Package ‘junco’

January 15, 2026

Title Create Common Tables and Listings Used in Clinical Trials
Version 0.1.3
Date 2026-01-12

Description Structure and formatting requirements for clinical trial table and listing outputs
vary between pharmaceutical companies. 'junco’ provides additional tooling for use alongside
the 'rtables’, 'rlistings' and 'tern' packages when creating table and listing outputs. While
motivated by the specifics of Johnson and Johnson Clinical and Statistical Programming's
table and listing shells, 'junco' provides functionality that is general and reusable.
Major features include a) alternative and extended statistical analyses beyond what 'tern’
supports for use in standard safety and efficacy tables, b) a robust production-grade
Rich Text Format (RTF) exporter for both tables and listings, c) structural support
for spanning column headers and risk difference columns in tables, and d) robust
font-aware automatic column width algorithms for both listings and tables.

License Apache License (>=2)

URL https://github.com/johnsonandjohnson/junco,
https://johnsonandjohnson.github.io/junco/

BugReports https://github.com/johnsonandjohnson/junco/issues
Depends R (>= 4.4), formatters (>= 0.5.12), rtables (>= 0.6.15)

Imports tidytlg (>= 0.11.0), tern (>= 0.9.10), rlistings (>= 0.2.13),
checkmate (>= 2.1.0), broom, methods, dplyr, generics, stats,
survival, tibble, utils, emmeans, mmrm, assertthat, vcdExtra
(>=0.8.7), rtables.officer (>= 0.1.0), flextable, officer,
xml2, ggplot2, stringi, systemfonts

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, forcats (>= 1.0.0), testthat (>= 3.0.0),

mockery, mvtnorm, parallel, readx], rlang, rbmi (>= 1.3.0),
tidyr, pharmaverseadamjnj (>= 0.0.2)

VignetteBuilder knitr
Config/testthat/edition 3

https://github.com/johnsonandjohnson/junco
https://johnsonandjohnson.github.io/junco/
https://github.com/johnsonandjohnson/junco/issues

Additional_repositories https://insightsengineering.r-universe.dev/
NeedsCompilation no

Author Gabriel Becker [cre, aut] (Original creator of the package, and author

of included formatters functions),

Ilse Augustyns [aut],

Paul Jenkins [aut],

Daniel Hofstaedter [aut],

Joseph Kovach [aut],

David Munoz Tord [aut],

Daniel Sabanes Bove [aut],

Ezequiel Anokian [ctb],

Renfei Mao [ctb],

Mrinal Das [ctb],

Wojciech Wojciak [ctb],

Isaac Gravestock [cph] (Author of included rbmi functions),

Joe Zhu [cph] (Author of included tern and rtables.officer functions),

Johnson & Johnson Innovative Medicine [cph, fnd],

F. Hoffmann-La Roche AG [cph] (Copyright holder of included formatters,
rtables.officer and tern functions)

Maintainer Gabriel Becker <gabembecker@gmail .com>
Repository CRAN
Date/Publication 2026-01-15 09:10:03 UTC

Contents

analyze_values L
a_eairl00_j e
a_freq_combos_j
afreqj
a_freq resp_var_j
a_freq_subcol_j
amaxlev e e e e
a_proportion_ci_factor
a_proportion_ci_logical
arelative_risk
a_SUMMATIZE_ANCOVA_] « « « « v v v v v e e e e et e e e e e e e
a_summarize_aval_chg diff j
A_SUMMATIZE_€X_J -« « v v v v v v e e e e e e e e e e e e e e
A WO _LIET o e e e e e
DSPE_pruner e e e
build formula
check_wrap_nobreak
CMhImMS e e e e e
cmp_cfun
cmp_post_fun
column_Stats e e

Contents

https://insightsengineering.r-universe.dev/

Contents

3
cond_rm_facets e e 57
count and fraction related formatting functions 0oL L. 59
COUNE_PIUNCT . « . v v v v v et e et e e e e e e e e e e e e e e e e e e 61
coxph_hr 62
Create_Colspan_map o v v v v e e e e e e e e e e e e 65
Create_colspan_varo e e e e e e 67
c_proportion_logical Lo 68
do_exclude_split e e 69
event_free e e 70
eXPort_as_dOCX_j oo 72
export_graph_as_docx 75
find_missing_chg_after_avisit Lo oL 76
it ancova s, 77
fitmmrm_j e 78
get_mmrm_Ismeans e e e e e 81
get_ref info L 82
get_titles_from_file 84
get_visit_levels e e 85
h_get trtvar_refpath L 85
h_oodds_ratio 86
INChes_to_Spaces o o i i e e 87
insert_blank_line 88
jjesformat XX L 89
jies_num_formats oLl e 91
jjl_complex_scorefun e e 92
keep_non_null_rows oL 95
listing_column_widths 96
make_combo_splitfun. oo 98
make_rbmi_cluster e e e e e 99
odds_ratio e e 100
par_lapply 103
prop_diff e e 104
prop_diff test L 107
prop_post_fun 109
prop_ratio_cmh e 110
prop_table_afun 111
rbmi_analyse e e 111
rbmi_ancova. L 116
rbmi_ancova_single L e e e 118
rbmi_mmrm L e 119
rbmi_mmrm_single_info oo 121
tbmi_pool e e e e 121
real_add_overall_facet 122
remove_col count. e e e 123
TEMOVE_TOWS © o v v v v v e e e e e e e e e e e e e e e 124
respOl_acfun oL 125
respOl_a_comp_stat_factor 127

