

group is a factor or discrete variable
ANOVA summary, with default formatting
if (broom.installed)

stat_fit_tb 61

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

ANOVA table, with default formatting
if (broom.installed)

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova") +
expand_limits(y = 70)

ANOVA table, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova",

tb.vars = c(Effect = "term", "df", "italic(F)" = "statistic",
"italic(P)" = "p.value"),

tb.params = c(Group = 1, Error = 2),
parse = TRUE)

ANOVA table, with manual table formatting
using column names with partial matching
if (broom.installed)

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova",

tb.vars = c(Effect = "term", "df", "italic(F)" = "stat",
"italic(P)" = "p"),

tb.params = c(Group = "x", Error = "Resid"),
parse = TRUE)

ANOVA summary, with default formatting
if (broom.installed)

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

covariate is a numeric variable and group is a factor
ANCOVA (covariate not plotted) ANOVA table, with default formatting
if (broom.installed)

ggplot(my.df, aes(group, x, z = covariate)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova",

method.args = list(formula = y ~ x + z))

ANCOVA (covariate not plotted) ANOVA table, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(group, x, z = covariate)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova",

62 stat_fit_tidy

method.args = list(formula = y ~ x + z),
tb.vars = c(Effect = 1, d.f. = 2,

"M.S." = 4, "italic(F)" = 5,
"italic(P)" = 6),

tb.params = c(Group = 1,
Covariate = 2,
Error = 3),

parse = TRUE)

group is a factor or discrete variable
t-test, minimal output, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(method = "t.test",

tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

t-test, more detailed output, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(method = "t.test",

tb.vars = c("\"Delta \"*italic(x)" = "estimate",
"CI low" = "conf.low", "CI high" = "conf.high",
"italic(t)" = "statistic", "italic(P)" = "p.value"),

parse = TRUE) +
expand_limits(y = 67)

t-test (equal variances assumed), minimal output, with manual table formatting
if (broom.installed)

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(method = "t.test",

method.args = list(formula = y ~ x, var.equal = TRUE),
tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

covariate is a numeric or continuous variable
Linear regression using a table theme and non-default position
if (broom.installed)

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(table.theme = ttheme_gtlight,

npcx = "left", npcy = "bottom") +
expand_limits(y = 35)

stat_fit_tidy One row data frame with fitted parameter estimates

stat_fit_tidy 63

Description

stat_fit_tidy fits a model and returns a "tidy" version of the model’s summary, using ’tidy()
methods from packages ’broom’, ’broom.mixed’, or other sources. To add the summary in tabular
form use stat_fit_tb instead of this statistic. When using stat_fit_tidy() you will most likely
want to change the default mapping for label.

Usage

stat_fit_tidy(
mapping = NULL,
data = NULL,
geom = "text_npc",
method = "lm",
method.args = list(formula = y ~ x),
n.min = 2L,
tidy.args = list(),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
sanitize.names = FALSE,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character or function.
method.args, tidy.args

list of arguments to pass to method, and to [generics::tidy], respectively.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

label.x, label.y
numeric with range 0..1 or character. Coordinates to be used for positioning the
output, expressed in "normalized parent coordinates" or character string. If too
short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

sanitize.names logical If true sanitize column names in the returned data with R’s make.names()
function.

64 stat_fit_tidy

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_tidy together with stat_fit_glance and stat_fit_augment, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by ’broom’.
In contrast to stat_poly_eq which can generate text or expression labels automatically, for these
functions the mapping of aesthetic label needs to be explicitly supplied in the call, and labels built
on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Value

The output of tidy() is returned after reshaping it into a single row. Grouping is respected, and the
model fitted separately to each group of data. The returned data object has one row for each group
within a panel. To use the intercept, note that output of tidy() is renamed from (Intercept) to
Intercept. Otherwise, the names of the columns in the returned data are based on those returned by
the tidy() method for the model fit class returned by the fit function. These will frequently differ
from the name of values returned by the print methods corresponding to the fit or test function used.
To explore the values returned by this statistic including the name of variables/columns, which vary
depending on the model fitting function and model formula, we suggest the use of geom_debug.
An example is shown below. Names of columns as returned by default are not always syntactically
valid R names making it necessary to use back ticks to access them. Syntactically valid names are
guaranteed if sanitize.names = TRUE is added to the call.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug. An example is shown below.

Warning!

Not all ‘glance()‘ methods are defined in package ’broom’. ‘glance()‘ specializations for mixed
models fits of classes ‘lme‘, ‘nlme‘, ‘lme4‘, and many others are defined in package ’broom.mixed’.

stat_fit_tidy 65

Handling of grouping

stat_fit_tidy applies the function given by method separately to each group of observations;
in ggplot2 factors mapped to aesthetics generate a separate group for each level. Because of this,
stat_fit_tidy is not useful for annotating plots with results from t.test() or ANOVA or AN-
COVA. In such cases use instead stat_fit_tb() which applies the model fitting per panel.

Note

The statistic stat_fit_tidy can be used only with methods that accept formulas under any formal
parameter name and a data argument. Use ggplot2::stat_smooth() instead of stat_fit_augment
in production code if the additional features are not needed.

Although arguments passed to parameter tidy.args will be passed to [generics::tidy()] whether
they are silently ignored or obeyed depends on each specialization of [tidy()], so do carefully read
the documentation for the version of [tidy()] corresponding to the ‘method‘ used to fit the model.
You will also need to manually install the package, such as ’broom’, where the tidier you intend to
use are defined.

See Also

broom and broom.mixed for details on how the tidying of the result of model fits is done.

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_glance(),
stat_fit_residuals(), stat_fit_tb()

Examples

Package 'broom' needs to be installed to run these examples.
We check availability before running them to avoid errors.

if (requireNamespace("broom", quietly = TRUE)) {
broom.installed <- TRUE
library(broom)
library(quantreg)

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {
library(gginnards)

This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics. This is specially important for
this stat as these names depend on the specific tidy() method used, which
depends on the method used, such as lm(), used to fit the model.

Regression by panel, default column names
ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm", formula = y ~ x + I(x^2)) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

method.args = list(formula = y ~ x + I(x^2)),
geom = "debug")

66 stat_fit_tidy

Regression by panel, sanitized column names
ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm", formula = y ~ x + I(x^2)) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

method.args = list(formula = y ~ x + I(x^2)),
geom = "debug", sanitize.names = TRUE)

}
}

Regression by panel example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

Regression by group example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point() +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf("Slope = %.3g, p-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

Weighted regression example
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x, weights = quote(weight)),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

Quantile regression
if (broom.installed)

ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point() +
stat_fit_tidy(method = "rq",

label.y = "bottom",

stat_ma_eq 67

method.args = list(formula = y ~ x),
tidy.args = list(se.type = "nid"),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

stat_ma_eq Equation, p-value, R^2 of major axis regression

Description

stat_ma_eq fits model II regressions. From the fitted model it generates several labels including
the equation, p-value, coefficient of determination (R^2), and number of observations.

Usage

stat_ma_eq(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
...,
formula = NULL,
method = "lmodel2:MA",
method.args = list(),
n.min = 2L,
range.y = NULL,
range.x = NULL,
nperm = 99,
eq.with.lhs = TRUE,
eq.x.rhs = NULL,
small.r = getOption("ggpmisc.small.r", default = FALSE),
small.p = getOption("ggpmisc.small.p", default = FALSE),
coef.digits = 3,
coef.keep.zeros = TRUE,
decreasing = getOption("ggpmisc.decreasing.poly.eq", FALSE),
rr.digits = 2,
theta.digits = 2,
p.digits = max(1, ceiling(log10(nperm))),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
output.type = NULL,
na.rm = FALSE,
orientation = NA,

68 stat_ma_eq

parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

formula a formula object. Using aesthetic names x and y instead of original variable
names. Either y ~ x or x ~ y.

method function or character If character, "MA", "SMA" , "RMA" or "OLS", alter-
natively "lmodel2" or the name of a model fit function are accepted, possi-
bly followed by the fit function’s method argument separated by a colon (e.g.
"lmodel2:MA"). If a function different to lmodel2(), it must accept arguments
named formula, data, range.y, range.x and nperm and return a model fit
object of class lmodel2.

method.args named list with additional arguments.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

range.y, range.x
character Pass "relative" or "interval" if method "RMA" is to be computed.

nperm integer Number of permutation used to estimate significance.

eq.with.lhs If character the string is pasted to the front of the equation label before parsing
or a logical (see note).

eq.x.rhs character this string will be used as replacement for "x" in the model equation
when generating the label before parsing it.

small.r, small.p
logical Flags to switch use of lower case r and p for coefficient of determination
and p-value.

coef.digits integer Number of significant digits to use for the fitted coefficients.
coef.keep.zeros

logical Keep or drop trailing zeros when formatting the fitted coefficients and
F-value.

decreasing logical It specifies the order of the terms in the returned character string; in
increasing (default) or decreasing powers.

rr.digits, theta.digits, p.digits
integer Number of digits after the decimal point to use for R^2, theta and P-value
in labels. If Inf, use exponential notation with three decimal places.

stat_ma_eq 69

label.x, label.y
numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This stat can be used to automatically annotate a plot with R2, P -value, n and/or the fitted model
equation. It supports linear major axis (MA), standard major axis (SMA) and ranged major axis
(RMA) regression by means of function lmodel2. Formulas describing a straight line and including
an intercept are the only ones currently supported. Please see the documentation, including the
vignette of package ’lmodel2’ for details. The parameters in stat_ma_eq() follow the same naming
as in function lmodel2().

It is important to keep in mind that although the fitted line does not depend on whether the x or y
appears on the rhs of the model formula, the numeric estimates for the parameters do depend on
this.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the
user, but instead a data frame with the variables mapped to aesthetics. stat_ma_eq() mimics how
stat_smooth() works, except that Model II regressions can be fitted. Similarly to stat_smooth()
the model is fitted separately to data from each group, so the variables mapped to x and y should
both be continuous rather than discrete as well as the corresponding scales.

The minimum number of observations with distinct values can be set through parameter n.min. The
default n.min = 2L is the smallest possible value. However, model fits with very few observations
are of little interest and using a larger number for n.min than the default is usually wise.

Value

A data frame, with a single row and columns as described under Computed variables. In cases
when the number of observations is less than n.min a data frame with no rows or columns is returned
rendered as an empty/invisible plot layer.

70 stat_ma_eq

User-defined methods

User-defined functions can be passed as argument to method. The requirements are 1) that the
signature is similar to that of function lmodel2() and 2) that the value returned by the function
is an object as returned by lmodel2() or an atomic NA value. Thus, user-defined methods can
implement conditional skipping of labelling.

Aesthetics

stat_ma_eq understands x and y, to be referenced in the formula while the weight aesthetic is
ignored. Both x and y must be mapped to numeric variables. In addition, the aesthetics understood
by the geom ("text" is the default) are understood and grouping respected.

Transformation of x or y within the model formula is not supported by stat_ma_eq(). In this
case, transformations should not be applied in the model formula, but instead in the mapping of the
variables within aes or in the scales.

