Package 'handwriterRF'

November 3, 2024

Type Package

```
Title Handwriting Analysis with Random Forests
Version 1.0.2
Maintainer Stephanie Reinders < reinders.stephanie@gmail.com>
Description Perform forensic handwriting analysis of two scanned handwritten documents. This pack-
     age implements the statistical method described by Madeline Johnson and Danica Om-
     men (2021) <doi:10.1002/sam.11566>. Similarity measures and a random forest pro-
     duce a score-based likelihood ratio that quantifies the strength of the evidence in fa-
     vor of the documents being written by the same writer or different writers.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Suggests knitr, rmarkdown, testthat (>= 3.0.0), tibble
VignetteBuilder knitr
Depends R (>= 3.5.0)
Imports dplyr, handwriter, magrittr, purrr, ranger, reshape2, tidyr,
     tidyselect
Config/testthat/edition 3
URL https://github.com/CSAFE-ISU/handwriterRF
BugReports https://github.com/CSAFE-ISU/handwriterRF/issues
NeedsCompilation no
Author Iowa State University of Science and Technology on behalf of its Center
       for Statistics and Applications in Forensic Evidence [aut, cph,
      fnd],
     Stephanie Reinders [aut, cre]
Repository CRAN
```

Date/Publication 2024-11-03 12:50:02 UTC

2 calculate_slr

Contents

Index		14
	train_rf	12
	templateK40	
	random_forest	10
	interpret_slr	9
	get_distances	8
	get_csafe_train_set	7
	get_cluster_fill_rates	
	cfr	
	cfc	3
	calculate_slr	

calculate_slr

Calculate a Score-Based Likelihood Ratio

Description

Compares two handwriting samples scanned and saved a PNG images with the following steps:

- 1. processDocument splits the writing in both samples into component shapes, or graphs.
- 2. get_clusters_batch groups the graphs into clusters of similar shapes.
- 3. get_cluster_fill_counts counts the number of graphs assigned to each cluster.
- 4. get_cluster_fill_rates calculates the proportion of graphs assigned to each cluster. The cluster fill rates serve as a writer profile.
- 5. A similarity score is calculated between the cluster fill rates of the two documents using a random forest trained with **ranger**.
- 6. The similarity score is compared to reference distributions of same writer and different writer similarity scores. The result is a score-based likelihood ratio that conveys the strength of the evidence in favor of same writer or different writer. For more details, see Madeline Johnson and Danica Ommen (2021) <doi:10.1002/sam.11566>.

Usage

```
calculate_slr(
  sample1_path,
  sample2_path,
  rforest = random_forest,
  project_dir = NULL
)
```

cfc 3

Arguments

sample1_path A file path to a handwriting sample saved in PNG file format.

sample2_path A file path to a second handwriting sample saved in PNG file format.

rforest Optional. A random forest trained with ranger. If rforest is not given, the data

object random_forest is used.

project_dir Optional. A path to a directory where helper files will be saved. If no project

directory is specified, the helper files will be saved to tempdir() and deleted

before the function terminates.

Value

A number

Examples

```
# Compare two samples from the same writer
sample1 <- system.file(file.path("extdata", "w0030_s01_pWOZ_r01.png"), package = "handwriterRF")
sample2 <- system.file(file.path("extdata", "w0030_s01_pWOZ_r02.png"), package = "handwriterRF")
calculate_slr(sample1, sample2)

# Compare samples from two writers
sample1 <- system.file(file.path("extdata", "w0030_s01_pWOZ_r01.png"), package = "handwriterRF")
sample2 <- system.file(file.path("extdata", "w0238_s01_pWOZ_r02.png"), package = "handwriterRF")
calculate_slr(sample1, sample2)</pre>
```

cfc

Cluster Fill Counts for 1200 CSAFE Handwriting Database Samples

Description

A dataset containing cluster fill counts for for 1,200 handwriting samples from the CSAFE Handwriting Database. The documents were split into graphs with process_batch_dir. The graphs were grouped into clusters with get_clusters_batch. The cluster fill counts were calculated with get_cluster_fill_counts.

Usage

cfc

Format

A data frame with 1200 rows and 41 variables:

docname The file name of the handwriting sample. The file name includes the writer ID, the writing session, prompt, and repetition number of the handwriting sample. There are 1,200 handwriting samples.