respOl_a_comp_stat_logical o 128

4 analyze_values
respOl_counts_cfun L e 130
respOl_split_fun_fct L 131
TESPONSE_DY_Var e e e 132
rm_levels . . . e 134
rm_other_facets_fact 134
safe_prune_table e 135
SEL_ILleS e e e e e 136
summarize_coxreg_multivar oL e 136
summarize_lIsmeans_ wide, 137
SUMMArIZE _MMIT . . . v v v v e v e e e e e e e e e e e e e e e e e s s 139
SUMMATIZE_TOW_COUNES . .+ v v v v vt e e e e e e e e e e e e e e e e 141
S_ANCOVA] '+ v v v v v e 142
s_proportion_factor e e e e 144
s_proportion_logical L 145
tabulate_lsmeans L e 146
tabulate_rbmi e 149
theme_docx_default_j. e 151
tt_to_flextable_j L e 152
tt_to_tbldf e e 154
tt_to_tlgrtf L 155

Index 158

analyze_values Shortcut Layout Function for Standard Continuous Variable Analysis

Description

Shortcut Layout Function for Standard Continuous Variable Analysis
Usage
analyze_values(lyt, vars, ..., formats)
Arguments
1yt (layout)
input layout where analyses will be added to.
vars (character)
variable names for the primary analysis variable to be iterated over.
additional arguments for the lower level functions.
formats (list)
formats including mean_sd, median and range specifications.
Value

Modified layout.

a_eairl00_j

a_eair100_j Exposure-Adjusted Incidence Rate

Description

Statistical/Analysis Function for presenting Exposure-Adjusted Incidence Rate summary data

Usage

a_eairl100_j(
df,
labelstr = NULL,
.var,
.df_row,
.spl_context,
.alt_df_full = NULL,
id = "USUBJID",
drop_levels = FALSE,
riskdiff = TRUE,
ref_path = NULL,
.stats = c("eair"),
.formats = NULL,
.labels = NULL,
.indent_mods = NULL,
na_str = rep("NA", 3),
conf_level = 0.95,

fup_var,
occ_var,
occ_dy
)
Arguments
df (data.frame)
data set containing all analysis variables.
labelstr (string)
label string for the row.
.var (string)
variable name for analysis.
.df_row (data.frame)

data frame across all of the columns for the given row split.

.spl_context (data.frame)
gives information about ancestor split states.

.alt_df_full (dataframe)
denominator dataset for calculations.

id

drop_levels

riskdiff

ref_path

.Stats

.formats

.labels

.indent_mods

na_str

conf_level

fup_var

occ_var

occ_dy

Value

(string)

subject variable name.

(logical)

if TRUE, non-observed levels will not be included.
(logical)

if TRUE, risk difference calculations will be performed.

(string)
column path specifications for the control group.

(character)
statistics to select for the table.

(named ’character’ or ’list’)
formats for the statistics.

(named ’character’)
labels for the statistics.

(named integer)
indent modifiers for the labels.

(string)
string used to replace all NA or empty values in the output.

(proportion)
confidence level of the interval.

(string)
variable name for follow-up time.

(string)
variable name for occurrence.

(string)
variable name for occurrence day.

a_eairl00_j

* a_eair100_j returns the corresponding list with formatted rtables: :CellValue().

Functions

* a_eair100_j(): Formatted analysis function for exposure adjusted incidence rate summary
which is used as afun in analyze or cfun in summarize_row_groups.

Examples

library(tern)
library(dplyr)
trtvar <- "ARM"

ctrl_grp <- "B: Placebo”
cutoffd <- as.Date("2023-09-24")

adexsum <- ex_adsl |>

a_eairl00_j 7

create_colspan_var(

non_active_grp = ctrl_grp,
non_active_grp_span_lbl = " ",
active_grp_span_lbl = "Active Study Agent”,
colspan_var = "colspan_trt”,
trt_var = trtvar

) 1>

mutate(

rrisk_header = "Risk Difference (95% CI)",
rrisk_label = paste(!!rlang::sym(trtvar), "vs"”, ctrl_grp),
TRTDURY = case_when(
lis.na(EOSDY) ~ EOSDY,
TRUE ~ as.integer(cutoffd - as.Date(TRTSDTM) + 1)
)
) 1>
select(USUBJID, !!rlang::sym(trtvar), colspan_trt, rrisk_header, rrisk_label, TRTDURY)

adexsum$TRTDURY <- as.numeric(adexsum$TRTDURY)

adae <- ex_adae |>
group_by(USUBJID, AEDECOD) |>
select(USUBJID, AEDECOD, ASTDY) |>
mutate(rwnum = row_number()) |>
mutate (AOCCPFL = case_when(
rwnum == 1 ~ "Y",
TRUE ~ NA