Computed variables

If output.type is different from "numeric" the returned tibble contains columns listed below. If
the fitted model does not contain a given value, the label is set to character(0L).

x,npcx x position

y,npcy y position

eq.label equation for the fitted polynomial as a character string to be parsed

rr.label R2 of the fitted model as a character string to be parsed

p.value.label P-value if available, depends on method.

theta.label Angle in degrees between the two OLS lines for lines estimated from y ~ x and x ~ y
linear model (lm) fits.

n.label Number of observations used in the fit.

grp.label Set according to mapping in aes.

method.label Set according method used.

r.squared, theta, p.value, n numeric values, from the model fit object

If output.type is "numeric" the returned tibble contains columns listed below. If the model fit
function used does not return a value, the variable is set to NA_real_.

x,npcx x position

y,npcy y position

coef.ls list containing the "coefficients" matrix from the summary of the fit object

r.squared, theta, p.value, n numeric values, from the model fit object

grp.label Set according to mapping in aes.

b_0.constant TRUE is polynomial is forced through the origin

b_i One or two columns with the coefficient estimates

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the last examples below.

stat_ma_eq 71

Note

For backward compatibility a logical is accepted as argument for eq.with.lhs. If TRUE, the default
is used, either "x" or "y", depending on the argument passed to formula. However, "x" or "y" can
be substituted by providing a suitable replacement character string through eq.x.rhs. Parameter
orientation is redundant as it only affects the default for formula but is included for consistency
with ggplot2::stat_smooth().

Methods in lmodel2 are all computed always except for RMA that requires a numeric argument to
at least one of range.y or range.x. The results for specific methods are extracted a posteriori from
the model fit object. When a function is passed as argument to method, the method can be passed
in a list to method.args as member method. More easily, the name of the function can be passed
as a character string together with the lmodel2-supported method.

R option OutDec is obeyed based on its value at the time the plot is rendered, i.e., displayed or
printed. Set options(OutDec = ",") for languages like Spanish or French.

See Also

The major axis regression model is fitted with function lmodel2, please consult its documenta-
tion. Statistic stat_ma_eq() can return different ready formatted labels depending on the ar-
gument passed to output.type. If ordinary least squares polynomial regression is desired, then
stat_poly_eq. If quantile-fitted polynomial regression is desired, stat_quant_eq should be used.
For other types of models such as non-linear models, statistics stat_fit_glance and stat_fit_tidy
should be used and the code for construction of character strings from numeric values and their
mapping to aesthetic label explicitly supplied in the call.

Other ggplot statistics for major axis regression: stat_ma_line()

Examples

generate artificial data
set.seed(98723)
my.data <- data.frame(x = rnorm(100) + (0:99) / 10 - 5,

y = rnorm(100) + (0:99) / 10 - 5,
group = c("A", "B"))

using defaults (major axis regression)
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line() +
stat_ma_eq()

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line() +
stat_ma_eq(mapping = use_label("eq"))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line() +
stat_ma_eq(mapping = use_label("eq"), decreasing = TRUE)

72 stat_ma_eq

use_label() can assemble and map a combined label
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(method = "MA") +
stat_ma_eq(mapping = use_label("eq", "R2", "P"))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "MA") +
stat_ma_eq(mapping = use_label("R2", "P", "theta", "method"))

using ranged major axis regression
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(method = "RMA",

range.y = "interval",
range.x = "interval") +

stat_ma_eq(mapping = use_label("eq", "R2", "P"),
method = "RMA",
range.y = "interval",
range.x = "interval")

No permutation-based test
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(method = "MA") +
stat_ma_eq(mapping = use_label("eq", "R2"),

method = "MA",
nperm = 0)

explicit formula "x explained by y"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(formula = x ~ y) +
stat_ma_eq(formula = x ~ y,

mapping = use_label("eq", "R2", "P"))

modifying both variables within aes()
ggplot(my.data, aes(log(x + 10), log(y + 10))) +

geom_point() +
stat_poly_line() +
stat_poly_eq(mapping = use_label("eq"),

eq.x.rhs = "~~log(x+10)",
eq.with.lhs = "log(y+10)~~`=`~~")

grouping
ggplot(my.data, aes(x, y, color = group)) +

geom_point() +
stat_ma_line() +
stat_ma_eq()

labelling equations
ggplot(my.data,

stat_ma_line 73

aes(x, y, shape = group, linetype = group, grp.label = group)) +
geom_point() +
stat_ma_line(color = "black") +
stat_ma_eq(mapping = use_label("grp", "eq", "R2")) +
theme_classic()

Inspecting the returned data using geom_debug()
This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics with after_stat().

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

default is output.type = "expression"
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_eq(geom = "debug")

Not run:
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_eq(mapping = aes(label = after_stat(eq.label)),

geom = "debug",
output.type = "markdown")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_eq(geom = "debug", output.type = "text")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_eq(geom = "debug", output.type = "numeric")

End(Not run)

stat_ma_line Predicted line from major axis linear fit

Description

Predicted values and a confidence band are computed and, by default, plotted. stat_ma_line()
behaves similarly to stat_smooth except for fitting the model with lmodel2::lmodel2() with
"MA" as default for method.

74 stat_ma_line

Usage

stat_ma_line(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
method = "lmodel2:MA",
method.args = list(),
n.min = 2L,
formula = NULL,
range.y = NULL,
range.x = NULL,
se = TRUE,
fm.values = FALSE,
n = 80,
nperm = 99,
fullrange = FALSE,
level = 0.95,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

method function or character If character, "MA", "SMA" , "RMA" or "OLS", alter-
natively "lmodel2" or the name of a model fit function are accepted, possi-
bly followed by the fit function’s method argument separated by a colon (e.g.
"lmodel2:MA"). If a function different to lmodel2(), it must accept arguments
named formula, data, range.y, range.x and nperm and return a model fit
object of class lmodel2.

method.args named list with additional arguments.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

stat_ma_line 75

range.y, range.x
character Pass "relative" or "interval" if method "RMA" is to be computed.

se logical Return confidence interval around smooth? (‘TRUE‘ by default, see
‘level‘ to control.)

fm.values logical Add R2, p-value and n as columns to returned data? (‘FALSE‘ by de-
fault.)

n Number of points at which to evaluate smoother.

nperm integer Number of permutation used to estimate significance.

fullrange Should the fit span the full range of the plot, or just the data?

level Level of confidence interval to use (only 0.95 currently).

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic fits major axis ("MA") and other model II regressions with function lmodel2. Model
II regression is called for when both x and y are subject to random variation and the intention is
not to predict y from x by means of the model but rather to study the relationship between two
independent variables. A frequent case in biology are allometric relationships among body parts.

As the fitted line is the same whether x or y is on the rhs of the model equation, orientation
even if accepted does not have an effect on the fitted line. In contrast, geom_smooth treats each
axis differently and can thus have two orientations. The orientation is easy to deduce from the
argument passed to formula. Thus, stat_ma_line() will by default guess which orientation the
layer should have. If no argument is passed to formula, the orientation can be specified directly
passing an argument to the orientation parameter, which can be either "x" or "y". The value
gives the axis that is on the rhs of the model equation, "x" being the default orientation. Package
’ggpmisc’ does not define new geometries matching the new statistics as they are not needed and
conceptually transformations of data are expressed as statistics.

The minimum number of observations with distinct values can be set through parameter n.min. The
default n.min = 2L is the smallest possible value. However, model fits with very few observations
are of little interest and using a larger number for n.min than the default is wise.

Value

The value returned by the statistic is a data frame, that will have n rows of predicted values and their
confidence limits. Optionally it will also include additional values related to the model fit.

76 stat_ma_line

Computed variables

‘stat_ma_line()‘ provides the following variables, some of which depend on the orientation:

y *or* x predicted value

ymin *or* xmin lower pointwise confidence interval around the mean

ymax *or* xmax upper pointwise confidence interval around the mean

se standard error

If fm.values = TRUE is passed then columns based on the summary of the model fit are added, with
the same value in each row within a group. This is wasteful and disabled by default, but provides a
simple and robust approach to achieve effects like colouring or hiding of the model fit line based on
P-values, r-squared or the number of observations.

Aesthetics

stat_ma_line understands x and y, to be referenced in the formula. Both must be mapped to
numeric variables. In addition, the aesthetics understood by the geom ("geom_smooth" is the
default) are understood and grouping respected.

See Also

Other ggplot statistics for major axis regression: stat_ma_eq()

Examples

generate artificial data
set.seed(98723)
my.data <- data.frame(x = rnorm(100) + (0:99) / 10 - 5,

y = rnorm(100) + (0:99) / 10 - 5,
group = c("A", "B"))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line()

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "MA")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "SMA")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "RMA",

range.y = "interval", range.x = "interval")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "OLS")

stat_multcomp 77

plot line to the ends of range of data (the default)
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(fullrange = FALSE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))

plot line to the limits of the scales
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(fullrange = TRUE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))

plot line to the limits of the scales
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(orientation = "y", fullrange = TRUE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(formula = x ~ y)

Smooths are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_ma_line()

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line() +
facet_wrap(~group)

Inspecting the returned data using geom_debug()
gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
stat_ma_line(geom = "debug")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
stat_ma_line(geom = "debug", fm.values = TRUE)

stat_multcomp Labels for pairwise multiple comparisons

78 stat_multcomp

Description

stat_multcomp fits a linear model by default with stats::lm() but alternatively using other model
fit functions. The model is passed to function glht() from package ’multcomp’ to fit Tukey, Dunnet
or other pairwise contrasts and generates labels based on adjusted P-values.

Usage

stat_multcomp(
mapping = NULL,
data = NULL,
geom = NULL,
position = "identity",
...,
formula = NULL,
method = "lm",
method.args = list(),
contrasts = "Tukey",
p.adjust.method = NULL,
small.p = getOption("ggpmisc.small.p", default = FALSE),
adj.method.tag = 4,
p.digits = 3,
label.type = "bars",
fm.cutoff.p.value = 1,
mc.cutoff.p.value = 1,
mc.critical.p.value = 0.05,
label.y = NULL,
vstep = NULL,
output.type = NULL,
na.rm = FALSE,
orientation = "x",
parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use to display the data.

position The position adjustment to use for overlapping points on this layer.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

stat_multcomp 79

method function or character If character, "lm" (or its equivalent "aov"), "rlm" or the
name of a model fit function are accepted, possibly followed by the fit function’s
method argument separated by a colon (e.g. "rlm:M"). If a function different to
lm(), it must accept as a minimum a model formula through its first parameter,
and have formal parameters named data, weights, and method, and return a
model fit object accepted by function glht().

method.args named list with additional arguments.

contrasts character vector of length one or a numeric matrix. If character, one of "Tukey"
or "Dunnet". If a matrix, one column per level of the factor mapped to x and one
row per pairwise contrast.

p.adjust.method

character As the argument for parameter type of function adjusted() passed
as argument to parameter test of summary.glht. Accepted values are "single-
step", "Shaffer", "Westfall", "free", "holm", "hochberg", "hommel", "bonfer-
roni", "BH", "BY", "fdr", "none".

small.p logical If true, use of lower case p instead of capital P as the symbol for P-value
in labels.

adj.method.tag numeric, character or function If numeric, the length in characters of the abbre-
viation of the method used to adjust p-values. A value of zero, adds no label and
a negative value uses as starting point for the abbreviation the word "adjusted".
If character its value is used as subscript. If a function, the value used is
the value returned by the function when passed p.adjust.method as its only
argument.

p.digits integer Number of digits after the decimal point to use for R2 and P-value in
labels.

label.type character One of "bars", "letters" or "LETTERS", selects how the results of
the multiple comparisons are displayed. Only "bars" can be used together with
contrasts = "Dunnet".

fm.cutoff.p.value

numeric [0..1] The P-value for the main effect of factor x in the ANOVA test
for the fitted model above which no pairwise comparisons are computed or la-
bels generated. Be aware that recent literature tends to recommend to consider
which testing approach is relevant to the problem at hand instead of requiring
the significance of the main effect before applying multiple comparisons’ tests.
The default value is 1, imposing no restrictions.

mc.cutoff.p.value

numeric [0..1] The P-value for the individual contrasts above which no labelled
bars are generated. Default is 1, labelling all pairwise contrasts tested.

mc.critical.p.value

numeric The critical P-value used for tests when encoded as letters.

label.y numeric vector Values in native data units or if character, one of "top" or
"bottom". Recycled if too short and truncated if too long.

vstep numeric in npc units, the vertical displacement step-size used between labels for
different contrasts when label.type = "bars".

