
Package ‘hicp’
July 23, 2024

Type Package

Title Harmonised Index of Consumer Prices

Version 0.6.1

Description The Harmonised Index of Consumer Prices (HICP) is the key economic figure to mea-
sure inflation in the euro area.
The methodology underlying the HICP is documented in the HICP Methodological Man-
ual (<https:
//ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003>).
Based on the manual, this package provides functions to access and work with HICP data from Eu-
rostat's public database (<https://ec.europa.eu/eurostat/data/database>).

License EUPL

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports restatapi (>= 0.21.0), data.table (>= 1.14.0)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

URL https://github.com/eurostat/hicp

BugReports https://github.com/eurostat/hicp/issues

Author Sebastian Weinand [aut, cre]

Maintainer Sebastian Weinand <sebastian.weinand@ec.europa.eu>

Repository CRAN

Date/Publication 2024-07-23 10:50:04 UTC

1

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003
https://ec.europa.eu/eurostat/data/database
https://github.com/eurostat/hicp
https://github.com/eurostat/hicp/issues


2 chaining

Contents
chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
coicop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
coicop.bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
coicop.tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
hicp.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
index.aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
spec.aggs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Index 21

chaining Chain-linking, rebasing and frequency conversion

Description

Function unchain() decouples a chained index series with monthly frequency. These unchained
index series can be aggregated into higher-level indices using aggregate(). To obtain a longterm
index series, the higher-level indices must be chained using function chain(). Finally, rebase()
sets the index reference period. Monthly indices can be converted into annual or quarterly indices
using function convert().

Usage

unchain(x, t, by=12)

chain(x, t, by=12)

rebase(x, t, t.ref, verbose=FALSE)

convert(x, t, freq="annual")

Arguments

x numeric vector of index values

t date vector

by for annual overlap NULL; for one-month overlap a single integer between 1 and
12 specifying the price reference month

t.ref character specifying the index reference period. Could be a whole year (YYYY)
or a single year-month (YYYY-MM).

verbose logical indicating if messages regarding the index reference period should be
printed to the console or not.

freq frequency of converted index. Either annual or quarterly.



chaining 3

Details

Function unchain() sets the value of the first price reference period to NA although the value could
be set to 100 (if by is not NULL) or 100 divided by the average of the year (if by=NULL). This is
wanted to avoid aggregation of these values. Function chain() finally sets the values back to 100.

Value

Functions unchain(), chain() and rebase() return numeric values of the same length as x.

Function convert() returns a named vector of the length of quarter or years available in t, where
the names correspond to the years or quarters.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, https://data.europa.
eu/doi/10.2785/055028.

See Also

aggregate

Examples

### EXAMPLE 1

t <- seq.Date(from=as.Date("2021-12-01"), to=as.Date("2024-12-01"), by="1 month")
p <- rnorm(n=length(t), mean=100, sd=5)

100*p/p[1]
chain(unchain(p, t, by=12), t, by=12)

convert(x=p, t=t, freq="q") # quarterly index

t <- seq.Date(from=as.Date("2021-01-01"), to=as.Date("2024-12-01"), by="1 month")
p <- rnorm(n=length(t), mean=100, sd=5)

100*p/mean(p[1:12])
(res <- chain(unchain(p, t, by=NULL), t, by=NULL))
# note that for backwards compability, each month in the first
# year receives an index value of 100. this allows the same
# computation again:
chain(unchain(res, t, by=NULL), t, by=NULL)

### EXAMPLE 2

# set cores for testing on CRAN:
library(restatapi)

https://data.europa.eu/doi/10.2785/055028
https://data.europa.eu/doi/10.2785/055028


4 coicop

options(restatapi_cores=1)
library(data.table)

# get hicp index values for euro area with base 2015:
dt <- hicp.dataimport(id="prc_hicp_midx", filter=list(unit="I15", geo="EA"))
dt[, "time":=as.Date(paste0(time, "-01"))]
setkeyv(x=dt, cols=c("unit","coicop","time"))

# check chain-linked indices against published data:
dt[, "dec_ratio" := unchain(x=values, t=time), by="coicop"]
dt[, "chained_index" := chain(x=dec_ratio, t=time), by="coicop"]
dt[, "index_own" := rebase(x=chained_index, t=time, t.ref="2015"), by="coicop"]
dt[abs(values-index_own)>0.01,] # should be empty