)) 1>
filter (AOCCPFL == "Y")

aefup <- left_join(adae, adexsum, by = "USUBJID")

colspan_trt_map <- create_colspan_map(adexsum,
non_active_grp = ctrl_grp,
non_active_grp_span_lbl =
active_grp_span_lbl = "Active Study Agent”,
colspan_var = "colspan_trt",
trt_var = trtvar

)

non

non

ref_path <- c("colspan_trt”, , trtvar, ctrl_grp)
S
Define layout and build table:

pisi s S S S S S S S S S S S S S S R S S S S S ss

lyt <- basic_table(show_colcounts = TRUE, colcount_format = "N=xx", top_level_section_div="") |>

split_cols_by("colspan_trt", split_fun = trim_levels_to_map(map = colspan_trt_map)) |>
split_cols_by(trtvar) |>
split_cols_by("rrisk_header”, nested = FALSE) |>
split_cols_by(trtvar, labels_var = "rrisk_label"”, split_fun = remove_split_levels(ctrl_grp)) |>
analyze("TRTDURY",

nested = FALSE,

show_labels = "hidden"”,

8 a_freq_combos_j

afun = a_patyrs_j
E
analyze(
vars = "AEDECOD",
nested = FALSE,
afun = a_eair100_j,
extra_args = list(
fup_var = "TRTDURY",
occ_var = "AOCCPFL",
occ_dy = "ASTDY",
ref_path = ref_path,
drop_levels = TRUE
)
)

result <- build_table(lyt, aefup, alt_counts_df = adexsum)
head(result, 5)

a_freq_combos_j Analysis function count and percentage in column design controlled
by combosdf

Description

Analysis function count and percentage in column design controlled by combosdf

Usage
a_freg_combos_j(
df,
labelstr = NULL,
.var = NA,
val = NULL,

combosdf = NULL,
do_not_filter = NULL,
filter_var = NULL,
flag_var = NULL,
.df_row,
.spl_context,

.N_col,

id = "USUBJID",

denom = c("N_col”, "n_df", "n_altdf”, "n_rowdf”, "n_parentdf”),
label = NULL,
label_fstr = NULL,
label_map = NULL,
.alt_df_full = NULL,
denom_by = NULL,

a_freq_combos_j 9

.stats = "count_unique_denom_fraction”,
.formats = NULL,

.labels_n = NULL,

.indent_mods = NULL,

na_str = rep("NA", 3)

)
Arguments

df (data.frame)
data set containing all analysis variables.

labelstr (character)
label of the level of the parent split currently being summarized (must be present
as second argument in Content Row Functions). See rtables: : summarize_row_groups()
for more information.

.var (string)
single variable name that is passed by rtables when requested by a statistics
function.

val (character or NULL)
When NULL, all levels of the incoming variable (variable used in the analyze
call) will be considered.
When a single string, only that current level/value of the incoming variable
will be considered.
When multiple levels, only those levels/values of the incoming variable will be
considered.
When no values are observed (eg zero row input df), a row with row-label
No data reported will be included in the table.

combosdf The df which provides the mapping of column facets to produce cumulative

counts for .N_col.

In the cell facet, these cumulative records must then be removed from the numer-
ator, which can be done via the filter_var parameter to avoid unwanted counting
of events.

do_not_filter A vector of facets (i.e., column headers), identifying headers for which no filter-
ing of records should occur. That is, the numerator should contain cumulative
counts. Generally, this will be used for a "Total" column, or something similar.

filter_var The variable which identifies the records to count in the numerator for any given
column. Generally, this will contain text matching the column header for the
column associated with a given record.

flag_var Variable which identifies the occurrence (or first occurrence) of an event. The
flag variable is expected to have a value of "Y" identifying that the event should
be counted, or NA otherwise.

.df_row (data.frame)
data frame across all of the columns for the given row split.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

10

.N_col

id

denom

label

label_fstr

label_map

.alt_df_full

a_freq_combos_j

(integer)
column-wise N (column count) for the full column being analyzed that is typi-
cally passed by rtables.

(string)
subject variable name.

(string)
One of

¢ N_col Column count,
* n_df Number of patients (based upon the main input dataframe df),

 n_altdf Number of patients from the secondary dataframe (.alt_df_full),
Note that argument denom_by will perform a row-split on the .alt_df_full
dataframe.
It is a requirement that variables specified in denom_by are part of the row
split specifications.

* n_rowdf Number of patients from the current row-level dataframe (. row_df
from the rtables splitting machinery).

* n_parentdf Number of patients from a higher row-level split than the cur-
rent split.
This higher row-level split is specified in the argument denom_by.

(string)

When val has length 1, the row label to be shown on the output can be specified
using this argument.

When val is a character vector, the label_map argument can be specified
to control the row-labels.

(string)

a sprintf style format string. It can contain up to one "%s", which takes the cur-
rent split value and generates the row/column label.

It will be combined with the 1abelstr argument, when utilizing this function
as a cfun in a summarize_row_groups call.

It is recommended not to utilize this argument for other purposes. The label
argument could be used instead (if val is a single string)

(tibble)
A mapping tibble to translate levels from the incoming variable into a different
row label to be presented on the table.