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".

80 stat_multcomp

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula. Support for
orientation is not yet implemented but is planned.

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

Details

This statistic can be used to automatically annotate a plot with P-values for pairwise multiple
comparison tests, based on Tukey contrasts (all pairwise), Dunnet contrasts (other levels against
the first one) or a subset of all possible pairwise contrasts. See Meier (2022, Chapter 3) for an
accessible explanation of multiple comparisons and contrasts with package ’multcomp’, of which
stat_multcomp() is mostly a wrapper.

The explanatory variable mapped to the x aesthetic must be a factor as this creates the required
grouping. Currently, contrasts that involve more than two levels of a factor, such as the average of
two treatment levels against a control level are not supported, mainly because they require a new
geometry that I need to design, implement and add to package ’ggpp’.

Two ways of displaying the outcomes are implemented, and are selected by ‘"bars"‘, ‘"letters"‘ or
‘"LETTERS"‘ as argument to parameter ‘label.type‘. ‘"letters"‘ and ‘"LETTERS"‘ can be used
only with Tukey contrasts, as otherwise the encoding is ambiguous. As too many bars clutter a plot,
the maximum number of factor levels supported for ‘"bars"‘ together with Tukey contrasts is five,
while together with Dunnet contrasts or contrasts defined by a numeric matrix, no limit is imposed.

stat_multcomp() by default generates character labels ready to be parsed as R expressions but
LaTeX (use TikZ device), markdown (use package ’ggtext’) and plain text are also supported, as
well as numeric values for user-generated text labels. The value of parse is set automatically based
on output.type, but if you assemble labels that need parsing from numeric output, the default
needs to be overridden. This statistic only generates annotation labels and segments connecting the
compared factor levels, or letter labels that discriminate significantly different groups.

Value

A data frame with one row per comparison for label.type = "bars", or a data frame with one
row per factor x level for label.type = "letters" and for label.type = "LETTERS". Variables
(= columns) as described under Computed variables.

Aesthetics

stat_multcomp() understands x and y, to be referenced in the formula and weight passed as
argument to parameter weights. A factor must be mapped to x and numeric variables to y, and,
if used, to weight. In addition, the aesthetics understood by the geom ("label_pairwise" is
the default for label.type = "bars", "text" is the default for label.type = "letters" and for
label.type = "LETTERS") are understood and grouping respected.

stat_multcomp 81

Computed variables

If output.type = "numeric" and label.type = "bars" the returned tibble contains columns listed
below. In all cases if the model fit function used does not return a value, the label is set to
character(0L) and the numeric value to NA.

x,x.left.tip,x.right.tip x position, numeric.
y y position, numeric.
coefficients Delta estimate from pairwise contrasts, numeric.
contrasts Contrasts as two levels’ ordinal "numbers" separated by a dash, character.
tstat t-statistic estimates for the pairwise contrasts, numeric.
p.value P-value for the pairwise contrasts.
fm.method Set according method used.
fm.class Most derived class of the fitted model object.
fm.formula Formula extracted from the fitted model object if available, or the formula argument.
fm.formula.chr Formula extracted from the fitted model object if available, or the formula argu-

ment, formatted as character.
mc.adjusted The method used to adjust the P-values.
mc.contrast The type of contrast used for multiple comparisons.
n The total number of observations or rows in data.
default.label text label, always included, but possibly NA.

If output.type is not "numeric" the returned data frame includes in addition the following labels:

stars.label P-value for the pairwise contrasts encoded as "starts", character.
p.value.label P-value for the pairwise contrasts, character.
delta.label The coefficient or estimate for the difference between compared pairs of levels.
t.value.label t-statistic estimates for the pairwise contrasts, character.

If label.type = "letters" or label.type = "LETTERS" the returned tibble contains columns
listed below.

x,x.left.tip,x.right.tip x position, numeric.
y y position, numeric.
critical.p.value P-value used in pairwise tests, numeric.
fm.method Set according method used.
fm.class Most derived class of the fitted model object.
fm.formula Formula extracted from the fitted model object if available, or the formula argument.
fm.formula.chr Formula extracted from the fitted model object if available, or the formula argu-

ment, formatted as character.
mc.adjusted The method used to adjust the P-values.
mc.contrast The type of contrast used for multiple comparisons.
n The total number of observations or rows in data.
default.label text label, always included, but possibly NA.

If output.type is not "numeric" the returned data frame includes in addition the following labels:

letters.label Letters that distinguish levels based on significance from multiple comparisons test.

82 stat_multcomp

Alternatives

stat_signif() in package ’ggsignif’ is an earlier and independent implementation of pairwise
tests.

Note

R option OutDec is obeyed based on its value at the time the plot is rendered, i.e., displayed or
printed. Set options(OutDec = ",") for languages like Spanish or French.

References

Meier, Lukas (2022) ANOVA and Mixed Models: A Short Introduction Using R. Chapter 3 Contrasts
and Multiple Testing. The R Series. Boca Raton: Chapman and Hall/CRC. ISBN: 9780367704209,
doi:10.1201/9781003146216.

See Also

This statistic uses the implementation of Tests of General Linear Hypotheses in function glht. See
summary.glht and p.adjust for the supported and tests and the references therein for the theory
behind them.

Examples

p1 <- ggplot(mpg, aes(factor(cyl), hwy)) +
geom_boxplot(width = 0.33)

labeleld bars

p1 +
stat_multcomp()

p1 +
stat_multcomp(adj.method.tag = 0)

test against a control, with first level being the control
change order of factor levels in data to set the control group
p1 +

stat_multcomp(contrasts = "Dunnet")

arbitrary pairwise contrasts, in arbitrary order
p1 +

stat_multcomp(contrasts = rbind(c(0, 0, -1, 1),
c(0, -1, 1, 0),
c(-1, 1, 0, 0)))

different methods to adjust the contrasts
p1 +

stat_multcomp(p.adjust.method = "bonferroni")

p1 +
stat_multcomp(p.adjust.method = "holm")

https://doi.org/10.1201/9781003146216

stat_multcomp 83

p1 +
stat_multcomp(p.adjust.method = "fdr")

no correction, useful only for comparison
p1 +

stat_multcomp(p.adjust.method = "none")

sometimes we need to expand the plotting area
p1 +

stat_multcomp(geom = "text_pairwise") +
scale_y_continuous(expand = expansion(mult = c(0.05, 0.10)))

position of contrasts' bars (based on scale limits)
p1 +

stat_multcomp(label.y = "bottom")

p1 +
stat_multcomp(label.y = 11)

use different labels: difference and P-value from hypothesis tests
p1 +

stat_multcomp(use_label("Delta", "P"),
size = 2.75)

control smallest P-value displayed and number of digits
p1 +

stat_multcomp(p.digits = 4)

label only significant differences
but test and correct for all pairwise contrasts!
p1 +

stat_multcomp(mc.cutoff.p.value = 0.01)

letters as labels for test results

p1 +
stat_multcomp(label.type = "letters")

use capital letters
p1 +

stat_multcomp(label.type = "LETTERS")

location
p1 +

stat_multcomp(label.type = "letters",
label.y = "top")

p1 +
stat_multcomp(label.type = "letters",

label.y = 0)

stricter critical p-value than default used for test

84 stat_peaks

p1 +
stat_multcomp(label.type = "letters",

mc.critical.p.value = 0.01)

Inspecting the returned data using geom_debug()
This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics with after_stat().

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

if (gginnards.installed)
p1 +

stat_multcomp(label.type = "bars",
geom = "debug")

if (gginnards.installed)
p1 +

stat_multcomp(label.type = "letters",
geom = "debug")

if (gginnards.installed)
p1 +

stat_multcomp(label.type = "bars",
output.type = "numeric",
geom = "debug")

stat_peaks Local maxima (peaks) or minima (valleys)

Description

stat_peaks finds at which x positions local y maxima are located and stat_valleys finds at which
x positions local y minima are located. Both stats return a subset of data with rows matching for
peaks or valleys with formatted character labels added. The formatting is determined by a format
string compatible with sprintf() or strftime().

Usage

stat_peaks(
mapping = NULL,
data = NULL,
geom = "point",
span = 5,
ignore_threshold = 0,
strict = FALSE,

stat_peaks 85

label.fmt = NULL,
x.label.fmt = NULL,
y.label.fmt = NULL,
orientation = "x",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_valleys(
mapping = NULL,
data = NULL,
geom = "point",
span = 5,
ignore_threshold = 0,
strict = FALSE,
label.fmt = NULL,
x.label.fmt = NULL,
y.label.fmt = NULL,
orientation = "x",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

span a peak is defined as an element in a sequence which is greater than all other
elements within a window of width span centered at that element. The default
value is 5, meaning that a peak is bigger than two consecutive neighbors on each
side. A NULL value for span is taken as a span covering the whole of the data
range.

ignore_threshold

numeric value between 0.0 and 1.0 indicating the size threshold below which
peaks will be ignored.

strict logical flag: if TRUE, an element must be strictly greater than all other values
in its window to be considered a peak. Default: FALSE.

label.fmt character string giving a format definition for converting values into character
strings by means of function sprintf or strptime, its use is deprecated.

86 stat_peaks

x.label.fmt character string giving a format definition for converting x-values into char-
acter strings by means of function sprintf or strftime. The default argument
varies depending on the scale in use.

y.label.fmt character string giving a format definition for converting y-values into char-
acter strings by means of function sprintf.

orientation character Either "x" or "y".

position The position adjustment to use for overlapping points on this layer.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

These stats use geom_point by default as it is the geom most likely to work well in almost any sit-
uation without need of tweaking. The default aesthetics set by these stats allow their direct use with
geom_text, geom_label, geom_line, geom_rug, geom_hline and geom_vline. The formatting of
the labels returned can be controlled by the user.

The default for parameter strict is TRUE in functions splus2R::peaks() and find_peaks(),
while the default is FALSE in stat_peaks() and in stat_valleys().

Returned and computed variables

x x-value at the peak (or valley) as numeric

y y-value at the peak (or valley) as numeric

x.label x-value at the peak (or valley) as character

y.label y-value at the peak (or valley) as character

Warning!

The current version of these statistics do not support passing nudge_x or nurge_y named parameters
to the geometry. Use ‘position‘ and one of the position functions such as position_nudge_keep
instead.