# check converted indices against published data:
dta <- dt[, as.data.table(convert(x=values, t=time), keep.rownames=TRUE), by="coicop"]
setnames(x=dta, c("coicop","time","index"))
aind <- hicp.dataimport(id="prc_hicp_aind", filter=list(unit="INX_A_AVG", geo="EA"))
aind[, c("geo","unit") := NULL]
dtcomp <- merge(x=aind, y=dta, by=c("coicop","time"), all=TRUE)
dtcomp[abs(values-index)>0.01,] # should be empty

coicop Working with COICOP codes

Description

Function is.coicop() checks if the input is a valid COICOP code while level() returns the
COICOP level (e.g. division or subclass). Function parent() derives the higher-level parent of a
COICOP code if available in the data supplied. The function child() does the same for lower-level
children.

Usage

is.coicop(id, settings=list())

level(id, label=FALSE, settings=list())

child(id, flag=TRUE, direct=FALSE, settings=list())

parent(id, flag=TRUE, direct=FALSE, settings=list())

Arguments

id character vector of COICOP ids.

label logical indicating if the number of digits or the labels (e.g., division, subclass)
should be returned.

flag for flag=TRUE, parent or child codes are available in the data are flagged by a
logical. Otherwise, the parent or child codes are returned.



coicop 5

direct logical indicating if only direct relatives should be flagged as TRUE (e.g. 03->031)
or also indirect relatives (e.g. 03->0311) if direct relatives in between are miss-
ing.

settings a list of control settings to be used. The following settings are supported:

• coicop.version : character specifying the COICOP version to be used
when checking for valid COICOP codes. See details for the allowed values.
The default is getOption("hicp.coicop.version").

• unbundle : logical indicating if COICOP bundles (e.g. 08X, 0531_2) as de-
fined in coicop.bundles should be taken into account or not. The default
is getOption("hicp.unbundle").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").
Not used by is.coicop().

Details

The following COICOP versions are supported:

• Classification of Individual Consumption According to Purpose (COICOP-1999): coicop1999

• European COICOP (ECOICOP): ecoicop

• ECOICOP adopted to the needs of the HICP (ECOICOP-HICP): ecoicop-hicp

• COICOP-2018: coicop2018

None of the COICOP versions include a code for the all-items index. The internal package code
for the all-items index is globally defined by options(hicp.all.items.code="00") but can be
changed by the user. The level() is always 1.

If settings$unbundle=TRUE, COICOP bundle codes are resolved into their component ids and
processed in that way. By contrast, if settings$unbundle=FALSE, COICOP bundle codes are
internally set to NA. Consequently, they can’t be a parent or a child of some other COICOP code.

Value

Function is.coicop() returns a logical vector and function level() a numeric vector. If argu-
ment flag=TRUE, functions parent() and child() both return a logical vector. If flag=FALSE,
parent() gives a character vector, while child() returns a list. In any case, all function outputs
have the same length as id.

Author(s)

Sebastian Weinand

See Also

unbundle, tree

https://unstats.un.org/unsd/classifications/Econ/Structure
https://op.europa.eu/de/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/ecoicop
https://op.europa.eu/de/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/ecoicop-hicp
https://unstats.un.org/unsd/classifications/Econ


6 coicop.bundles

Examples

### EXAMPLE 1

# validity of coicop id:
is.coicop(id=c("00","CP00","13","08X"), settings=list(unbundle=TRUE))
is.coicop(id=c("00","CP00","13","08X"), settings=list(unbundle=FALSE))

# coicop level:
level(id=c("00","05","053","0531_2"))
level(id=c("00","05","053","0531_2"), label=TRUE)

# check for children in data:
child(id=c("0111"), flag=FALSE) # false, no child found
child(id=c("0111", "01"), flag=FALSE, direct=TRUE) # still false
child(id=c("0111", "01"), flag=FALSE, direct=FALSE) # now TRUE

# check for parent in data, including coicop bundles:
ids <- c("053","0531_2","05311","05321")
parent(id=ids, flag=FALSE, direct=TRUE, settings=list(unbundle=FALSE))
parent(id=ids, flag=FALSE, direct=TRUE, settings=list(unbundle=TRUE))