(dataframe)
Denominator dataset for fraction and relative risk calculations.

this argument gets populated by the rtables split machinery (see rtables::additional_fun_params).

a_freq_combos_j 11

denom_by (character)
Variables from row-split to be used in the denominator derivation.
This controls both denom = "n_parentdf” and denom = "n_altdf".
When denom = "n_altdf"”, the denominator is derived from .alt_df_full in
combination with denom_by argument

.stats (character)
statistics to select for the table.

.formats (named ’character’ or ’list’)
formats for the statistics.

.labels_n (named character)
String to control row labels for the 'n’-statistics.
Only useful when more than one “n’-statistic is requested (rare situations only).

.indent_mods (named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

na_str (string)
string used to replace all NA or empty values in the output.

Value

list of requested statistics with formatted rtables: :CellValue().

Examples

library(dplyr)
ADSL <- ex_adsl |> select(USUBJID, ARM, EOSSTT, EOSDT, EOSDY, TRTSDTM)

cutoffd <- as.Date("2023-09-24")

ADSL <- ADSL |>
mutate(
TRTDURY = case_when(
lis.na(EOSDY) ~ EOSDY,
TRUE ~ as.integer(cutoffd - as.Date(TRTSDTM) + 1)
)
) 1>
mutate(ACAT1 = case_when(
TRTDURY < 183 ~ "0-6 Months",
TRTDURY < 366 ~ "6-12 Months",
TRUE ~ "+12 Months"”
)) 1>
mutate(ACAT1 = factor(ACAT1, levels = c("0-6 Months”, "6-12 Months”, "+12 Months")))

ADAE <- ex_adae |> select(USUBJID, ARM, AEBODSYS, AEDECOD, ASTDY)

ADAE <- ADAE |>
mutate (TRTEMFL = "Y") |>
mutate(ACAT1 = case_when(

12 a_freq_j

ASTDY < 183 ~ "@-6 Months",
ASTDY < 366 ~ "6-12 Months”,
TRUE ~ "+12 Months"”
D) 1>
mutate(ACAT1 = factor(ACAT1, levels = c("0-6 Months”, "6-12 Months”, "+12 Months")))

combodf <- tribble(
~valname, ~label, ~levelcombo, ~exargs,
"Tot"”, "Total”, c("0-6 Months"”, "6-12 Months"”, "+12 Months"), list(),
"A_0-6 Months"”, "@-6 Months”, c("@-6 Months", "6-12 Months”, "+12 Months"), list(),
"B_6-12 Months”, "6-12 Months"”, c("6-12 Months”, "+12 Months"), list(),
"C_+12 Months"”, "+12 Months", c("+12 Months"), list()

lyt <- basic_table(show_colcounts = TRUE) |>
split_cols_by("ARM") |>
split_cols_by("ACAT1",
split_fun = add_combo_levels(combosdf = combodf, trim = FALSE, keep_levels = combodf$valname)
) 1>
analyze("TRTEMFL",
show_labels = "hidden”,
afun = a_freg_combos_j,
extra_args = list(
val = "Y",
label = "Subjects with >= 1 AE",
combosdf = combodf,
filter_var = "ACAT1",
do_not_filter = "Tot”

result <- build_table(lyt, df = ADAE, alt_counts_df = ADSL)

result
a_freq_j Analysis/statistical function for count and percentage in core columns
and (optional) relative risk columns
Description

Analysis/statistical function for count and percentage in core columns and (optional) relative risk
columns

Usage

s_freqg_j(
df,

a_freq_j 13

.var,
.df_row,
val = NULL,
drop_levels
excl_levels
alt_df,
parent_df,
id = "USUBJID",

denom = c("n_df", "n_altdf"”, "N_col”, "n_rowdf”, "n_parentdf”),
.N_col,

countsource = c("df", "altdf")

)

FALSE,
NULL,

a_freq_j(
df,
labelstr = NULL,
.var = NA,
val = NULL,
drop_levels = FALSE,
excl_levels = NULL,
new_levels = NULL,
new_levels_after = FALSE,
addstr2levs = NULL,
.df_row,
.spl_context,
.N_col,
id = "USUBJID",
denom = c("N_col”, "n_df"”, "n_altdf”, "N_colgroup”, "n_rowdf”, "n_parentdf"),
riskdiff = TRUE,
ref_path = NULL,
variables = list(strata = NULL),
conf_level = 0.95,
method = c("wald”, "waldcc”, "cmh”, "ha", "newcombe”, "newcombecc”, "strat_newcombe"”,
"strat_newcombecc"),
weights_method = "cmh"”,
label = NULL,
label_fstr = NULL,
label_map = NULL,
.alt_df_full = NULL,
denom_by = NULL,
.stats = c("count_unique_denom_fraction"),
.formats = NULL,
.indent_mods = NULL,
na_str = rep("NA", 3),
.labels_n = NULL,
extrablankline = FALSE,
extrablanklineafter = NULL,
restr_columns = NULL,

14

a_freq_j

colgroup = NULL,
countsource = c("df", "altdf")

)

a_freq_j_with_exclude(

df,
labelstr =

NULL,

exclude_levels,

.var = NA,

.spl_context,

.df_row,
.N_col,
.alt_df_full

= NULL,

.stats = "count_unique_denom_fraction”,

.formats =
.indent_mods

NULL,
= NULL,

.labels_n = NULL,

Arguments

df

.var

.df _row

val

drop_levels

excl_levels

(data.frame)
data set containing all analysis variables.