4 cfc

writer Writer ID. There are 100 distinct writer ID's. Each writer has 12 documents.

doc A document code that records the writing session, prompt, and repetition number of the handwriting sample. There are 12 distinct document codes. Each writer has a writing sample for each of the 12 document codes.

- 1 The number of graphs in cluster 1
- 2 The number of graphs in cluster 2
- 3 The number of graphs in cluster 3
- 4 The number of graphs in cluster 4
- 5 The number of graphs in cluster 5
- **6** The number of graphs in cluster 6
- 7 The number of graphs in cluster 7
- 8 The number of graphs in cluster 8
- 9 The number of graphs in cluster 9
- 10 The number of graphs in cluster 10
- 11 The number of graphs in cluster 11
- 12 The number of graphs in cluster 12
- 13 The number of graphs in cluster 13
- **14** The number of graphs in cluster 14
- 15 The number of graphs in cluster 15
- **16** The number of graphs in cluster 16
- 17 The number of graphs in cluster 17
- **18** The number of graphs in cluster 18
- **19** The number of graphs in cluster 19
- **20** The number of graphs in cluster 20
- 21 The number of graphs in cluster 21
- 22 The number of graphs in cluster 22
- 23 The number of graphs in cluster 23
- **24** The number of graphs in cluster 24
- **25** The number of graphs in cluster 25
- **26** The number of graphs in cluster 26
- **27** The number of graphs in cluster 27
- 28 The number of graphs in cluster 28
- 29 The number of graphs in cluster 29
- 30 The number of graphs in cluster 30
- 31 The number of graphs in cluster 31
- 32 The number of graphs in cluster 32
- 33 The number of graphs in cluster 33
- 34 The number of graphs in cluster 34

cfr 5

- **35** The number of graphs in cluster 35
- **36** The number of graphs in cluster 36
- 37 The number of graphs in cluster 37
- 38 The number of graphs in cluster 38
- **39** The number of graphs in cluster 39
- 40 The number of graphs in cluster 40

Source

https://forensicstats.org/handwritingdatabase/

cfr

Cluster Fill Rates for 1200 CSAFE Handwriting Database Samples

Description

A dataset containing cluster fill rates for for 1,200 handwriting samples from the CSAFE Handwriting Database. The dataset was created by running get_cluster_fill_rates on the cluster fill counts data frame cfc. Cluster fill rates are the proportion of total graphs assigned to each cluster.

Usage

cfr

Format

A data frame with 1200 rows and 42 variables:

docname file name of the handwriting sample

total_graphs The total number of graphs in the handwriting sample

cluster1 The number of graphs in cluster 1

cluster2 The number of graphs in cluster 2

cluster3 The number of graphs in cluster 3

cluster4 The number of graphs in cluster 4

cluster5 The number of graphs in cluster 5

cluster6 The number of graphs in cluster 6

cluster7 The number of graphs in cluster 7

cluster8 The number of graphs in cluster 8

cluster9 The number of graphs in cluster 9

cluster10 The number of graphs in cluster 10

cluster11 The number of graphs in cluster 11

cluster12 The number of graphs in cluster 12

6 cfr

cluster13	The number of graphs in cluster 13
cluster14	The number of graphs in cluster 14
cluster15	The number of graphs in cluster 15
cluster16	The number of graphs in cluster 16
cluster17	The number of graphs in cluster 17
cluster18	The number of graphs in cluster 18
cluster19	The number of graphs in cluster 19
cluster20	The number of graphs in cluster 20
cluster21	The number of graphs in cluster 21
cluster22	The number of graphs in cluster 22
cluster23	The number of graphs in cluster 23
cluster24	The number of graphs in cluster 24
cluster25	The number of graphs in cluster 25
cluster26	The number of graphs in cluster 26
cluster27	The number of graphs in cluster 27
cluster28	The number of graphs in cluster 28
cluster29	The number of graphs in cluster 29
cluster30	The number of graphs in cluster 30
cluster31	The number of graphs in cluster 31
cluster32	The number of graphs in cluster 32
cluster33	The number of graphs in cluster 33
cluster34	The number of graphs in cluster 34
cluster35	The number of graphs in cluster 35
cluster36	The number of graphs in cluster 36
cluster37	The number of graphs in cluster 37
cluster38	The number of graphs in cluster 38
cluster39	The number of graphs in cluster 39
cluster40	The number of graphs in cluster 40

Source

https://forensicstats.org/handwritingdatabase/

get_cluster_fill_rates 7

```
get_cluster_fill_rates
```

Get Cluster Fill Rates

Description

Calculate cluster fill rates from a data frame of cluster fill counts created with get_cluster_fill_counts.