### EXAMPLE 2

# set cores for testing on CRAN:
library(restatapi)
options(restatapi_cores=1)
library(data.table)

# load hicp item weights:
coicops <- hicp.dataimport(id="prc_hicp_inw", filter=list(geo="EA"))
coicops <- coicops[grepl("^CP", coicop),]
coicops[, "coicop":=gsub("^CP", "", coicop)]

# get frequency of coicop levels:
coicops[, .N, by=list(time, "lvl"=level(coicop))]

# get coicop parent from the data:
coicops[, "parent":=parent(id=coicop, flag=FALSE), by="time"]

# flag if coicop has child available in the data:
coicops[, "has_child":=child(id=coicop, flag=TRUE), by="time"]
coicops[has_child==FALSE, sum(values, na.rm=TRUE), by="time"]
# coicop bundles and their component ids are both taken into
# account. this double counting explains some differences

coicop.bundles COICOP bundle codes



coicop.tree 7

Description

HICP data follow the COICOP classification system. However, sometimes COICOP ids are merged
into bundles, deviating from the usual structure of ids (e.g. 08X, 0531_2). Function is.bundle()
flags if a COICOP id is a bundle or not, while unbundle() splits the bundles into their original ids.
Both functions make use of the bundle dictionary coicop.bundles.

Usage

is.bundle(id)

unbundle(id)

# list of coicop bundles:
coicop.bundles

Arguments

id character vector of COICOP ids.

Value

For is.bundle(), a logical vector of the same length as id. For unbundle() a vector of ids with
length greater or equal to the length of id.

Author(s)

Sebastian Weinand

Examples

ids <- c("011",NA,"08X","112","0531_2")
is.bundle(ids)
unbundle(ids)

coicop.tree Derive and fix COICOP tree

Description

Function tree() derives the COICOP tree at the lowest possible level. In HICP data, this can be
done separately for each reporting month and country. Consequently, the COICOP tree can differ
across space and time. If needed, specifying argument by in tree() allows to merge the COICOP
trees at the lowest possible level, e.g. to obtain a unique composition of COICOP codes over time.

Usage

tree(id, by=NULL, w=NULL, max.lvl=NULL, settings=list())



8 coicop.tree

Arguments

id character vector of COICOP ids

by vector specifying the variable to be used for merging the tree, e.g. vector of
dates for merging over time or a vector of countries for merging across space.
Can be NULL if no merging is required.

w numeric weight of id. If supplied, it is checked that the weight of children add
up to the corresponding weight of the parent (allowing for tolerance w.tol). If
w=NULL (the default), no checking of weight aggregation is performed.

max.lvl integer specifying the maximum depth or deepest COICOP level allowed. If
NULL (the default), the deepest level found in id is used.

settings a list of control settings to be used. The following settings are supported:

• coicop.version : the COICOP version to be used when checking for
valid COICOP codes. See coicop for the allowed values. The default is
getOption("hicp.coicop.version").

• unbundle : logical indicating if COICOP bundles (e.g. 08X, 0531_2) as de-
fined in coicop.bundles should be taken into account or not. The default
is getOption("hicp.unbundle").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").

• w.tol : numeric tolerance for checking of weights. Only relevant in case w
is not NULL. The default is 1/100.

Value

A logical vector of the same length as id.

Author(s)

Sebastian Weinand

See Also

unbundle, child

Examples

### EXAMPLE 1

# flag lowest possible level to be used as COICOP tree:
tree(id=c("01","011","012"), w=NULL) # true
tree(id=c("01","011","012"), w=c(0.2,0.08,0.12)) # true, weights add up
tree(id=c("01","011","012"), w=c(0.2,0.08,0.10)) # false, weights do not add up

# set maximum (or deepest) coicop level to 3:
tree(id=c("01","011","012","0111","0112","01121"),

w=c(0.2,0.08,0.12,0.02,0.06,0.06),
max.lvl=3)



countries 9

# maximum level=3, but weights do not add up:
tree(id=c("01","011","012","0111","0112","01121"),

w=c(0.2,0.08,0.07,0.02,0.06,0.06),
max.lvl=3)

# coicop bundles:
tree(id=c("08","081","082_083"), w=c(0.25,0.05,0.2))
tree(id=c("08","081","082_083"), w=c(0.25,0.05,0.2), settings=list(unbundle=FALSE))