(string)
single variable name that is passed by rtables when requested by a statistics
function.

(data.frame)
data frame across all of the columns for the given row split.

(character or NULL)

When NULL, all levels of the incoming variable (variable used in the analyze
call) will be considered.

When a single string, only that current level/value of the incoming variable
will be considered.

When multiple levels, only those levels/values of the incoming variable will be
considered.

When no values are observed (eg zero row input df), a row with row-label
No data reported will be included in the table.

(logical)
If TRUE non-observed levels (based upon .df_row) will not be included.
Cannot be used together with val.

(character or NULL)

When NULL, no levels of the incoming variable (variable used in the analyze
call) will be excluded.

When multiple levels, those levels/values of the incoming variable will be ex-
cluded.

Cannot be used together with val.

a_freq_j 15

alt_df (dataframe)
Will be derived based upon alt_df_full and denom_by within a_freq_j.

parent_df (dataframe)
Will be derived within a_freq_j based upon the input dataframe that goes into
build_table (df) and denom_by.
It is a data frame in the higher row-space than the current input df (which under-
went row-splitting by the rtables splitting machinery).

id (string)
subject variable name.

denom (string)
See Details.

.N_col (integer)
column-wise N (column count) for the full column being analyzed that is typi-
cally passed by rtables.

countsource Either df or alt_df.
When alt_df the counts will be based upon the alternative dataframe alt_df.
This is useful for subgroup processing, to present counts of subjects in a sub-
group from the alternative dataframe.

labelstr An argument to ensure this function can be used as a cfun in a summarize_row_groups
call.
It is recommended not to utilize this argument for other purposes.
The label argument could be used instead (if val is a single string)
An another approach could be to utilize the 1abel_map argument to control the
row labels of the incoming analysis variable.

new_levels (list(2) or NULL)
List of length 2.
First element : names of the new levels
Second element: list with values of the new levels.

new_levels_after
(logical)
If TRUE new levels will be added after last level.

addstr2levs string, if not NULL will be appended to the rowlabel for that level, eg to add ",n
(percent)" at the end of the rowlabels

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.
riskdiff (logical)
When TRUE, risk difference calculations will be performed and presented (if re-
quired risk difference column splits are included).
When FALSE, risk difference columns will remain blank (if required risk differ-
ence column splits are included).
ref_path (string)
Column path specifications for the control group for the relative risk derivation.

variables Will be passed onto the relative risk function (internal function s_rel_risk_val_j),
which is based upon tern: :s_proportion_diff().
See ?tern::s_proportion_diff for details.

a_freq_j

conf_level (proportion)
confidence level of the interval.

method Will be passed onto the relative risk function (internal function s_rel_risk_val_j).
weights_method Will be passed onto the relative risk function (internal function s_rel_risk_val_j).

label (string)
When val has length 1, the row label to be shown on the output can be specified
using this argument.
When val is a character vector, the label_map argument can be specified
to control the row-labels.

label_fstr (string)
a sprintf style format string. It can contain up to one "%s", which takes the cur-
rent split value and generates the row/column label.
It will be combined with the 1labelstr argument, when utilizing this function
as a cfun in a summarize_row_groups call.
It is recommended not to utilize this argument for other purposes. The label
argument could be used instead (if val is a single string)

label_map (tibble)
A mapping tibble to translate levels from the incoming variable into a different
row label to be presented on the table.

.alt_df_full (dataframe)
Denominator dataset for fraction and relative risk calculations.
this argument gets populated by the rtables split machinery (see rtables::additional_fun_params).

denom_by (character)
Variables from row-split to be used in the denominator derivation.
This controls both denom = "n_parentdf” and denom = "n_altdf".
When denom = "n_altdf"”, the denominator is derived from .alt_df_full in
combination with denom_by argument

.stats (character)
statistics to select for the table. See Value for list of available statistics.

.formats (named ’character’ or ’list’)
formats for the statistics.

.indent_mods (named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

na_str (string)
string used to replace all NA or empty values in the output.

.labels_n (named character)
String to control row labels for the n’-statistics.
Only useful when more than one ’n’-statistic is requested (rare situations only).

extrablankline (logical)
When TRUE, an extra blank line will be added after the last value.

a_freq_j

17

Avoid using this in template scripts, use section_div =
rtables is available)

instead (once PR for

extrablanklineafter

restr_columns

colgroup

exclude_levels

Details

(string)
When the row-label matches the string, an extra blank line will be added after
that value.

character
If not NULL, columns not defined in restr_columns will be blanked out.

The name of the column group variable that is used as source for denominator
calculation.

Required to be specified when denom = "N_colgroup”.