Usage

```
get_cluster_fill_rates(df)
```

Arguments

df

A data frame of cluster fill rates created with get_cluster_fill_counts.

Value

A data frame of cluster fill rates.

Examples

```
rates <- get_cluster_fill_rates(df = cfc)</pre>
```

```
get_csafe_train_set Get Training Set
```

Description

Create a training set from a data frame of cluster fill rates from the CSAFE Handwriting Database.

Usage

```
get_csafe_train_set(df, train_prompt_codes)
```

Arguments

```
df A data frame of cluster fill rates created with get_cluster_fill_rates train_prompt_codes
```

A character vector of which prompt(s) to use in the training set. Available prompts are 'pLND', 'pPHR', 'pWOZ', and 'pCMB'.

Value

A data frame

8 get_distances

Examples

```
train <- get_csafe_train_set(df = cfr, train_prompt_codes = 'pCMB')</pre>
```

get_distances

Get Distances

Description

Calculate distances using between all pairs of cluster fill rates in a data frame using one or more distance measures. The available distance measures absolute distance, Manhattan distance, Euclidean distance, maximum distance, and cosine distance.

Usage

```
get_distances(df, distance_measures)
```

Arguments

df A data frame of cluster fill rates created with get_cluster_fill_rates distance_measures

A vector of distance measures. Use 'abs' to calculate the absolute difference, 'man' for the Manhattan distance, 'euc' for the Euclidean distance, 'max' for the maximum absolute distance, and 'cos' for the cosine distance. The vector can be a single distance, or any combination of these five distance measures.

Details

The absolute distance between two n-length vectors of cluster fill rates, a and b, is a vector of the same length as a and b. It can be calculated as abs(a-b) where subtraction is performed elementwise, then the absolute value of each element is returned. More specifically, element i of the vector is $|a_i - b_i|$ for i = 1, 2, ..., n.

The Manhattan distance between two n-length vectors of cluster fill rates, a and b, is $\sum_{i=1}^{n} |a_i - b_i|$. In other words, it is the sum of the absolute distance vector.

The Euclidean distance between two n-length vectors of cluster fill rates, a and b, is $\sqrt{\sum_{i=1}^{n}(a_i-b_i)^2}$. In other words, it is the sum of the elements of the absolute distance vector.

The maximum distance between two n-length vectors of cluster fill rates, a and b, is $\max_{1 \le i \le n} \{|a_i - b_i|\}$. In other words, it is the sum of the elements of the absolute distance vector.

The cosine distance between two n-length vectors of cluster fill rates, a and b, is $\sum_{i=1}^{n} (a_i - b_i)^2 / (\sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2})$.

Value

A data frame of distances

interpret_slr 9

Examples

```
# calculate maximum and Euclidean distances between the first 3 documents in cfr.
distances <- get_distances(df = cfr[1:3, ], distance_measures = c('max', 'euc'))
distances <- get_distances(df = cfr, distance_measures = c('man'))</pre>
```

interpret_slr

Interpret an SLR Value

Description

Verbally interprent an SLR value.

Usage

```
interpret_slr(df)
```

Arguments

df

A data frame created by calculate_slr.

Value

A string

Examples

```
df <- data.frame("score" = 5, "slr" = 20)
interpret_slr(df)

df <- data.frame("score" = 0.12, "slr" = 0.5)
interpret_slr(df)

df <- data.frame("score" = 1, "slr" = 1)
interpret_slr(df)

df <- data.frame("score" = 0, "slr" = 0)
interpret_slr(df)</pre>
```

10 random_forest

random_forest

A ranger Random Forest, Distances, and Densities

Description

A list that contains a trained random forest created with **ranger**, the data frame of distances used to train the random forest, and two densities obtained from the random forest.