# merge (or fix) coicop tree over time:
tree(id=c("08","081","082","08"), by=c(1,1,1,2))

### EXAMPLE 2

# set cores for testing on CRAN:
library(restatapi)
options(restatapi_cores=1)
library(data.table)

# load hicp item weights:
coicops <- hicp.dataimport(

id="prc_hicp_inw",
filter=list(geo=c("EA","DE","FR")),
date.range=c("2005", NA))

coicops <- coicops[grepl("^CP", coicop),]
coicops[, "coicop":=gsub("^CP", "", coicop)]

# derive seperate trees for each time period and country:
coicops[, "t1" := tree(id=coicop, w=values, settings=list(w.tol=0.1)), by=c("geo","time")]
coicops[t1==TRUE,

list("n"=uniqueN(coicop), # varying coicops over time and space
"w"=sum(values, na.rm=TRUE)), # weight sums should equal 1000

by=c("geo","time")]

# derive merged trees over time, but not across countries:
coicops[, "t2" := tree(id=coicop, by=time, w=values, settings=list(w.tol=0.1)), by="geo"]
coicops[t2==TRUE,

list("n"=uniqueN(coicop), # same selection over time in a country
"w"=sum(values, na.rm=TRUE)), # weight sums should equal 1000

by=c("geo","time")]

# derive merged trees over countries and time:
coicops[, "t3" := tree(id=coicop, by=paste(geo,time), w=values, settings=list(w.tol=0.1))]
coicops[t3==TRUE,

list("n"=uniqueN(coicop), # same selection over time and across countries
"w"=sum(values, na.rm=TRUE)), # weight sums should equal 1000

by=c("geo","time")]

countries Country metadata



10 hicp.data

Description

This dataset contains metadata for the euro area, EU, EFTA, and candidate countries that sub-
mit(ted) HICP data on a regular basis.

Usage

# country metadata:
countries

Format

A data.table with metadata on the individual euro area (EA), EU, EFTA, and candidate countries
producing the HICP.

• code: the country code

• name_[en|fr|de]: the country name in English, French, and German

• protocol_order: the official protocol order of countries

• is_eu, is_ea, is_efta, is_candidate: a logical indicating if a country belongs to the EU,
the euro area, or if it’s an EFTA or candidate country, respectively

• eu_since, eu_until: date of joining and leaving the European Union

• ea_since: the date of introduction of the euro as the official currency

• index_decimals: the number of index decimals used for dissemination

Author(s)

Sebastian Weinand

Examples

# subset to euro area countries:
countries[is_ea==TRUE, ]

hicp.data Download HICP data

Description

These functions are simple wrappers of functions in the restatapi package. Function hicp.datasets()
lists all available HICP datasets in Eurostat’s public database, while hicp.datafilters() gives the
allowed values that can be used for filtering a dataset. hicp.dataimport() downloads a specific
dataset with filtering on key parameters and time, if supplied.



hicp.data 11

Usage

hicp.datasets()

hicp.datafilters(id)

hicp.dataimport(id, filters=list(), date.range=NULL, flags=FALSE)

Arguments

id A dataset identifier, which can be obtained from hicp.datasets().

filters A named list of filters to be applied to the data request. Allowed values for
filtering can be retrieved from hicp.datafilters(). For HICP data, typical
filter variables are the index reference period (unit: I96, I05, I15), the coun-
try (geo: EA, DE, FR,...), or the COICOP code (coicop: CP00, CP01, SERV,
...).

date.range A vector of start and end date used for filtering on time dimension. These must
follow the pattern YYYY(-MM)?. An open interval can be defined by setting one
date to NA.

flags A logical indicating if data flags should be returned or not.

Value

A data.table.

Author(s)

Sebastian Weinand

Source

See Eurostat’s public database at https://ec.europa.eu/eurostat/web/main/data/database.

See Also

get_eurostat_toc, get_eurostat_dsd, get_eurostat_data

Examples

# set cores for testing on CRAN:
library(restatapi)
options(restatapi_cores=1)

# view available datasets:
hicp.datasets()

# get allowed filters for item weights:
hicp.datafilters(id="prc_hicp_inw")

# download item weights for euro area from 2015 on:
hicp.dataimport(id="prc_hicp_inw", filters=list("geo"="EA"), date.range=c("2015", NA))

https://ec.europa.eu/eurostat/web/main/data/database


12 index.aggregation

index.aggregation Index number functions and aggregation

Description

Lower-level price relatives or price indices can be aggregated into higher-level indices in a sin-
gle step using one of the bilateral index number methods listed below. Function aggregate()
uses these bilateral indices (or others defined by the user) for step-wise aggregation of lower-level
subindices into the overall index following the COICOP hierarchy.