Note

These statistics check the scale of the x aesthetic and if it is Date or Datetime they correctly generate
the labels by transforming the numeric x values to Date or POSIXct objects, respectively. In which
case the x.label.fmt must follow the syntax supported by strftime() rather than by sprintf().
Overlap of labels with points can avoided by use of one of the nudge positions, possibly together
with geometry geom_text_s from package ggpp, or with geom_text_repel or geom_label_repel

stat_peaks 87

from package ggrepel. To discard overlapping labels use check_overlap = TRUE as argument to
geom_text or geom_text_s. By default the labels are character values suitable to be plotted as
is, but with a suitable format passed as argument to label.fmt labels suitable for parsing by the
geoms (e.g. into expressions containing Greek letters, super- or subscripts, maths symbols or maths
constructs) can be also easily obtained.

Examples

lynx is a time.series object
lynx_num.df <-

try_tibble(lynx,
col.names = c("year", "lynx"),
as.numeric = TRUE) # years -> as numeric

ggplot(lynx_num.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_valleys(colour = "blue")

ggplot(lynx_num.df, aes(lynx, year)) +
geom_line(orientation = "y") +
stat_peaks(colour = "red", orientation = "y") +
stat_valleys(colour = "blue", orientation = "y")

ggplot(lynx_num.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red", geom = "rug")

ggplot(lynx_num.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red", geom = "text", hjust = -0.1, angle = 33)

ggplot(lynx_num.df, aes(lynx, year)) +
geom_line(orientation = "y") +
stat_peaks(colour = "red", orientation = "y") +
stat_peaks(colour = "red", orientation = "y",

geom = "text", hjust = -0.1)

lynx_datetime.df <-
try_tibble(lynx,

col.names = c("year", "lynx")) # years -> POSIXct

ggplot(lynx_datetime.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_valleys(colour = "blue")

ggplot(lynx_datetime.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +

88 stat_poly_eq

stat_peaks(colour = "red",
geom = "text",
hjust = -0.1,
x.label.fmt = "%Y",
angle = 33)

ggplot(lynx_datetime.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red",

geom = "text_s",
position = position_nudge_keep(x = 0, y = 200),
hjust = -0.1,
x.label.fmt = "%Y",
angle = 90) +

expand_limits(y = 8000)

ggplot(lynx_datetime.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red",

geom = "text_s",
position = position_nudge_to(y = 7600),
arrow = arrow(length = grid::unit(1.5, "mm")),
point.padding = 0.7,
x.label.fmt = "%Y",
angle = 90) +

expand_limits(y = 9000)

stat_poly_eq Equation, p-value, Rˆ2, AIC and BIC of fitted polynomial

Description

stat_poly_eq fits a polynomial, by default with stats::lm(), but alternatively using robust re-
gression. Using the fitted model it generates several labels including the fitted model equation,
p-value, F-value, coefficient of determination (R^2), ’AIC’, ’BIC’, and number of observations.

Usage

stat_poly_eq(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
...,
formula = NULL,
method = "lm",
method.args = list(),

stat_poly_eq 89

n.min = 2L,
eq.with.lhs = TRUE,
eq.x.rhs = NULL,
small.r = getOption("ggpmisc.small.r", default = FALSE),
small.p = getOption("ggpmisc.small.p", default = FALSE),
CI.brackets = c("[", "]"),
rsquared.conf.level = 0.95,
coef.digits = 3,
coef.keep.zeros = TRUE,
decreasing = getOption("ggpmisc.decreasing.poly.eq", FALSE),
rr.digits = 2,
f.digits = 3,
p.digits = 3,
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
output.type = NULL,
na.rm = FALSE,
orientation = NA,
parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.
geom The geometric object to use display the data
position The position adjustment to use for overlapping points on this layer
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
formula a formula object. Using aesthetic names x and y instead of original variable

names.
method function or character If character, "lm", "rlm" or the name of a model fit function

are accepted, possibly followed by the fit function’s method argument separated
by a colon (e.g. "rlm:M"). If a function different to lm(), it must accept as a
minimum a model formula through its first parameter, and have formal param-
eters named data, weights, and method, and return a model fit object of class
lm.

method.args named list with additional arguments.
n.min integer Minimum number of distinct values in the explanatory variable (on the

rhs of formula) for fitting to the attempted.
eq.with.lhs If character the string is pasted to the front of the equation label before parsing

or a logical (see note).

90 stat_poly_eq

eq.x.rhs character this string will be used as replacement for "x" in the model equation
when generating the label before parsing it.

small.r, small.p
logical Flags to switch use of lower case r and p for coefficient of determination
and p-value.

CI.brackets character vector of length 2. The opening and closing brackets used for the CI
label.

rsquared.conf.level

numeric Confidence level for the returned confidence interval. Set to NA to skip
CI computation.

coef.digits, f.digits
integer Number of significant digits to use for the fitted coefficients and F-value.

coef.keep.zeros

logical Keep or drop trailing zeros when formatting the fitted coefficients and
F-value.

decreasing logical It specifies the order of the terms in the returned character string; in
increasing (default) or decreasing powers.

rr.digits, p.digits
integer Number of digits after the decimal point to use for R2 and P-value in
labels. If Inf, use exponential notation with three decimal places.

label.x, label.y
numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic can be used to automatically annotate a plot with R2, adjusted R2 or the fitted model
equation. It supports linear regression and polynomial fits, and robust regression fitted with func-
tions lm, or rlm, respectively.

stat_poly_eq 91

While strings for R2, adjusted R2, F , and P annotations are returned for all valid linear models, A
character string for the fitted model is returned only for polynomials (see below), in which case the
equation can still be assembled by the user. In addition, a label for the confidence interval of R2,
based on values computed with function ci_rsquared from package ’confintr’ is also returned.

The model formula should be defined based on the names of aesthetics x and y, not the names of
the variables in the data. Before fitting the model, data are split based on groupings created by any
other mappings present in a plot panel: fitting is done separately for each group in each plot panel.

Model formulas can use poly() or be defined algebraically including the intercept indicated by +1,
-1, +0 or implicit. If defined using poly() the argument raw = TRUE must be passed. The model
formula is checked, and if not recognized as a polynomial with no missing terms and terms ordered
by increasing powers, no equation label is generated. Thus, as the value returned for eq.label can
be NA, the default aesthetic mapping to label is R2.

By default, the character strings are generated as suitable for parsing into R’s plotmath expressions.
However, LaTeX (use TikZ device), markdown (use package ’ggtext’) and plain text are also sup-
ported, as well as returning numeric values for user-generated text labels. The argument of parse is
set automatically based on output-type, but if you assemble labels that need parsing from numeric
output, the default needs to be overridden.

This statistic only generates annotation labels, the predicted values/line need to be added to the
plot as a separate layer using stat_poly_line (or stat_smooth). Using the same formula in
stat_poly_line() and in stat_poly_eq() in most cases ensures that the plotted curve and equa-
tion are consistent. Thus, unless the default formula is not overriden, it is best to save the model
formula as an object and supply this named object as argument to the two statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. stat_poly_eq() mimics how
stat_smooth() works.

With method "lm", singularity results in terms being dropped with a message if more numerous
than can be fitted with a singular (exact) fit. In this case or if the model results in a perfect fit due to
a low number of observations, estimates for various parameters are NaN or NA. When this is the case
the corresponding labels are set to character(0L) and thus not visible in the plot.

With methods other than "lm", the model fit functions simply fail in case of singularity, e.g., singular
fits are not implemented in "rlm".

In both cases the minimum number of observations with distinct values in the explanatory variable
can be set through parameter n.min. The default n.min = 2L is the smallest suitable for method
"lm" but too small for method "rlm" for which n.min = 3L is needed. Anyway, model fits with
very few observations are of little interest and using larger values of n.min than the default is
usually wise.

Value

A data frame, with a single row and columns as described under Computed variables. In cases
when the number of observations is less than n.min a data frame with no rows or columns is
returned, and rendered as an empty/invisible plot layer.

User-defined methods

User-defined functions can be passed as argument to method. The requirements are 1) that the
signature is similar to that of function lm() (with parameters formula, data, weights and any other

92 stat_poly_eq

arguments passed by name through method.args) and 2) that the value returned by the function is
an object of class "lm" or an atomic NA value.

The formula used to build the equation label is extracted from the returned "lm" object and can
safely differ from the argument passed to parameter formula in the call to stat_poly_eq(). Thus,
user-defined methods can implement both model selection or conditional skipping of labelling.

Aesthetics

stat_poly_eq() understands x and y, to be referenced in the formula and weight passed as ar-
gument to parameter weights. All three must be mapped to numeric variables. In addition, the
aesthetics understood by the geom ("text" is the default) are understood and grouping respected.

If the model formula includes a transformation of x, a matching argument should be passed to
parameter eq.x.rhs as its default value "x" will not reflect the applied transformation. In plots,
transformation should never be applied to the left hand side of the model formula, but instead in
the mapping of the variable within aes, as otherwise plotted observations and fitted curve will not
match. In this case it may be necessary to also pass a matching argument to parameter eq.with.lhs.

Computed variables

If output.type different from "numeric" the returned tibble contains columns listed below. If the
model fit function used does not return a value, the label is set to character(0L).

x,npcx x position

y,npcy y position

eq.label equation for the fitted polynomial as a character string to be parsed or NA

rr.label R2 of the fitted model as a character string to be parsed

adj.rr.label Adjusted R2 of the fitted model as a character string to be parsed

rr.confint.label Confidence interval for R2 of the fitted model as a character string to be parsed

f.value.label F value and degrees of freedom for the fitted model as a whole.

p.value.label P-value for the F-value above.

AIC.label AIC for the fitted model.

BIC.label BIC for the fitted model.

n.label Number of observations used in the fit.

grp.label Set according to mapping in aes.

method.label Set according method used.

r.squared, adj.r.squared, p.value, n numeric values, from the model fit object

If output.type is "numeric" the returned tibble contains columns listed below. If the model fit
function used does not return a value, the variable is set to NA_real_.

x,npcx x position

y,npcy y position

coef.ls list containing the "coefficients" matrix from the summary of the fit object

r.squared, rr.confint.level, rr.confint.low, rr.confint.high, adj.r.squared, f.value, f.df1, f.df2, p.value, AIC, BIC, n
numeric values, from the model fit object

stat_poly_eq 93

grp.label Set according to mapping in aes.

b_0.constant TRUE is polynomial is forced through the origin

b_i One or columns with the coefficient estimates

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the last examples below.

Alternatives

stat_regline_equation() in package ’ggpubr’ is a renamed but almost unchanged copy of stat_poly_eq()
taken from an old version of this package (without acknowledgement of source and authorship).
stat_regline_equation() lacks important functionality and contains bugs that have been fixed
in stat_poly_eq().

Note

For backward compatibility a logical is accepted as argument for eq.with.lhs. If TRUE, the default
is used, either "x" or "y", depending on the argument passed to formula. However, "x" or "y" can
be substituted by providing a suitable replacement character string through eq.x.rhs. Parameter
orientation is redundant as it only affects the default for formula but is included for consistency
with ggplot2::stat_smooth().

R option OutDec is obeyed based on its value at the time the plot is rendered, i.e., displayed or
printed. Set options(OutDec = ",") for languages like Spanish or French.

References

Originally written as an answer to question 7549694 at Stackoverflow but enhanced based on sug-
gestions from users and my own needs.

See Also

This statistics fits a model with function lm, function rlm or a user supplied function returning an
object of class "lm". Consult the documentation of these functions for the details and additional
arguments that can be passed to them by name through parameter method.args.