Usage

random_forest

Format

A list with the following components:

dists The data frame used to train the random forest. The data frame has 600 rows. Each row contains the absolute and Euclidean distances between the cluster fill rates of two handwriting samples. If both handwriting samples are from the same writer, the class is 'same'. If the handwriting samples are from different writers, the class is 'different'. There are 300 'same' distances and 300 'different' distances in the data frame.

rf A random forest created with **ranger** with settings: importance = 'permutation', scale.permutation.importance = TRUE, and num.trees = 200.

densities A similarity score was obtained for each pair of handwriting samples in the training data frame, dists, by calculating the proportion of decision trees that voted 'same' class for the pair. The 'same_writer' density was created by applying density to the similarity scores for the 300 same writer pairs in dists. Similarly, the 'diff_writer' density was created by applying the density function to the similarity scores for the 300 different writer pairs in dists. The default settings were used with density.

Examples

```
# view the random forest
random_forest$rf

# view the distances data frame
random_forest$dists

# plot the same writer density
plot(random_forest$densities$same_writer)

# plot the different writer density
plot(random_forest$densities$diff_writer)
```

templateK40

templateK40

Cluster Template with 40 Clusters

Description

A cluster template created by **handwriter** with 40 clusters. This template was created from 120 handwriting samples from the CSAFE Handwriting Database.

Usage

templateK40

Format

A list containing the contents of the cluster template.

centers_seed An integer for the random number generator use to select the starting cluster centers for the K-Means algorithm.

cluster A vector of cluster assignments for each graph used to create the cluster template. The clusters are numbered sequentially 1, 2,...,K.

centers The final cluster centers produced by the K-Means algorithm.

K The number of clusters in the template.

n The number of training graphs to used to create the template.

docnames A vector that lists the training document from which each graph originated.

writers A vector that lists the writer of each graph.

iters The maximum number of iterations for the K-means algorithm.

changes A vector of the number of graphs that changed clusters on each iteration of the K-means algorithm.

outlierCutoff A vector of the outlier cutoff values calculated on each iteration of the K-means algorithm.

stop_reason The reason the K-means algorithm terminated.

wcd The within cluster distances on the final iteration of the K-means algorithm. More specifically, the distance between each graph and the center of the cluster to which it was assigned on each iteration. The output of make_clustering_template' stores the within cluster distances on each iteration, but the previous iterations were removed here to reduce the file size.

wcss A vector of the within-cluster sum of squares on each iteration of the K-means algorithm.

Details

handwriter splits handwriting samples into component shapes called graphs. The graphs are sorted into 40 clusters with a K-Means algorithm.

12 train_rf

Examples

```
# view number of clusters
templateK40$K

# view number of iterations
templateK40$iters

# view cluster centers
templateK40$centers
```

train_rf

Train a Random Forest

Description

Train a random forest with **ranger** from a data frame of cluster fill rates.

Usage

```
train_rf(
   df,
   ntrees,
   distance_measures,
   output_dir = NULL,
   run_number = 1,
   downsample = TRUE
)
```

Arguments

df A data frame of cluster fill rates created with get_cluster_fill_rates

ntrees An integer number of decision trees to use

distance_measures

A vector of distance measures. Any combination of 'abs', 'euc', 'man', 'max',

and 'cos' may be used.

output_dir A path to a directory where the random forest will be saved.

run_number An integer used for both the set.seed function and to distinguish between differ-

ent runs on the same input data frame.

downsample Whether to downsample the number of different writer distances before training

the random forest. If TRUE, the different writer distances will be randomly sampled, resulting in the same number of different writer and same writer pairs.

Value

A random forest

train_rf

Examples

```
train <- get_csafe_train_set(df = cfr, train_prompt_code = 'pCMB')
rforest <- train_rf(
    df = train,
    ntrees = 200,
    distance_measures = c('euc'),
    run_number = 1,
    downsample = TRUE
)</pre>
```

Index

```
* cluster
     templateK40, 11
* datasets
    cfc, 3
    cfr, 5
    random\_forest, 10
calculate_slr, 2, 9
cfc, 3
cfr, 5
density, 10
get_cluster_fill_counts, 2, 3, 7
\mathtt{get\_cluster\_fill\_rates}, 2, 5, 7, 7, 8, 12
get_clusters_batch, 2, 3
get_csafe_train_set, 7
{\tt get\_distances}, {\color{red} 8}
interpret_slr,9
make_clustering_template, 11
process_batch_dir, 3
{\tt processDocument}, {\tt 2}
random_forest, 10
templateK40, 11
train_rf, 12
```