Usage

# bilateral price indices:
jevons(x, w0=NULL, wt=NULL)
carli(x, w0=NULL, wt=NULL)
harmonic(x, w0=NULL, wt=NULL)
laspeyres(x, w0, wt=NULL)
paasche(x, w0=NULL, wt)
fisher(x, w0, wt)
toernqvist(x, w0, wt)
walsh(x, w0, wt)

# step-wise index aggregation:
aggregate(x, w0, wt, grp, index=laspeyres, add=list(), settings=list())

Arguments

x numeric vector of price relatives obtained by unchaining some HICP index se-
ries.

w0, wt numeric vector of weights in the base period w0 (e.g., for the Laspeyres index)
or current period wt (e.g., for the Paasche index), respectively.

grp grouping variable to be used. These must be valid COICOP codes according to
is.coicop().

index a function or named list of functions specifying the index formula used for ag-
gregation. Each function must have arguments x, w0 and wt, even if w0 and/or
wt are not used (this can be indicated by setting this argument to NULL). Each
function must return a scalar. The default is index=laspeyres since the HICP
is calculated as a Laspeyres-type index.

add a named list of user-defined aggregates to be calculated. Each list element is a
vector of ids that can be found in grp. See settings$add.exact for further
specification of this argument.

settings A list of control settings to be used. The following settings are supported:

• keep.lowest : logical indicating if the lowest-level indices that form the
base of all aggregation steps should be kept in the function output. The
default is TRUE.



index.aggregation 13

• add.exact : logical indicating if the ids in add must all be present in grp
for aggregation or not. If FALSE, aggregation is carried out using the avail-
able ids in add. If TRUE and some ids are missing in add, NA is returned.
The default is TRUE.

• coicop.version : the COICOP version to be used when checking for
valid COICOP codes. See coicop for the allowed values. The default is
getOption("hicp.coicop.version").

• unbundle : logical indicating if COICOP bundles (e.g. 08X, 0531_2) as de-
fined in coicop.bundles should be taken into account or not. The default
is getOption("hicp.unbundle").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").

Details

The price indices currently available use price relatives x. The Dutot index is therefore not imple-
mented.

The functions jevons(), carli(), and harmonic() do not make use of any weights in the cal-
culations. However, they are implemented in a way such that the weights w0 are considered, that
is, elements in x where the weight w0 is NA are excluded from the calculations. This mimics the
behavior of the weighted index functions like laspeyres() and can be useful in situations where
indices are present but the weight is missing. If, for example, subindices are newly introduced, the
index in December is usually set to 100 while the weight of this subindex is not available. The
subindex’s value in December can thus be excluded by using the weights w0 also in the unweighted
price indices.

Value

Functions jevons(), carli(), harmonic(), laspeyres(), paasche(), fisher(), toernqvist(),
and walsh() return a single (aggregated) value.

Function aggregate() returns a data.table of aggregated values at each grp-level with the fol-
lowing variables:

grp character the grouping variable
is_aggregated logical is the value an aggregate (TRUE) or not (FALSE); column available if settings$keep.lowest=TRUE
w0, wt numeric sum of weights w0 and wt; columns available if weights were provided
index numeric aggregates for each index function

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, https://data.europa.
eu/doi/10.2785/055028.

https://data.europa.eu/doi/10.2785/055028
https://data.europa.eu/doi/10.2785/055028


14 index.aggregation

See Also

unchain, chain, rebase

Examples

library(data.table)

### EXAMPLE 1

# data for two times periods:
dt <- data.table(

"time"=rep(1:2, each=5),
"coicop"=rep(c("01111","01112","0112","0113","021"), times=2),
"price"=c(105,103,102,99,120, 105,104,110,98,125),
"weight"=rep(c(0.05,0.15,0.3,0.2,0.3), times=2),
"weight_lag"=rep(c(0.03,0.12,0.33,0.2,0.32), times=2))

# aggregate directly to overall index:
dt[, laspeyres(x=price, w0=weight), by="time"]

# gives identical results at top level as with stepwise
# aggregation through all coicop levels:
dt[, aggregate(x=price, w0=weight, grp=coicop, index=laspeyres), by="time"]