For quantile regression stat_quant_eq should be used instead of stat_poly_eq while for model
II or major axis regression stat_ma_eq should be used. For other types of models such as non-
linear models, statistics stat_fit_glance and stat_fit_tidy should be used and the code for
construction of character strings from numeric values and their mapping to aesthetic label needs
to be explicitly supplied by the user.

Other ggplot statistics for linear and polynomial regression: stat_poly_line()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
y <- y / max(y)
my.data <- data.frame(x = x, y = y,

94 stat_poly_eq

group = c("A", "B"),
y2 = y * c(1, 2) + c(0, 0.1),
w = sqrt(x))

give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)

using defaults
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line() +
stat_poly_eq()

no weights
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula)

other labels
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label("eq"), formula = formula)

other labels
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label("eq"), formula = formula, decreasing = TRUE)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label("eq", "R2"), formula = formula)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label("R2", "R2.CI", "P", "method"), formula = formula)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(use_label("R2", "F", "P", "n", sep = "*\"; \"*"),

formula = formula)

grouping
ggplot(my.data, aes(x, y2, color = group)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula)

stat_poly_eq 95

rotation
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, angle = 90)

label location
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, label.y = "bottom", label.x = "right")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, label.y = 0.1, label.x = 0.9)

modifying the explanatory variable within the model formula
modifying the response variable within aes()
formula.trans <- y ~ I(x^2)
ggplot(my.data, aes(x, y + 1)) +

geom_point() +
stat_poly_line(formula = formula.trans) +
stat_poly_eq(use_label("eq"),

formula = formula.trans,
eq.x.rhs = "~x^2",
eq.with.lhs = "y + 1~~`=`~~")

using weights
ggplot(my.data, aes(x, y, weight = w)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula)

no weights, 4 digits for R square
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, rr.digits = 4)

manually assemble and map a specific label using paste() and aes()
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(aes(label = paste(after_stat(rr.label),

after_stat(n.label), sep = "*\", \"*")),
formula = formula)

manually assemble and map a specific label using sprintf() and aes()
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(aes(label = sprintf("%s*\" with \"*%s*\" and \"*%s",

96 stat_poly_eq

after_stat(rr.label),
after_stat(f.value.label),
after_stat(p.value.label))),

formula = formula)

x on y regression
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula, orientation = "y") +
stat_poly_eq(use_label("eq", "adj.R2"),

formula = x ~ poly(y, 3, raw = TRUE))

conditional user specified label
ggplot(my.data, aes(x, y2, color = group)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(aes(label = ifelse(after_stat(adj.r.squared) > 0.96,

paste(after_stat(adj.rr.label),
after_stat(eq.label),
sep = "*\", \"*"),

after_stat(adj.rr.label))),
rr.digits = 3,
formula = formula)

geom = "text"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(geom = "text", label.x = 100, label.y = 0, hjust = 1,

formula = formula)

using numeric values
Here we use columns b_0 ... b_3 for the coefficient estimates
my.format <-

"b[0]~`=`~%.3g*\", \"*b[1]~`=`~%.3g*\", \"*b[2]~`=`~%.3g*\", \"*b[3]~`=`~%.3g"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula,

output.type = "numeric",
parse = TRUE,
mapping =
aes(label = sprintf(my.format,

after_stat(b_0), after_stat(b_1),
after_stat(b_2), after_stat(b_3))))

Inspecting the returned data using geom_debug()
This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics with after_stat().

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)

stat_poly_eq 97

library(gginnards)

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, geom = "debug")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, geom = "debug", output.type = "numeric")

names of the variables
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

summary.fun = colnames)

only data$eq.label
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

output.type = "expression",
summary.fun = function(x) {x[["eq.label"]]})

only data$eq.label
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(aes(label = after_stat(eq.label)),

formula = formula, geom = "debug",
output.type = "markdown",
summary.fun = function(x) {x[["eq.label"]]})

only data$eq.label
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

output.type = "latex",
summary.fun = function(x) {x[["eq.label"]]})

only data$eq.label
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +

98 stat_poly_line

geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

output.type = "text",
summary.fun = function(x) {x[["eq.label"]]})

show the content of a list column
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(formula = formula, geom = "debug", output.type = "numeric",

summary.fun = function(x) {x[["coef.ls"]][[1]]})

stat_poly_line Predicted line from linear model fit

Description

Predicted values and a confidence band are computed and, by default, plotted.

Usage

stat_poly_line(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
method = "lm",
formula = NULL,
se = TRUE,
fm.values = FALSE,
n = 80,
fullrange = FALSE,
level = 0.95,
method.args = list(),
n.min = 2L,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

stat_poly_line 99

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

method function or character If character, "lm", "rlm" or the name of a model fit function
are accepted, possibly followed by the fit function’s method argument separated
by a colon (e.g. "rlm:M"). If a function different to lm(), it must accept ar-
guments named formula, data, weights, and method and return a model fit
object of class lm.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

se Display confidence interval around smooth? (‘TRUE‘ by default, see ‘level‘ to
control.)

fm.values logical Add R2, adjusted R2, p-value and n as columns to returned data? (‘FALSE‘
by default.)

n Number of points at which to evaluate smoother.

fullrange Should the fit span the full range of the plot, or just the data?

level Level of confidence interval to use (0.95 by default).

method.args named list with additional arguments.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic is similar to stat_smooth but has different defaults. It interprets the argument passed
to formula differently, accepting y as explanatory variable and setting orientation automatically.
The default for method is "lm" and spline-based smoothers like loess are not supported. Other
defaults are consistent with those in stat_poly_eq(), stat_quant_line(), stat_quant_eq(),
stat_ma_line(), stat_ma_eq().

geom_poly_line() treats the x and y aesthetics differently and can thus have two orientations. The
orientation can be deduced from the argument passed to formula. Thus, stat_poly_line() will
by default guess which orientation the layer should have. If no argument is passed to formula,
the formula defaults to y ~ x. For consistency with stat_smooth orientation can be also specified
directly passing an argument to the orientation parameter, which can be either "x" or "y". The

100 stat_poly_line

value of orientation gives the axis that is taken as the explanatory variable or x in the model
formula. Package ’ggpmisc’ does not define new geometries matching the new statistics as they are
not needed and conceptually transformations of data are statistics in the grammar of graphics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. stat_poly_eq() mimics how
stat_smooth() works, except that only polynomials can be fitted. Similarly to these statistics the
model fits respect grouping, so the scales used for x and y should both be continuous scales rather
than discrete.

With method "lm", singularity results in terms being dropped with a message if more numerous
than can be fitted with a singular (exact) fit. In this case and if the model results in a perfect fit due
to low number of observation, estimates for various parameters are NaN or NA.

With methods other than "lm", the model fit functions simply fail in case of singularity, e.g., singular
fits are not implemented in "rlm".

In both cases the minimum number of observations with distinct values in the explanatory variable
can be set through parameter n.min. The default n.min = 2L is the smallest suitable for method
"lm" but too small for method "rlm" for which n.min = 3L is needed. Anyway, model fits with
very few observations are of little interest and using larger values of n.min than the default is wise.

Value

The value returned by the statistic is a data frame, with n rows of predicted values and their confi-
dence limits. Optionally it will also include additional values related to the model fit.

Computed variables

‘stat_poly_line()‘ provides the following variables, some of which depend on the orientation:

y *or* x predicted value

ymin *or* xmin lower pointwise confidence interval around the mean

ymax *or* xmax upper pointwise confidence interval around the mean

se standard error

If fm.values = TRUE is passed then columns based on the summary of the model fit are added, with
the same value in each row within a group. This is wasteful and disabled by default, but provides a
simple and robust approach to achieve effects like colouring or hiding of the model fit line based on
P-values, r-squared, adjusted r-squared or the number of observations.

Aesthetics

stat_poly_line understands x and y, to be referenced in the formula and weight passed as ar-
gument to parameter weights. All three must be mapped to numeric variables. In addition, the
aesthetics understood by the geom ("geom_smooth" is the default) are understood and grouping
respected.

See Also

Other ggplot statistics for linear and polynomial regression: stat_poly_eq()

stat_quant_band 101

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line()

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line(formula = x ~ y)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line(formula = y ~ poly(x, 3))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line(formula = x ~ poly(y, 3))

Smooths are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
stat_poly_line(se = FALSE)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line() +
facet_wrap(~drv)

Inspecting the returned data using geom_debug()
gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

if (gginnards.installed)
ggplot(mpg, aes(displ, hwy)) +
stat_poly_line(geom = "debug")

if (gginnards.installed)
ggplot(mpg, aes(displ, hwy)) +
stat_poly_line(geom = "debug", fm.values = TRUE)

if (gginnards.installed)
ggplot(mpg, aes(displ, hwy)) +
stat_poly_line(geom = "debug", method = lm, fm.values = TRUE)

stat_quant_band Predicted band from quantile regression fits

102 stat_quant_band

Description

Predicted values are computed and, by default, plotted as a band plus an optional line within.
stat_quant_band() supports the use of both x and y as explanatory variable in the model for-
mula.

Usage

stat_quant_band(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
quantiles = c(0.25, 0.5, 0.75),
formula = NULL,
fm.values = FALSE,
n = 80,
method = "rq",
method.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

position The position adjustment to use for overlapping points on this layer.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

quantiles numeric vector Two or three values in 0..1 indicating the quantiles at the edges
of the band and optionally a line within the band.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

fm.values logical Add n as a column to returned data? (‘FALSE‘ by default.)

n Number of points at which to evaluate smoother.

method function or character If character, "rq", "rqss" or the name of a model fit function
are accepted, possibly followed by the fit function’s method argument separated
by a colon (e.g. "rq:br"). If a function different to rq(), it must accept argu-
ments named formula, data, weights, tau and method and return a model fit
object of class rq, rqs or rqss.

stat_quant_band 103

method.args named list with additional arguments.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic is similar to stat_quant_line but plots the quantiles differently with the band repre-
senting a region between two quantiles, while in stat_quant_line() the bands plotted when se =
TRUE represent confidence intervals for the fitted quantile lines.

geom_smooth, which is used by default, treats each axis differently and thus is dependent on ori-
entation. If no argument is passed to formula, it defaults to y ~ x but x ~y is also accepted, and
equivalent to y ~ x plus orientation = "y". Package ’ggpmisc’ does not define a new geometry
matching this statistic as it is enough for the statistic to return suitable ‘x‘ and ‘y‘ values.

Value

The value returned by the statistic is a data frame, that will have n rows of predicted values for three
quantiles as y, ymin and ymax, plus x.

Aesthetics

stat_quant_eq expects x and y, aesthetics to be used in the formula rather than the names of
the variables mapped to them. If present, the variable mapped to the weight aesthetics is passed
as argument to parameter weights of the fitting function. All three must be mapped to numeric
variables. In addition, the aesthetics recognized by the geometry ("geom_smooth" is the default)
are obeyed and grouping respected.

