Package 'highs’

May 16, 2023
Type Package
Title 'HiGHS' Optimization Solver
Version 0.1-10
Description R interface to 'HiGHS', an optimization solver for solving mixed integer optimization problems with quadratic or linear objective and linear constraints.

License GPL (>=2)
Imports Rcpp (>= 1.0.7), checkmate
SystemRequirements Bash, PkgConfig, CMAKE (>=3.16), C++11
URL https://gitlab.com/roigrp/solver/highs

BugReports https://gitlab.com/roigrp/solver/highs/-/issues
Suggests tinytest

Biarch FALSE

LinkingTo Rcpp
RoxygenNote 7.2.1
Encoding UTF-8
NeedsCompilation yes
Author Florian Schwendinger [aut, cre],
Dirk Schumacher [aut],
Julian Hall [cph],
Ivet Galabova [cph],
Leona Gottwald [cph],
Michael Feldmeier [cph]
Maintainer Florian Schwendinger FlorianSchwendinger@gmx.at
Repository CRAN
Date/Publication 2023-05-16 15:30:02 UTC

R topics documented:

highs_available_solver_options 2
highs_control 2
highs_model 3
highs_solve 4
highs_solver 6
Index 8
highs_available_solver_options
Available Solver Options

Description

Reference for the available solver options.

Usage

highs_available_solver_options()

Value

A data. frame containing the available solver options.

Examples

highs_available_solver_options()
highs_control Highs Control

Description

Highs Control

Usage

highs_control(threads = 1L, time_limit = Inf, log_to_console = FALSE, ...)

Arguments

threads an integer giving the number of threads to be used.
time_limit a double giving the time limit.
log_to_console a logical giving if the output should be shown in the console.
... other arguments supported by the HiGHS solver.

Examples

```
    control <- highs_control()
```

highs_model Create a Highs Model

Description

Solve linear and quadratic mixed integer optimization problems.

Usage

```
highs_model(
        Q = NULL,
        L,
        lower,
        upper,
        A,
        lhs,
        rhs,
        types,
        maximum = FALSE,
        offset = 0
)
```


Arguments

Q
L
lower a numeric vector giving the lower bounds of the variables.
upper a numeric vector giving the upper bounds of the variables.
A a numeric matrix giving the linear part of the constraints. Rows are constraints, and columns are decision variables.
lhs a numeric vector giving the left hand-side of the linear constraints.
rhs a numeric vector giving the right hand-side of the linear constraints.
types a integer vector or character vector giving the variable types. 'C' or '1' for continuous, 'I' or '2' for integer, 'SC' or '3' for semi continuous, 'SI' or ' 4 ' for semi integer and 'II ' or ' 5 ' for implicit integer.
maximum a logical if TRUE the solver searches for a maximum, if FALSE the solver searches for a minimum.
offset a numeric value giving the offset (default is 0).

Value

A an object of class highs_model.

Examples

```
library("highs")
\# Minimize:
\# x_0 + x_1 + 3
\# Subject to:
\# \(\quad\) x_1 \(<=7\)
\# \(5<=x_{-} 0+2 x_{-} 1<=15\)
\# \(6<=3 x_{-} 0+2 x_{-} 1\)
\# \(0<=x \_0<=4\)
\# \(1<=\) x_1
\(A<-\operatorname{rbind}(c(0,1), c(1,2), c(3,2))\)
\(\mathrm{m}<-\operatorname{highs}\) model \((\mathrm{L}=\mathrm{c}(1.0,1)\), lower \(=\mathrm{c}(0,1)\), upper \(=\mathrm{c}(4\), Inf \()\),
    \(A=A, \operatorname{lhs}=c(-\operatorname{Inf}, 5,6), r h s=c(7,15, \operatorname{Inf})\),
    offset \(=3\) )
m
\# Minimize:
\# -x_2 - \(3 x \_3+(1 / 2) *\left(2 x_{-} 1^{\wedge} 2-2 x_{-} 1 x \_3+0.2 x_{-} 2^{\wedge} 2+2 x_{-} 3^{\wedge} 2\right)\)
\# Subject to:
\# x_1 + x_3 <= 2
\# \(0<=x\)
\(\mathrm{L}<-\mathrm{c}(0,-1,-3)\)
\(Q<-\operatorname{rbind}(c(2,0.0,-1), c(0,0.2,0), c(-1,0.0,2))\)
\(\mathrm{A}<-\operatorname{cbind}(1,0,1)\)
\(\mathrm{m}<-\) highs_model \((\mathrm{Q}=\mathrm{Q}, \mathrm{L}=\mathrm{L}\), lower \(=0, \mathrm{~A}=\mathrm{A}, \mathrm{rhs}=2)\)
m
```

highs_solve

Solve an Optimization Problems

Description

Solve linear and quadratic mixed integer optimization problems.