# this is no longer the case for the superlative indices as shown
# here for the walsh index:
dt[, walsh(x=price, w0=weight, wt=weight_lag), by="time"]
dt[, aggregate(x=price, w0=weight, wt=weight_lag, grp=coicop, index=walsh), by="time"]

# see also for example Auer and Wengenroth (2017, p. 2)

# apply user-defined function:
dt[, aggregate(x=price, w0=weight, grp=coicop,

index=list("carli"=function(x,w0=NULL,wt=NULL) mean(x))),
by="time"]

# add additional, user-defined aggregates (e.g. special aggregates):
dt[, aggregate(x=price, w0=weight, grp=coicop,

add=list("FOOD"=c("01111","021"), "MISS"=c("021","09"))),
by="time"]

# aggregate 'MISS' is computed if settings$add.exact=FALSE:
dt[, aggregate(x=price, w0=weight, grp=coicop,

add=list("FOOD"=c("01111","021"), "MISS"=c("021","09")),
settings=list("add.exact"=FALSE)),

by="time"]

### EXAMPLE 2: Index aggregation using published HICP data

# set cores for testing on CRAN:
library(restatapi)
options(restatapi_cores=1)



index.aggregation 15

# import monthly price indices:
prc <- hicp.dataimport(id="prc_hicp_midx", filter=list(unit="I15", geo="EA"))
prc[, "time":=as.Date(paste0(time, "-01"))]
prc[, "year":=as.integer(format(time, "%Y"))]
setnames(x=prc, old="values", new="index")

# unchaining indices:
prc[, "dec_ratio" := unchain(x=index, t=time), by="coicop"]

# import item weights:
inw <- hicp.dataimport(id="prc_hicp_inw", filter=list(geo="EA"))
inw[, "time":=as.integer(time)]
setnames(x=inw, old=c("time","values"), new=c("year","weight"))

# derive coicop tree:
inw[grepl("^CP",coicop),

"tree":=tree(id=gsub("^CP","",coicop), w=weight, settings=list(w.tol=0.1)),
by=c("geo","year")]

# except for rounding, we receive total weight of 1000 in each period:
inw[tree==TRUE, sum(weight), by="year"]

# merge price indices and item weights:
hicp.data <- merge(x=prc, y=inw, by=c("geo","coicop","year"), all.x=TRUE)
hicp.data <- hicp.data[year <= year(Sys.Date())-1 & grepl("^CP\\d+", coicop),]
hicp.data[, "coicop" := gsub(pattern="^CP", replacement="", x=coicop)]

# compute all-items HICP:
hicp.own <- hicp.data[tree==TRUE,

list("laspey"=laspeyres(x=dec_ratio, w0=weight)),
by="time"]

setorderv(x=hicp.own, cols="time")
hicp.own[, "chain_laspey" := chain(x=laspey, t=time, by=12)]
hicp.own[, "chain_laspey_15" := rebase(x=chain_laspey, t=time, t.ref="2015")]

# add published all-items HICP for comparison:
hicp.own <- merge(

x=hicp.own,
y=hicp.data[coicop=="00", list(time, index)],
by="time",
all.x=TRUE)

plot(index-chain_laspey_15~time, data=hicp.own, type="l")
head(hicp.own[abs(index-chain_laspey_15)>0.1,])

# compute all-items HICP stepwise through all higher-levels:
hicp.own.all <- hicp.data[, aggregate(x=dec_ratio, w0=weight, grp=coicop, index=laspeyres),

by="time"]
setorderv(x=hicp.own.all, cols="time")
hicp.own.all[, "chain_laspey" := chain(x=laspeyres, t=time, by=12), by="grp"]
hicp.own.all[, "chain_laspey_15" := rebase(x=chain_laspey, t=time, t.ref="2015"), by="grp"]

# add published indices for compariosn:



16 linking

hicp.own.all <- merge(
x=hicp.own.all,
y=hicp.data[, list(time,"grp"=coicop,index,weight)],
by=c("time","grp"),
all.x=TRUE)

hicp.own.all[, "diff" := index-chain_laspey_15]
head(hicp.own.all[abs(diff)>0.1,])
head(hicp.own.all[abs(w0-weight)>0.1,])

# compare all-items HICP from direct and step-wise aggregation:
agg.comp <- merge(

x=hicp.own.all[grp=="00", list(time, "index_stpwse"=chain_laspey_15)],
y=hicp.own[, list(time, "index_direct"=chain_laspey_15)],
by="time")

# no differences -> consistent in aggregation:
head(agg.comp[abs(index_stpwse-index_direct)>1e-4,])

linking Linking-in new index series

Description

Function link() links a new index series to an existing one by an overlap period supplied. In the
resulting linked index series, the new index series starts after the existing one. Function lsf()
computes the level-shift factors for linking via the overlap periods in t.overlap. The level-shift
factors can be applied to an index series that has already been linked by the standard HICP one-
month overlap method using December of year t-1.