See Also

Other ggplot statistics for quantile regression: stat_quant_eq(), stat_quant_line()

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band()

If you need the fitting to be done along the y-axis set the orientation
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_band(orientation = "y")

ggplot(mpg, aes(displ, hwy)) +

104 stat_quant_band

geom_point() +
stat_quant_band(formula = y ~ x)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = x ~ y)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = y ~ poly(x, 3))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = x ~ poly(y, 3))

Instead of rq() we can use rqss() to fit an additive model:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_band(method = "rqss",

formula = y ~ qss(x))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(method = "rqss",

formula = x ~ qss(y, constraint = "D"))

Regressions are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
stat_quant_band(formula = y ~ x)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = y ~ poly(x, 2)) +
facet_wrap(~drv)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(linetype = "dashed", color = "darkred", fill = "red")

ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(color = NA, alpha = 1) +
geom_point()

ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(quantiles = c(0, 0.1, 0.2)) +
geom_point()

Inspecting the returned data using geom_debug()
gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

stat_quant_eq 105

if (gginnards.installed)
library(gginnards)

if (gginnards.installed)
ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(geom = "debug")

if (gginnards.installed)
ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(geom = "debug", fm.values = TRUE)

stat_quant_eq Equation, rho, AIC and BIC from quantile regression

Description

stat_quant_eq fits a polynomial model by quantile regression and generates several labels includ-
ing the equation, rho, ’AIC’ and ’BIC’.

Usage

stat_quant_eq(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
...,
formula = NULL,
quantiles = c(0.25, 0.5, 0.75),
method = "rq:br",
method.args = list(),
n.min = 3L,
eq.with.lhs = TRUE,
eq.x.rhs = NULL,
coef.digits = 3,
coef.keep.zeros = TRUE,
decreasing = getOption("ggpmisc.decreasing.poly.eq", FALSE),
rho.digits = 4,
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
output.type = NULL,
na.rm = FALSE,
orientation = NA,
parse = NULL,
show.legend = FALSE,

106 stat_quant_eq

inherit.aes = TRUE
)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

formula a formula object. Using aesthetic names instead of original variable names.

quantiles numeric vector Values in 0..1 indicating the quantiles.

method function or character If character, "rq" or the name of a model fit function are
accepted, possibly followed by the fit function’s method argument separated by
a colon (e.g. "rq:br"). If a function different to rq(), it must accept arguments
named formula, data, weights, tau and method and return a model fit object
of class rq or rqs.

method.args named list with additional arguments passed to rq() or to a function passed as
argument to method.

n.min integer Minimum number of observations needed for fiting a the model.

eq.with.lhs If character the string is pasted to the front of the equation label before parsing
or a logical (see note).

eq.x.rhs character this string will be used as replacement for "x" in the model equation
when generating the label before parsing it.

coef.digits, rho.digits
integer Number of significant digits to use for the fitted coefficients and rho in
labels.

coef.keep.zeros

logical Keep or drop trailing zeros when formatting the fitted coefficients and
F-value.

decreasing logical It specifies the order of the terms in the returned character string; in
increasing (default) or decreasing powers.

label.x, label.y
numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".
In most cases, instead of using this statistics to obtain numeric values, it is better
to use stat_fit_tidy().

stat_quant_eq 107

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.
parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions

and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic interprets the argument passed to formula differently than stat_quantile accepting
y as well as x as explanatory variable, matching stat_quant_line().

When two variables are subject to mutual constrains, it is useful to consider both of them as ex-
planatory and interpret the relationship based on them. So, from version 0.4.1 ’ggpmisc’ makes it
possible to easily implement the approach described by Cardoso (2019) under the name of "Double
quantile regression".

This stat can be used to automatically annotate a plot with rho or the fitted model equation. The
model fitting is done using package ’quantreg’, please, consult its documentation for the details. It
supports only linear models fitted with function rq(), passing method = "br" to it, should work well
with up to several thousand observations. The rho, AIC, BIC and n annotations can be used with
any linear model formula. The fitted equation label is correctly generated for polynomials or quasi-
polynomials through the origin. Model formulas can use poly() or be defined algebraically with
terms of powers of increasing magnitude with no missing intermediate terms, except possibly for
the intercept indicated by "- 1" or "-1" or "+ 0" in the formula. The validity of the formula is not
checked in the current implementation. The default aesthetics sets rho as label for the annotation.
This stat generates labels as R expressions by default but LaTeX (use TikZ device), markdown (use
package ’ggtext’) and plain text are also supported, as well as numeric values for user-generated text
labels. The value of parse is set automatically based on output-type, but if you assemble labels
that need parsing from numeric output, the default needs to be overridden. This stat only generates
annotation labels, the predicted values/line need to be added to the plot as a separate layer using
stat_quant_line, stat_quant_band or stat_quantile, so to make sure that the same model
formula is used in all steps it is best to save the formula as an object and supply this object as
argument to the different statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. stat_quant_eq() mimics how
stat_smooth() works, except that only polynomials can be fitted. In other words, it respects the
grammar of graphics. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Function rq does not support singular fits, in contrast to lm.

The minimum number of observations with distinct values in the explanatory variable can be set
through parameter n.min. The default n.min = 3L is the smallest usable value. However, model fits
with very few observations are of little interest and using larger values of n.min than the default is
usually wise.

108 stat_quant_eq

Value

A data frame, with one row per quantile and columns as described under Computed variables. In
cases when the number of observations is less than n.min a data frame with no rows or columns is
returned rendered as an empty/invisible plot layer.

User-defined methods

User-defined functions can be passed as argument to method. The requirements are 1) that the
signature is similar to that of functions from package ’quantreg’ and 2) that the value returned by
the function is an object belonging to class "rq", class "rqs", or an atomic NA value.

The formula and tau used to build the equation and quantile labels aer extracted from the returned
"rq" or "rqs" object and can safely differ from the argument passed to parameter formula in
the call to stat_poly_eq(). Thus, user-defined methods can implement both model selection or
conditional skipping of labelling.

Warning!

For the formatted equations to be valid, the fitted model must be a polynomial, with or without
intercept. If defined using poly() the argument raw = TRUE must be passed. If defined manually
as powers of x, the terms must be in order of increasing powers, with no missing intermediate
power term. Please, see examples below. A check on the model is used to validate that it is a
polynomial, in most cases a warning is issued. Failing to comply with this requirement results in
the return of NA as the formatted equation.

Aesthetics

stat_quant_eq() understands x and y, to be referenced in the formula and weight passed as
argument to parameter weights of rq(). All three must be mapped to numeric variables. In addi-
tion, the aesthetics understood by the geom used ("text" by default) are understood and grouping
respected.

If the model formula includes a transformation of x, a matching argument should be passed to pa-
rameter eq.x.rhs as its default value "x" will not reflect the applied transformation. In plots, trans-
formation should never be applied to the left hand side of the model formula, but instead in the map-
ping of the variable within aes, as otherwise plotted observations and fitted curve will not match.
In this case it may be necessary to also pass a matching argument to parameter eq.with.lhs.

Computed variables

If output.type different from "numeric" the returned tibble contains columns below in addition to
a modified version of the original group:

x,npcx x position

y,npcy y position

eq.label equation for the fitted polynomial as a character string to be parsed

r.label, and one of cor.label, rho.label, or tau.label rho of the fitted model as a character string
to be parsed

AIC.label AIC for the fitted model.

stat_quant_eq 109

n.label Number of observations used in the fit.

method.label Set according method used.

rq.method character, method used.

rho, n numeric values extracted or computed from fit object.

hjust, vjust Set to "inward" to override the default of the "text" geom.

quantile Numeric value of the quantile used for the fit

quantile.f Factor with a level for each quantile

If output.type is "numeric" the returned tibble contains columns in addition to a modified version
of the original group:

x,npcx x position

y,npcy y position

coef.ls list containing the "coefficients" matrix from the summary of the fit object

rho, AIC, n numeric values extracted or computed from fit object

rq.method character, method used.

hjust, vjust Set to "inward" to override the default of the "text" geom.

quantile Indicating the quantile used for the fit

quantile.f Factor with a level for each quantile

b_0.constant TRUE is polynomial is forced through the origin

b_i One or columns with the coefficient estimates

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the example below.

Note

For backward compatibility a logical is accepted as argument for eq.with.lhs. If TRUE, the default
is used, either "x" or "y", depending on the argument passed to formula. However, "x" or "y" can
be substituted by providing a suitable replacement character string through eq.x.rhs. Parameter
orientation is redundant as it only affects the default for formula but is included for consistency
with ggplot2::stat_smooth().

R option OutDec is obeyed based on its value at the time the plot is rendered, i.e., displayed or
printed. Set options(OutDec = ",") for languages like Spanish or French.

Support for the angle aesthetic is not automatic and requires that the user passes as argument
suitable numeric values to override the defaults for label positions.

References

Written as an answer to question 65695409 by Mark Neal at Stackoverflow.

110 stat_quant_eq

See Also

The quantile fit is done with function rq, please consult its documentation. This stat_quant_eq
statistic can return ready formatted labels depending on the argument passed to output.type. This
is possible because only polynomial models are supported. For other types of models, statistics
stat_fit_glance, stat_fit_tidy and stat_fit_glance should be used instead and the code
for construction of character strings from numeric values and their mapping to aesthetic label
needs to be explicitly supplied in the call.

Other ggplot statistics for quantile regression: stat_quant_band(), stat_quant_line()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
y <- y / max(y)
my.data <- data.frame(x = x, y = y,

group = c("A", "B"),
y2 = y * c(1, 2) + max(y) * c(0, 0.1),
w = sqrt(x))

using defaults
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line() +
stat_quant_eq()

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_line() +
stat_quant_eq(mapping = use_label("eq"))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_line() +
stat_quant_eq(mapping = use_label("eq"), decreasing = TRUE)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_line() +
stat_quant_eq(mapping = use_label("eq", "method"))

same formula as default
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = y ~ x) +
stat_quant_eq(formula = y ~ x)

explicit formula "x explained by y"
ggplot(my.data, aes(x, y)) +

geom_point() +

stat_quant_eq 111

stat_quant_line(formula = x ~ y) +
stat_quant_eq(formula = x ~ y)

using color
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(mapping = aes(color = after_stat(quantile.f))) +
stat_quant_eq(mapping = aes(color = after_stat(quantile.f))) +
labs(color = "Quantiles")

location and colour
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(mapping = aes(color = after_stat(quantile.f))) +
stat_quant_eq(mapping = aes(color = after_stat(quantile.f)),

label.y = "bottom", label.x = "right") +
labs(color = "Quantiles")

give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_line(formula = formula, linewidth = 0.5) +
stat_quant_eq(formula = formula)

angle
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula, linewidth = 0.5) +
stat_quant_eq(formula = formula, angle = 90, hstep = 0.04, vstep = 0,

label.y = 0.02, hjust = 0) +
expand_limits(x = -15) # make space for equations

user set quantiles
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula, quantiles = 0.5) +
stat_quant_eq(formula = formula, quantiles = 0.5)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_band(formula = formula,

quantiles = c(0.1, 0.5, 0.9)) +
stat_quant_eq(formula = formula, parse = TRUE,

quantiles = c(0.1, 0.5, 0.9))

grouping
ggplot(my.data, aes(x, y2, color = group)) +

geom_point() +
stat_quant_line(formula = formula, linewidth = 0.5) +
stat_quant_eq(formula = formula)