Usage

```
highs_solve(
    Q = NULL,
    L,
    lower,
    upper,
    A,
    lhs,
    rhs,
    types,
    maximum = FALSE,
    offset = 0,
    control = highs_control()
)
```


Arguments

Q
L
lower a numeric vector giving the lower bounds of the variables.
upper a numeric vector giving the upper bounds of the variables.
A a numeric matrix giving the linear part of the constraints. Rows are constraints, and columns are decision variables.
lhs a numeric vector giving the left hand-side of the linear constraints.
rhs a numeric vector giving the right hand-side of the linear constraints.
types a integer vector or character vector giving the variable types. 'C' or '1' for continuous, 'I' or '2' for integer, 'SC' or '3' for semi continuous, 'SI' or ' 4 ' for semi integer and 'II' or ' 5 ' for implicit integer.
maximum a logical if TRUE the solver searches for a maximum, if FALSE the solver searches for a minimum.
offset a numeric value giving the offset (default is 0).
control a list giving additional options for the solver, see highs_available_solver_options or the README file for a list of all available options.

Value

A list containing the result provided by the solver, containing the following named objects:
primal_solution a numeric vector giving the primal solution.
objective_value a numeric giving the objective value.
status an integer giving the status code
status_message a character string giving the status message (explanation of the status_code).
solver_msg a list giving the original (not canonicalized) solver message.
info a list giving additional information provided by the solver.
Additional information on can be found in the README file.

Examples

```
library("highs")
\# Minimize:
\# x_0 + x_1 + 3
\# Subject to:
\# x_1 <= 7
\# \(5<=\) x_0 + 2x_1 <= 15
\# \(6<=3 x-0+2 x \_1\)
\# \(0<=x_{-} 0<=4\)
\# \(1<=x_{-} 1\)
A <- rbind(c(0, 1), \(c(1,2), c(3,2))\)
\(\mathrm{s}<-\) highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
```

```
    A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
    offset = 3)
```

s[["objective_value"]]
s[["primal_solution"]]
\# Minimize:
\# -x_2 - 3x_3 + (1/2) * (2 x_1^2 - 2 x_1x_3 + 0.2 x_2^2 + 2 x_3^2) $^{\text {2 }}$
\# Subject to:
\# x_1 + x_3 <= 2
\# 0 <= x
$\mathrm{L}<-\mathrm{c}(0,-1,-3)$
$\mathrm{Q}<-\operatorname{rbind}(c(2,0.0,-1), c(0,0.2,0), c(-1,0.0,2))$
A <- cbind(1, 0, 1)
s <- highs_solve (Q = Q, L = L, lower = 0, A = A, rhs = 2)
s[["objective_value"]]
s[["primal_solution"]]
highs_solver Highs Solver

Description

Create a wrapper around the HiGHS solver. Manly usefull if one wants a low level wrapper around highs with hot-start capabilities.

Usage

highs_solver(model, control = highs_control())

Arguments

model an object of class "highs_model" created with highs_model().
control an object of class "highs_control" created with highs_control().

Details

Methods

The following methods are provided by the "highs_solver" class.

- solve(...) method to be called to solve the optimization problem. Returns an integer giving the status code returned by HiGHS.
- status() method to obtain the status from the solver.
- status_message() method to obtain the status message from the solver.
- solution() method to obtain the solution from the solver.
- info() info to obtain addtional information from the solver.
- $L(i, v)$ method to get and set the linear part of the objective.
- $A(i, j, v)$ method to get and set the constraint matrix coefficients.
- cbounds(i, lhs, rhs) method to get and set the constraint bounds (left hand-side and right hand-side).
- types (i, v) method to get and set the variable types.
- vbounds(i, lower, upper) method to get and set the variable bounds.
- maximum(maximize) method to get and set the sense of the problem.

Method arguments

- . . . optional control arguments, which can be used to alter the options set via the control argument when initializing the solver.
- i a vector of integers giving the index (vector index or row index) of the coeficcients to be altered.
- j a vector of integers giving the index (column index) of the coeficcients to be altered.
- v a vector of doubles giving the values of the coeficcients to be altered.
- lhs a vector of doubles giving left hand-side.
- rhs a vector of doubles giving right hand-side.
- lower a vector of doubles giving the lower bounds to be altered.
- upper a vector of doubles giving the upper bounds to be altered.

Value

an object of class "highs_solver".

Examples

```
A <- rbind(c(0, 1), c(1, 2), c(3, 2))
m <- highs_model(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
    A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
    offset = 3)
solver <- highs_solver(m)
```


Index

highs_available_solver_options, 2, 5
highs_control, 2
highs_model, 3
highs_solve, 4
highs_solver, 6