Usage

link(x, x.new, t, t.overlap=NULL)

lsf(x, x.new, t, t.overlap=NULL)

Arguments

x, x.new numeric vector of index values. NA-values in the vectors indicate when the index
series discontinues (for x) or starts (for x.new).

t date vector

t.overlap character specifying the overlap period to be used. Could be a whole year (YYYY)
or a single year-month (YYYY-MM). Multiple periods can be provided. If NULL,
all available overlap periods are considered.

Value

Function link() returns a numeric vector or a matrix of the same length as t, while lsf() provides
a named numeric vector of the same length as t.overlap.



linking 17

Author(s)

Sebastian Weinand

See Also

chain

Examples

# input data:
set.seed(1)
t <- seq.Date(from=as.Date("2015-01-01"), to=as.Date("2024-05-01"), by="1 month")
x.new <- rnorm(n=length(t), mean=100, sd=5)
x.new <- rebase(x=x.new, t=t, t.ref="2019-12")
x.old <- x.new + rnorm(n=length(x.new), sd=5)
x.old <- rebase(x=x.old, t=t, t.ref="2015")
x.old[t>as.Date("2021-12-01")] <- NA # current index discontinues in 2021
x.new[t<as.Date("2020-01-01")] <- NA # new index starts in 2019-12

# linking in new index in different periods:
plot(x=t, y=link(x=x.old, x.new=x.new, t=t, t.overlap="2021-12"),

col="red", type="l", xlab=NA, ylab="Index", ylim=c(80,120))
lines(x=t, y=link(x=x.old, x.new=x.new, t=t, t.overlap="2020"), col="blue")
lines(x=t, y=link(x=x.old, x.new=x.new, t=t, t.overlap="2021"), col="green")
lines(x=t, y=x.old, col="black")
abline(v=as.Date("2021-12-01"), lty="dashed")
legend(x="topleft",

legend=c("One-month overlap using December 2021",
"Annual overlap using 2021",
"Annual overlap using 2020"),

fill=c("red","green","blue"), bty = "n")

# compute level-shift factors:
lsf(x=x.old, x.new=x.new, t=t, t.overlap=c("2020","2021"))

# level-shift factors can be applied to already chain-linked index series
# to obtain linked series using another overlap period:
x.new.chained <- link(x=x.old, x.new=x.new, t=t, t.overlap="2021-12")

# level-shift adjustment:
x.new.adj <- ifelse(test=t>as.Date("2021-12-01"),

yes=x.new.chained*lsf(x=x.old, x.new=x.new, t=t, t.overlap="2020"),
no=x.new.chained)

# compare:
all.equal(x.new.adj, link(x=x.old, x.new=x.new, t=t, t.overlap="2020"))



18 rates

rates Change rates and contributions

Description

Function rates() computes monthly, annual and annual average rates of change for an index series.
Function contrib() computes the contributions of a subcomponent to the annual change rate of
the overall index.

Usage

rates(x, t=NULL, type="monthly")

contrib(x, w, t, x.all, w.all, method="ribe")

Arguments

x, x.all numeric vector of index values.

w, w.all numeric vector of weights of the subcomponent (w) and the overall index (w.all).

t date vector.

type character specifying the type of change rate. Allowed values are monthly for
monthly change rates, annual for annual change rates, and annual-average
for annual average change rates.

method character specifying the method used for the calculations. Allowed values are
ribe and kirchner.

Value

For rates(), a numeric vector of the same length as x if type='monthly' or type='annual'. If
type='annual-average', same length as years available.