112 stat_quant_eq

ggplot(my.data, aes(x, y2, color = group)) +
geom_point() +
stat_quant_band(formula = formula, linewidth = 0.75) +
stat_quant_eq(formula = formula) +
theme_bw()

labelling equations
ggplot(my.data, aes(x, y2, shape = group, linetype = group,

grp.label = group)) +
geom_point() +
stat_quant_band(formula = formula, color = "black", linewidth = 0.75) +
stat_quant_eq(mapping = use_label("grp", "eq", sep = "*\": \"*"),

formula = formula) +
expand_limits(y = 3) +
theme_classic()

modifying the explanatory variable within the model formula
modifying the response variable within aes()
formula.trans <- y ~ I(x^2)
ggplot(my.data, aes(x, y + 1)) +

geom_point() +
stat_quant_line(formula = formula.trans) +
stat_quant_eq(mapping = use_label("eq"),

formula = formula.trans,
eq.x.rhs = "~x^2",
eq.with.lhs = "y + 1~~`=`~~")

using weights
ggplot(my.data, aes(x, y, weight = w)) +

geom_point() +
stat_quant_line(formula = formula, linewidth = 0.5) +
stat_quant_eq(formula = formula)

no weights, quantile set to upper boundary
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula, quantiles = 0.95) +
stat_quant_eq(formula = formula, quantiles = 0.95)

manually assemble and map a specific label using paste() and aes()
ggplot(my.data, aes(x, y2, color = group, grp.label = group)) +

geom_point() +
stat_quant_line(method = "rq", formula = formula,

quantiles = c(0.05, 0.5, 0.95),
linewidth = 0.5) +

stat_quant_eq(mapping = aes(label = paste(after_stat(grp.label), "*\": \"*",
after_stat(eq.label), sep = "")),

quantiles = c(0.05, 0.5, 0.95),
formula = formula, size = 3)

manually assemble and map a specific label using sprintf() and aes()
ggplot(my.data, aes(x, y2, color = group, grp.label = group)) +

geom_point() +

stat_quant_eq 113

stat_quant_band(method = "rq", formula = formula,
quantiles = c(0.05, 0.5, 0.95)) +

stat_quant_eq(mapping = aes(label = sprintf("%s*\": \"*%s",
after_stat(grp.label),
after_stat(eq.label))),

quantiles = c(0.05, 0.5, 0.95),
formula = formula, size = 3)

geom = "text"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula, quantiles = 0.5) +
stat_quant_eq(label.x = "left", label.y = "top",

formula = formula,
quantiles = 0.5)

Inspecting the returned data using geom_debug()
This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics using after_stat().

gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, geom = "debug")

Not run:
if (gginnards.installed)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(mapping = aes(label = after_stat(eq.label)),

formula = formula, geom = "debug",
output.type = "markdown")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, geom = "debug", output.type = "text")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, geom = "debug", output.type = "numeric")

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, quantiles = c(0.25, 0.5, 0.75),

geom = "debug", output.type = "text")

114 stat_quant_line

if (gginnards.installed)
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, quantiles = c(0.25, 0.5, 0.75),

geom = "debug", output.type = "numeric")

End(Not run)

stat_quant_line Predicted line from quantile regression fit

Description

Predicted values are computed and, by default, plotted. Depending on the fit method, a confidence
band can be computed and plotted. The confidence band can be interpreted similarly as that pro-
duced by stat_smooth() and stat_poly_line().

Usage

stat_quant_line(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
quantiles = c(0.25, 0.5, 0.75),
formula = NULL,
se = length(quantiles) == 1L,
fm.values = FALSE,
n = 80,
method = "rq",
method.args = list(),
n.min = 3L,
level = 0.95,
type = "direct",
interval = "confidence",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

stat_quant_line 115

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

quantiles numeric vector Values in 0..1 indicating the quantiles.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

se logical Passed to quantreg::predict.rq().

fm.values logical Add n as a column to returned data? (‘FALSE‘ by default.)

n Number of points at which to evaluate smoother.

method function or character If character, "rq", "rqss" or the name of a model fit function
are accepted, possibly followed by the fit function’s method argument separated
by a colon (e.g. "rq:br"). If a function different to rq(), it must accept argu-
ments named formula, data, weights, tau and method and return a model fit
object of class rq, rqs or rqss.

method.args named list with additional arguments passed to rq(), rqss() or to a function
passed as argument to method.

n.min integer Minimum number of distinct values in the explanatory variable (on the
rhs of formula) for fitting to the attempted.

level numeric in range [0..1] Passed to quantreg::predict.rq().

type character Passed to quantreg::predict.rq().

interval character Passed to quantreg::predict.rq().

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

stat_quant_line() behaves similarly to ggplot2::stat_smooth() and stat_poly_line() but
supports fitting regressions for multiple quantiles in the same plot layer. This statistic interprets the
argument passed to formula accepting y as well as x as explanatory variable, matching stat_quant_eq().
While stat_quant_eq() supports only method "rq", stat_quant_line() and stat_quant_band()
support both "rq" and "rqss", In the case of "rqss" the model formula makes normally use of
qss() to formulate the spline and its constraints.

geom_smooth, which is used by default, treats each axis differently and thus is dependent on ori-
entation. If no argument is passed to formula, it defaults to y ~ x. Formulas with y as explanatory
variable are treated as if x was the explanatory variable and orientation = "y".

116 stat_quant_line

Package ’ggpmisc’ does not define a new geometry matching this statistic as it is enough for the
statistic to return suitable x, y, ymin, ymax and group values.

The minimum number of observations with distinct values in the explanatory variable can be set
through parameter n.min. The default n.min = 3L is the smallest usable value. However, model fits
with very few observations are of little interest and using larger values of n.min than the default is
wise.

There are multiple uses for double regression on x and y. For example, when two variables are
subject to mutual constrains, it is useful to consider both of them as explanatory and interpret the
relationship based on them. So, from version 0.4.1 ’ggpmisc’ makes it possible to easily implement
the approach described by Cardoso (2019) under the name of "Double quantile regression".

Value

The value returned by the statistic is a data frame, that will have n rows of predicted values and and
their confidence limits for each quantile, with each quantile in a group. The variables are x and y
with y containing predicted values. In addition, quantile and quantile.f indicate the quantile
used and and edited group preserves the original grouping adding a new "level" for each quantile.
Is se = TRUE, a confidence band is computed and values for it returned in ymax and ymin.

The value returned by the statistic is a data frame, that will have n rows of predicted values and their
confidence limits. Optionally it will also include additional values related to the model fit.

Computed variables

‘stat_quant_line()‘ provides the following variables, some of which depend on the orientation:

y *or* x predicted value

ymin *or* xmin lower confidence interval around the mean

ymax *or* xmax upper confidence interval around the mean

If fm.values = TRUE is passed then one column with the number of observations n used for each fit
is also included, with the same value in each row within a group. This is wasteful and disabled by
default, but provides a simple and robust approach to achieve effects like colouring or hiding of the
model fit line based on the number of observations.

Aesthetics

stat_quant_line understands x and y, to be referenced in the formula and weight passed as
argument to parameter weights. All three must be mapped to numeric variables. In addition, the
aesthetics understood by the geom ("geom_smooth" is the default) are understood and grouping
respected.

References

Cardoso, G. C. (2019) Double quantile regression accurately assesses distance to boundary trade-
off. Methods in ecology and evolution, 10(8), 1322-1331.

stat_quant_line 117

See Also

rq, rqss and qss.

Other ggplot statistics for quantile regression: stat_quant_band(), stat_quant_eq()

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line()

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(se = TRUE)

If you need the fitting to be done along the y-axis set the orientation
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_line(orientation = "y")

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(orientation = "y", se = TRUE)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = y ~ x)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = x ~ y)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = y ~ poly(x, 3))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = x ~ poly(y, 3))

Instead of rq() we can use rqss() to fit an additive model:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_line(method = "rqss",

formula = y ~ qss(x, constraint = "D"),
quantiles = 0.5)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(method = "rqss",

formula = x ~ qss(y, constraint = "D"),
quantiles = 0.5)

118 swap_xy

ggplot(mpg, aes(displ, hwy)) +
geom_point()+
stat_quant_line(method="rqss",

interval="confidence",
se = TRUE,
mapping = aes(fill = factor(after_stat(quantile)),

color = factor(after_stat(quantile))),
quantiles=c(0.05,0.5,0.95))

Smooths are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

ggplot(mpg, aes(displ, hwy, colour = drv, fill = drv)) +
geom_point() +
stat_quant_line(method = "rqss",

formula = y ~ qss(x, constraint = "V"),
quantiles = 0.5)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = y ~ poly(x, 2)) +
facet_wrap(~drv)

Inspecting the returned data using geom_debug()
gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)

if (gginnards.installed)
library(gginnards)

if (gginnards.installed)
ggplot(mpg, aes(displ, hwy)) +
stat_quant_line(geom = "debug")

if (gginnards.installed)
ggplot(mpg, aes(displ, hwy)) +
stat_quant_line(geom = "debug", fm.values = TRUE)

swap_xy Swap x and y in a formula

Description

By default a formula of x on y is converted into a formula of y on x, while the reverse swap is done
only if backward = TRUE.

Usage

swap_xy(f, backwards = FALSE)

symmetric_limits 119

Arguments

f formula An R model formula

backwards logical

Details

This function is meant to be used only as a helper within ’ggplot2’ statistics. Normally together
with geometries supporting orientation when we want to automate the change in orientation based
on a user-supplied formula. Only x and y are changed, and in other respects the formula is rebuilt
copying the environment from f.

Value

A copy of f with x and y swapped by each other in the lhs and rhs.

symmetric_limits Expand a range to make it symmetric

Description

Expand scale limits to make them symmetric around zero. Can be passed as argument to parameter
limits of continuous scales from packages ’ggplot2’ or ’scales’. Can be also used to obtain an
enclosing symmetric range for numeric vectors.

Usage

symmetric_limits(x)

Arguments

x numeric The automatic limits when used as argument to a scale’s limits formal
parameter. Otherwise a numeric vector, possibly a range, for which to compute
a symmetric enclosing range.

Value

A numeric vector of length two with the new limits, which are always such that the absolute value
of upper and lower limits is the same.

Examples

symmetric_limits(c(-1, 1.8))
symmetric_limits(c(-10, 1.8))
symmetric_limits(-5:20)

120 use_label

typeset_numbers Typeset/format numbers preserving trailing zeros

Description

Typeset/format numbers preserving trailing zeros

Usage

typeset_numbers(eq.char, output.type)

Arguments

eq.char character A polynomial model equation as a character string.
output.type character One of "expression", "latex", "tex", "text", "tikz", "markdown".

Value

A character string.

Note

exponential number notation to typeset equivalent: Protecting trailing zeros in negative numbers is
more involved than I would like. Not only we need to enclose numbers in quotations marks but
we also need to replace dashes with the minus character. I am not sure we can do the replacement
portably, but that recent R supports UTF gives some hope.

use_label Assemble label and map it

Description

Assemble model-fit-derived text or expressions and map them to the label aesthetic.

Usage

use_label(..., labels = NULL, other.mapping = NULL, sep = "*\", \"*")

Arguments

... character Strings giving the names of the label components in the order they will
be included in the combined label.

labels character A vector with the name of the label components. If provided, values
passed through ... are ignored.

other.mapping An unevaluated expression constructed with function aes to be included in the
returned value.

sep character A string used as separator when pasting the label components together.

use_label 121

Details

Statistics stat_poly_eq, stat_ma_eq, stat_quant_eq and stat_correlation return multiple
text strings to be used individually or assembled into longer character strings depending on the
labels actually desired. Assembling and mapping them requires verbose R code and familiarity with
R expression syntax. Function use_label() automates these two tasks and accepts abbreviated
familiar names for the parameters in addition to the name of the columns in the data object returned
by the statistics. The default separator is that for expressions.

The statistics return variables with names ending in .label. This ending can be omitted, as well as
.value for f.value.label, t.value.label, z.value.label, S.value.label and p.value.label.
R2 can be used in place of rr. Furthermore, case is ignored.