(list)

A named list where names correspond to split variables and values are vectors
of levels to exclude.

additional arguments for the lower level functions.

denom controls the denominator used to calculate proportions/percents. It must be one of

Value

N_col Column count,

n_df Number of patients (based upon the main input dataframe df),

n_altdf Number of patients from the secondary dataframe (.alt_df_full),
Note that argument denom_by will perform a row-split on the .alt_df_full dataframe.
It is a requirement that variables specified in denom_by are part of the row split specifications.

N_colgroup Number of patients from the column group variable (note that this is based upon
the input .alt_df_full dataframe).

Note that the argument colgroup (column variable) needs to be provided, as it cannot be
retrieved directly from the column layout definition.

n_rowdf Number of patients from the current row-level dataframe (. row_df from the rtables
splitting machinery).

n_parentdf Number of patients from a higher row-level split than the current split.
This higher row-level split is specified in the argument denom_by.

s_freq_j: returns a list of following statistics

18 a_freq_j

n_rowdf

n_parentdf
n_altdf
denom

— count

count_unique

count_unique_fraction

count_unique_denom_fraction

* a_freq_j: returns a list of requested statistics with formatted rtables: :CellValue().
Within the relative risk difference columns, the following stats are blanked out:

— any of the n-statistics (n_df, n_altdf, n_parentdf, n_rowdf, denom)
— count
— count_unique

For the others (count_unique_fraction, count_unique_denom_fraction), the statistic is replaced
by the relative risk difference + confidence interval.

Functions

* a_freq_j_with_exclude(): Wrapper for the afun which can exclude row split levels from
producing the analysis. These have to be specified in the exclude_levels argument, see
?do_exclude_split for details.

Examples

library(dplyr)

adsl <- ex_adsl |> select("USUBJID", "SEX", "ARM")
adae <- ex_adae |> select("USUBJID", "AEBODSYS", "AEDECOD")
adae[["TRTEMFL"]] <- "Y"

trtvar <- "ARM"

ctrl_grp <- "B: Placebo”

adsl$colspan_trt <- factor(ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
levels = c("Active Study Agent”, " ")

)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs"”, ctrl_grp))

adae <- adae |> left_join(adsl)

colspan_trt_map <- create_colspan_map(adsl,
non_active_grp = "B: Placebo”,
non_active_grp_span_lbl = " ",
active_grp_span_lbl = "Active Study Agent”,
colspan_var = "colspan_trt"”,

trt_var = trtvar

a_freq_j 19

non

ref_path <- c("colspan_trt”, , trtvar, ctrl_grp)
lyt <- basic_table(show_colcounts = TRUE) [>
split_cols_by("colspan_trt”, split_fun = trim_levels_to_map(map = colspan_trt_map)) |>
split_cols_by(trtvar) |>
split_cols_by("rrisk_header"”, nested = FALSE) |>
split_cols_by(trtvar, labels_var = "rrisk_label”, split_fun = remove_split_levels(ctrl_grp))

1ytl <- 1yt |>
analyze("TRTEMFL",
show_labels = "hidden",
afun = a_freq_j,
extra_args = list(
method = "wald”,
.stats = c("count_unique_denom_fraction"),
ref_path = ref_path
)
)

resultl <- build_table(lyt1, adae, alt_counts_df = adsl)

resultl

x_drug_x <- list(length(unique(subset(adae, adae[[trtvar]] == "A: Drug X")[["USUBJID"11)))
N_x_drug_x <- length(unique(subset(adsl, adsl[[trtvar]] == "A: Drug X")[["USUBJID"]11))
y_placebo <- list(length(unique(subset(adae, adae[[trtvar]] == ctrl_grp)[["USUBJID"11)))
N_y_placebo <- length(unique(subset(adsl, adsl[[trtvar]] == ctrl_grp)[["USUBJID"]]))

tern::stat_propdiff_ci(
X = x_drug_x,

N_x = N_x_drug_x,
y = y_placebo,
N_y = N_y_placebo

)

x_combo <- list(length(unique(subset(adae, adae[[trtvar]] == "C: Combination”)[["USUBJID"]11)))
N_x_combo <- length(unique(subset(adsl, adsl[[trtvar]] == "C: Combination”)[["USUBJID"11))

tern::stat_propdiff_ci(
X = x_combo,
N_x = N_x_combo,
y = y_placebo,
N_y = N_y_placebo
)

extra_args_rr <- list(
denom = "n_altdf",
denom_by = "SEX",
riskdiff = FALSE,
.stats = c("count_unique")

)

a_freq_j

extra_args_rr2 <- list(
denom = "n_altdf",
denom_by = "SEX",
riskdiff = TRUE,
ref_path = ref_path,
method = "wald”,
.stats = c("count_unique_denom_fraction”),
na_str = rep("NA", 3)

lyt2 <- basic_table(
top_level_section_div =
colcount_format = "N=xx"
E
split_cols_by("colspan_trt”, split_fun = trim_levels_to_map(map = colspan_trt_map)) |>
split_cols_by(trtvar, show_colcounts = TRUE) |>
split_cols_by("rrisk_header”, nested = FALSE) |>
split_cols_by(trtvar,

non

labels_var = "rrisk_label”, split_fun = remove_split_levels("B: Placebo"),
show_colcounts = FALSE
) 1>