For contrib(), a numeric vector of the same length as x.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, https://data.europa.
eu/doi/10.2785/055028.

https://data.europa.eu/doi/10.2785/055028
https://data.europa.eu/doi/10.2785/055028


rates 19

Examples

### EXAMPLE 1

P <- rnorm(n=25,mean=100,sd=5)
t <- seq.Date(from=as.Date("2021-01-01"), by="1 month", length.out=length(P))

rates(x=P, type="monthly")
rates(x=P, type="annual")
rates(x=P, type="annual-average")
rates(x=P, t=t, type="annual-average")

### EXAMPLE 2: Contributions using published HICP data

# set cores for testing on CRAN:
library(restatapi)
options(restatapi_cores=1)
library(data.table)

# import monthly price indices:
prc <- hicp.dataimport(id="prc_hicp_midx", filter=list(unit="I15", geo="EA"))
prc[, "time":=as.Date(paste0(time, "-01"))]
prc[, "year":=as.integer(format(time, "%Y"))]
setnames(x=prc, old="values", new="index")

# import item weights:
inw <- hicp.dataimport(id="prc_hicp_inw", filter=list(geo="EA"))
inw[, "time":=as.integer(time)]
setnames(x=inw, old=c("time","values"), new=c("year","weight"))

# merge price indices and item weights:
hicp.data <- merge(x=prc, y=inw, by=c("geo","coicop","year"), all.x=TRUE)

# add all-items hicp:
hicp.data <- merge(x=hicp.data,

y=hicp.data[coicop=="CP00", list(geo,time,index,weight)],
by=c("geo","time"), all.x=TRUE, suffixes=c("","_all"))

# ribe decomposition:
hicp.data[, "ribe" := contrib(x=index, w=weight, t=time,

x.all=index_all, w.all=weight_all), by="coicop"]

# annual change rates over time:
plot(rates(x=index, t=time, type="annual")~time,

data=hicp.data[coicop=="CP00",],
type="l", ylim=c(-2,12))

# add contribution of energy:
lines(ribe~time, data=hicp.data[coicop=="NRG"], col="red")

# compare to published contributions:
hicp.ctrb <- hicp.dataimport(id="prc_hicp_ctrb")
hicp.ctrb[, "time":=as.Date(paste0(time, "-01"))]



20 spec.aggs

dt.comp <- merge(x=hicp.ctrb,
y=hicp.data[, list(coicop, time, ribe)],
by=c("coicop","time"),
all=TRUE)

head(dt.comp[!is.na(values) & abs(values-ribe)>0.1, ]) # should be empty

spec.aggs Special aggregates

Description

This dataset contains the special aggregates and their composition of COICOP codes valid since
2017.

Usage

# special aggregates:
spec.aggs

Format

A data.table with the following variables.

• code: the special aggregate code

• name_[en|fr|de]: the special aggregate description in English, French, and German

• composition: a list of the COICOP product codes forming the special aggregate

Author(s)

Sebastian Weinand

Examples

# subset to services:
spec.aggs[code=="SERV", composition[[1]]]



Index

aggregate, 2, 3
aggregate (index.aggregation), 12

carli (index.aggregation), 12
chain, 14, 17
chain (chaining), 2
chaining, 2
child, 8
child (coicop), 4
coicop, 4, 8, 13
coicop.bundles, 5, 6, 8, 13
coicop.tree, 7
contrib (rates), 18
convert (chaining), 2
countries, 9

fisher (index.aggregation), 12

get_eurostat_data, 11
get_eurostat_dsd, 11
get_eurostat_toc, 11

harmonic (index.aggregation), 12
hicp.data, 10
hicp.datafilters (hicp.data), 10
hicp.dataimport (hicp.data), 10
hicp.datasets (hicp.data), 10

index.aggregation, 12
is.bundle (coicop.bundles), 6
is.coicop (coicop), 4

jevons (index.aggregation), 12

laspeyres (index.aggregation), 12
level (coicop), 4
link (linking), 16
linking, 16
lsf (linking), 16

paasche (index.aggregation), 12

parent (coicop), 4

rates, 18
rebase, 14
rebase (chaining), 2

spec.aggs, 20

toernqvist (index.aggregation), 12
tree, 5
tree (coicop.tree), 7

unbundle, 5, 8
unbundle (coicop.bundles), 6
unchain, 14
unchain (chaining), 2

walsh (index.aggregation), 12

21


	chaining
	coicop
	coicop.bundles
	coicop.tree
	countries
	hicp.data
	index.aggregation
	linking
	rates
	spec.aggs
	Index