Function use_label() calls aes() to create a mapping for the label aesthetic, but it can in addition
combine this mapping with other mappings created with aes().

Value

A mapping to the label aesthetic and optionally additional mappings as an unevaluated R expres-
sion, built using function aes, ready to be passed as argument to the mapping parameter of the
supported statistics.

Note

Function use_label() can be only used to generate an argument passed to formal parameter
mapping of the statistics stat_poly_eq, stat_ma_eq, stat_quant_eq and stat_correlation.

See Also

stat_poly_eq, stat_ma_eq, stat_quant_eq and stat_correlation.

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x = x,

y = y * 1e-5,
group = c("A", "B"),
y2 = y * 1e-5 + c(2, 0))

give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)

default label constructed by use_label()
ggplot(data = my.data,

mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label(),

formula = formula)

122 use_label

user specified label components
ggplot(data = my.data,

mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("eq", "F"),

formula = formula)

user specified label components and separator
ggplot(data = my.data,

mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("R2", "F", sep = "*\" with \"*"),

formula = formula)

combine the mapping to the label aesthetic with other mappings
ggplot(data = my.data,

mapping = aes(x = x, y = y2)) +
geom_point(mapping = aes(colour = group)) +
stat_poly_line(mapping = aes(colour = group), formula = formula) +
stat_poly_eq(mapping = use_label("grp", "eq", "F",

aes(grp.label = group)),
formula = formula)

combine other mappings with default labels
ggplot(data = my.data,

mapping = aes(x = x, y = y2)) +
geom_point(mapping = aes(colour = group)) +
stat_poly_line(mapping = aes(colour = group), formula = formula) +
stat_poly_eq(mapping = use_label(aes(colour = group)),

formula = formula)

example with other available components
ggplot(data = my.data,

mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("eq", "adj.R2", "n"),

formula = formula)

multiple labels
ggplot(data = my.data,

mapping = aes(x, y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("R2", "F", "P", "AIC", "BIC"),

formula = formula) +
stat_poly_eq(mapping = use_label(c("eq", "n")),

formula = formula,
label.y = "bottom",
label.x = "right")

xy_outcomes2factor 123

quantile regression
ggplot(data = my.data,

mapping = aes(x, y)) +
stat_quant_band(formula = formula) +
stat_quant_eq(mapping = use_label("eq", "n"),

formula = formula) +
geom_point()

major axis regresion
ggplot(data = my.data, aes(x = x, y = y)) +

stat_ma_line() +
stat_ma_eq(mapping = use_label("eq", "n")) +
geom_point()

correlation
ggplot(data = my.data,

mapping = aes(x = x, y = y)) +
stat_correlation(mapping = use_label("r", "t", "p")) +
geom_point()

xy_outcomes2factor Convert two numeric ternary outcomes into a factor

Description

Convert two numeric ternary outcomes into a factor

Usage

xy_outcomes2factor(x, y)

xy_thresholds2factor(x, y, x_threshold = 0, y_threshold = 0)

Arguments

x, y numeric vectors of -1, 0, and +1 values, indicating down regulation, uncertain
response or up-regulation, or numeric vectors that can be converted into such
values using a pair of thresholds.

x_threshold, y_threshold
numeric vector Ranges enclosing the values to be considered uncertain for each
of the two vectors..

Details

This function converts the numerically encoded values into a factor with the four levels "xy", "x",
"y" and "none". The factor created can be used for faceting or can be mapped to aesthetics.

124 xy_outcomes2factor

Note

This is an utility function that only saves some typing. The same result can be achieved by a direct
call to factor. This function aims at making it easier to draw quadrant plots with facets based on
the combined outcomes.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_colour_outcome(),
scale_shape_outcome(), scale_y_Pvalue()

Other scales for omics data: outcome2factor(), scale_colour_logFC(), scale_shape_outcome(),
scale_x_logFC()

Examples

xy_outcomes2factor(c(-1, 0, 0, 1, -1), c(0, 1, 0, 1, -1))
xy_thresholds2factor(c(-1, 0, 0, 1, -1), c(0, 1, 0, 1, -1))
xy_thresholds2factor(c(-1, 0, 0, 0.1, -5), c(0, 2, 0, 1, -1))

Index

∗ Functions for quadrant and volcano plots
outcome2factor, 12
scale_colour_outcome, 24
scale_shape_outcome, 27
scale_y_Pvalue, 31
xy_outcomes2factor, 123

∗ ggplot statistics for correlation.
stat_correlation, 34

∗ ggplot statistics for linear and polynomial
regression

stat_poly_eq, 88
stat_poly_line, 98

∗ ggplot statistics for major axis regression
stat_ma_eq, 67
stat_ma_line, 73

∗ ggplot statistics for model fits
stat_fit_augment, 40
stat_fit_deviations, 44
stat_fit_glance, 48
stat_fit_residuals, 52
stat_fit_tb, 56
stat_fit_tidy, 62

∗ ggplot statistics for multiple comparisons
stat_multcomp, 78

∗ ggplot statistics for quantile regression
stat_quant_band, 101
stat_quant_eq, 105
stat_quant_line, 114

∗ scales for omics data
outcome2factor, 12
scale_colour_logFC, 21
scale_shape_outcome, 27
scale_x_logFC, 28
xy_outcomes2factor, 123

adj_rr_label (plain_label), 13
aes, 35, 41, 45, 49, 53, 57, 63, 68, 74, 78, 85,

89, 98, 102, 106, 114, 120, 121
append_layers (Moved), 12

bold_label (plain_label), 13
borders, 36, 41, 45, 49, 53, 57, 64, 69, 75, 86,

90, 99, 103, 107, 115
bottom_layer (Moved), 12
broom, 42, 50, 58, 65

check_poly_formula, 5
ci_rsquared, 91
coef.lmodel2, 6
coefs2poly_eq, 7
confint.lmodel2, 8
cor.test, 38

delete_layers, 12
delete_layers (Moved), 12

extract_layers (Moved), 12

f_value_label (plain_label), 13
factor, 13, 124
FC_format, 13, 26, 27, 33, 124
find_peaks, 9

geom_debug, 12, 37, 42, 46, 50, 58, 64, 70, 93,
109

geom_debug (Moved), 12
geom_label_repel, 86
geom_null, 12
geom_null (Moved), 12
geom_smooth, 75, 103, 115
geom_table, 58
geom_text_repel, 86
geom_text_s, 86
ggpmisc (ggpmisc-package), 3
ggpmisc-package, 3
ggpp, 86
ggrepel, 87
glht, 82

italic_label (plain_label), 13

125

126 INDEX

keep_augment (keep_tidy), 11
keep_glance (keep_tidy), 11
keep_tidy, 11

layer, 35, 41, 45, 49, 53, 58, 64, 68, 74, 78,
86, 89, 99, 102, 106, 115

lm, 90, 93
lmodel2, 7, 9, 21, 69, 71, 75

mean_value_label (plain_label), 13
move_layers (Moved), 12
Moved, 12

num_layers (Moved), 12

outcome2factor, 12, 23, 26, 27, 30, 33, 124

p.adjust, 82
p_value_label (plain_label), 13
peaks, 10
plain_label, 13
poly2character, 19
position_nudge_keep, 86
predict.lmodel2, 20

qss, 117

r_ci_label (plain_label), 13
r_label (plain_label), 13
residuals, 53
rlm, 90, 93
rq, 107, 110, 117
rqss, 117
rr_ci_label (plain_label), 13
rr_label (plain_label), 13

S_value_label (plain_label), 13
scale_color_logFC (scale_colour_logFC),

21
scale_color_outcome

(scale_colour_outcome), 24
scale_colour_logFC, 13, 21, 27, 30, 124
scale_colour_outcome, 13, 24, 27, 33, 124
scale_continuous, 23, 29, 33
scale_fill_logFC (scale_colour_logFC),

21
scale_fill_outcome, 13
scale_fill_outcome

(scale_colour_outcome), 24
scale_manual, 26, 27

scale_shape_outcome, 13, 23, 26, 27, 30, 33,
124

scale_x_FDR (scale_y_Pvalue), 31
scale_x_logFC, 13, 23, 27, 28, 124
scale_x_Pvalue (scale_y_Pvalue), 31
scale_y_FDR (scale_y_Pvalue), 31
scale_y_logFC (scale_x_logFC), 28
scale_y_Pvalue, 13, 26, 27, 31, 124
sd_value_label (plain_label), 13
se_value_label (plain_label), 13
shift_layers (Moved), 12
sprintf, 33, 34, 85, 86
sprintf_dm, 17, 33
stat_correlation, 34, 121
stat_debug_group, 12
stat_debug_group (Moved), 12
stat_debug_panel, 12
stat_debug_panel (Moved), 12
stat_fit_augment, 40, 46, 49, 50, 54, 58, 64,

65
stat_fit_deviations, 42, 44, 50, 54, 58, 65
stat_fit_fitted (stat_fit_deviations),

44
stat_fit_glance, 41, 42, 46, 48, 54, 58, 64,

65, 71, 93, 110
stat_fit_residuals, 42, 46, 50, 52, 58, 65
stat_fit_tb, 42, 46, 50, 54, 56, 63, 65
stat_fit_tidy, 41, 42, 46, 49, 50, 54, 58, 62,

71, 93, 110
stat_ma_eq, 67, 76, 93, 121
stat_ma_line, 71, 73
stat_multcomp, 77
stat_peaks, 84
stat_poly_eq, 41, 49, 64, 71, 88, 100, 121
stat_poly_line, 91, 93, 98
stat_quant_band, 101, 107, 110, 117
stat_quant_eq, 71, 93, 103, 105, 117, 121
stat_quant_line, 103, 107, 110, 114
stat_quantile, 107
stat_smooth, 73, 91, 99
stat_valleys (stat_peaks), 84
strftime, 86
strptime, 85
summary.glht, 79, 82
swap_xy, 118
symmetric_limits, 119

t_value_label (plain_label), 13
threshold2factor (outcome2factor), 12

INDEX 127

tidy, 58
top_layer (Moved), 12
ttheme_gtdefault, 58
typeset_numbers, 120

use_label, 120

value2char (sprintf_dm), 33
var_value_label (plain_label), 13

weighted.residuals, 53
which_layers (Moved), 12

xy_outcomes2factor, 13, 23, 26, 27, 30, 33,
123

xy_thresholds2factor
(xy_outcomes2factor), 123

z_value_label (plain_label), 13

	ggpmisc-package
	check_poly_formula
	coef.lmodel2
	coefs2poly_eq
	confint.lmodel2
	find_peaks
	keep_tidy
	Moved
	outcome2factor
	plain_label
	poly2character
	predict.lmodel2
	scale_colour_logFC
	scale_colour_outcome
	scale_shape_outcome
	scale_x_logFC
	scale_y_Pvalue
	sprintf_dm
	stat_correlation
	stat_fit_augment
	stat_fit_deviations
	stat_fit_glance
	stat_fit_residuals
	stat_fit_tb
	stat_fit_tidy
	stat_ma_eq
	stat_ma_line
	stat_multcomp
	stat_peaks
	stat_poly_eq
	stat_poly_line
	stat_quant_band
	stat_quant_eq
	stat_quant_line
	swap_xy
	symmetric_limits
	typeset_numbers
	use_label
	xy_outcomes2factor
	Index