split_rows_by("SEX", split_fun = drop_split_levels) |>
summarize_row_groups("”SEX",
cfun = a_freq_j,
extra_args = append(extra_args_rr, list(label_fstr = "Gender: %s"))
) 1>
split_rows_by("TRTEMFL",
split_fun = keep_split_levels("Y"),
indent_mod = -1L,
section_div = c(" ")
) 1>
summarize_row_groups("TRTEMFL",
cfun = a_freq_j,
extra_args = append(extra_args_rr2, list(
label =
"Subjects with >=1 AE", extrablankline = TRUE
))
) 1>
split_rows_by("AEBODSYS",
split_label = "System Organ Class”,
split_fun = trim_levels_in_group("AEDECOD"),
label_pos = "topleft”,
section_div = c(" "),
nested = TRUE
) 1>
summarize_row_groups ("AEBODSYS",
cfun = a_freq_j,
extra_args = extra_args_rr2
) 1>
analyze("AEDECOD",
afun = a_freq_j,
extra_args = extra_args_rr2

a_freq_resp_var_j 21

)

result2 <- build_table(lyt2, adae, alt_counts_df = adsl)

a_freq_resp_var_j Analysis Function for Response Variables

Description

This function calculates counts and percentages for response variables (Y/N values), with optional
risk difference calculations.

Usage

a_freqg_resp_var_j(
df,
.var,
.df_row,
.N_col,
.spl_context,
resp_var = NULL,
id = "USUBJID",
drop_levels = FALSE,
riskdiff = TRUE,
ref_path = NULL,
variables = formals(s_proportion_diff)$variables,
conf_level = formals(s_proportion_diff)$conf_level,
method = c("wald”, "waldcc”, "cmh”, "ha", "newcombe”, "newcombecc”, "strat_newcombe”,
"strat_newcombecc"),
weights_method = formals(s_proportion_diff)$weights_method,

)
Arguments
df (data.frame)
data set containing all analysis variables.
.var (string)
variable name that is passed by rtables.
.df_row (data.frame)
data frame across all of the columns for the given row split.
.N_col (integer)

column-wise N (column count) for the full column being analyzed.

.spl_context (data.frame)
gives information about ancestor split states.

22 a_freq_resp_var_j

resp_var (string)
response variable name containing Y/N values.

id (string)
subject variable name.

drop_levels (logical)
if TRUE, non-observed levels will not be included.

riskdiff (logical)
if TRUE, risk difference calculations will be performed.

ref_path (string)
column path specifications for the control group.

variables (list)
variables to include in the analysis.

conf_level (proportion)
confidence level of the interval.

method (character)
method for calculating confidence intervals.

weights_method (character)
method for calculating weights.

Additional arguments passed to other functions.

Value

Formatted analysis function which is used as afun in analyze_vars() and as cfun in summarize_row_groups().

Examples

library(dplyr)
ADSL <- ex_adsl |> select(USUBJID, ARM, SEX)

ADAE <- ex_adae |> select(USUBJID, ARM, SEX, AEBODSYS, AEDECOD)

ADAE <- ADAE |>
mutate(TRTEMFL = "Y")

lyt <- basic_table(show_colcounts = TRUE) |>
split_cols_by("ARM") |>
analyze("SEX",
show_labels = "visible”,
afun = a_freqg_resp_var_j,
extra_args = list(resp_var = "TRTEMFL", riskdiff = FALSE)
)

result <- build_table(lyt, df = ADAE, alt_counts_df = ADSL)

result

a_freq_subcol_j 23

a_freq_subcol_j Analysis function count and percentage with extra column-subsetting
in selected columns (controlled by subcol_* arguments)

Description

Analysis function count and percentage with extra column-subsetting in selected columns (con-
trolled by subcol_* arguments)

Usage
a_freqg_subcol_j(
df,
labelstr = NULL,
.var = NA,
val = NULL,

subcol_split = NULL,

subcol_var = NULL,

subcol_val = NULL,

.df_row,

.spl_context,

.N_col,

id = "USUBJID",

denom = c("N_col”, "n_df", "n_altdf”, "n_rowdf”, "n_parentdf”),
label = NULL,

label_fstr = NULL,

label_map = NULL,

.alt_df_full = NULL,

denom_by = NULL,

.stats = c("count_unique_denom_fraction"),
.formats = NULL,

.labels_n = NULL,

.indent_mods = NULL,

na_str = rep("NA", 3)

)
Arguments

df (data.frame)
data set containing all analysis variables.

labelstr (character)
label of the level of the parent split currently being summarized (must be present
as second argument in Content Row Functions). See rtables: : summarize_row_groups()
for more information.

.var (string)

single variable name that is passed by rtables when requested by a statistics
function.

24

val

subcol_split

subcol_var

subcol_val

.df _row

.spl_context

.N_col

id

denom

a_freq_subcol_j

(character or NULL)

When NULL, all levels of the incoming variable (variable used in the analyze
call) will be considered.

When a single string, only that current level/value of the incoming variable
will be considered.

When multiple levels, only those levels/values of the incoming variable will be
considered.

When no values are observed (eg zero row input df), a row with row-label
No data reported will be included in the table.

(string)
text to search colid to determine whether further subsetting should be performed.

(string)
name of variable containing to be searched for the text identified in subcol_val
argument.

(string)
value to use to perform further data sub-setting.

(data.frame)
data frame across all of the columns for the given row split.

(data.frame)
gives information about ancestor split states that is passed by rtables.

(integer)
column-wise N (column count) for the full column being analyzed that is typi-
cally passed by rtables.

(string)
subject variable name.

(string)
One of

¢ N_col Column count,
¢ n_df Number of patients (based upon the main input dataframe df),

 n_altdf Number of patients from the secondary dataframe (.alt_df_full),
Note that argument denom_by will perform a row-split on the .alt_df_full
dataframe.
It is a requirement that variables specified in denom_by are part of the row
split specifications.

* n_rowdf Number of patients from the current row-level dataframe (. row_df
from the rtables splitting machinery).

* n_parentdf Number of patients from a higher row-level split than the cur-
rent split.
This higher row-level split is specified in the argument denom_by.

a_freq_subcol_j 25

label (string)
When val has length 1, the row label to be shown on the output can be specified
using this argument.
When val is a character vector, the label_map argument can be specified
to control the row-labels.

label_fstr (string)
a sprintf style format string. It can contain up to one "%s", which takes the cur-
rent split value and generates the row/column label.
It will be combined with the labelstr argument, when utilizing this function
as a cfun in a summarize_row_groups call.
It is recommended not to utilize this argument for other purposes. The label
argument could be used instead (if val is a single string)

label_map (tibble)
A mapping tibble to translate levels from the incoming variable into a different
row label to be presented on the table.

.alt_df_full (dataframe)
Denominator dataset for fraction and relative risk calculations.
this argument gets populated by the rtables split machinery (see rtables::additional_fun_params).

denom_by (character)
Variables from row-split to be used in the denominator derivation.
This controls both denom = "n_parentdf” and denom = "n_altdf".
When denom = "n_altdf"”, the denominator is derived from .alt_df_full in
combination with denom_by argument

.stats (character)
statistics to select for the table.

.formats (named ’character’ or ’list’)
formats for the statistics.

.labels_n (named character)
String to control row labels for the 'n’-statistics.
Only useful when more than one "n’-statistic is requested (rare situations only).

.indent_mods (named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

na_str (string)
string used to replace all NA or empty values in the output.

Value

list of requested statistics with formatted rtables: :CellValue().

Examples

library(dplyr)

26 a_maxlev

ADSL <- ex_adsl [>
select (USUBJID, ARM)

ADSL$COLSPAN_REL <- "AEs”

ADAE <- ex_adae |>
select (USUBJID, ARM, AEDECOD, AREL)

ADAE <- ADAE [>

mutate(
AEREL = case_when(
AREL == "Y" ~ "RELATED",
AREL == "N" ~ "NOT RELATED”
),

AEREL = factor(AEREL),
COLSPAN_REL = "AEs"

)

combodf <- tribble(
~valname, ~label, ~levelcombo, ~exargs,
"RELATED", "Related AEs", c("AEs"), list()

)

lyt <- basic_table(show_colcounts = TRUE) |>
split_cols_by("COLSPAN_REL", split_fun = add_combo_levels(combodf, trim = TRUE)) |>
split_cols_by("ARM") |>
analyze ("AEDECOD",
afun = a_freg_subcol_j,
extra_args = list(
subcol_split = "RELATED",
subcol_var = "AEREL",
subcol_val "RELATED"

)

)

result <- build_table(lyt, ADAE, alt_counts_df = ADSL)

result
a_maxlev Calculate Count and Percentage of the Maximum Level of an Ordered
Factor per Subject.
Description

A formatted analysis function used as an afun in analyze and as a cfun in summarize_row_groups.

It computes count and proportion statistics for the maximum level of an ordered factor, df [[.var]],
for each unique subject in df [[id]]. Specifically, for each subject, the function identifies the high-
est level of df [[. var]], producing one value per subject. Then, if any_level = TRUE, the function

a_maxlev 27

reports the total number of maximum values, excluding those specified in any_level_exclude.
Otherwise, it tabulates the frequency of each maximum level across all subjects.

This function is particularly useful for identifying the maximum severity of adverse events in a
treatment sequence, where the most severe event experienced by a subject is used for reporting.

Usage
a_maxlev(
df,
labelstr = NULL,
.var,
.spl_context,
id = "USUBJID",

.alt_df_full = NULL,
any_level = FALSE,
any_level_exclude = "Missing",

Arguments

df (data.frame)
data set containing all analysis variables.

labelstr (character)
label of the level of the parent split currently being summarized (must be present
as second argument in Content Row Functions). See rtables: : summarize_row_groups()
for more information.

.var (string)
single variable name that is passed by rtables when requested by a statistics
function.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

id (string)
subject variable name.

.alt_df_full (dataframe)
A dataset used to compute the denominator for proportions. This is required
when the same subject appears multiple times in the dataset due to treatment
sequences. colnames(.alt_df_full) must be a superset of id. This argument
gets populated by the rtables split machinery (see rtables::additional_fun_params).

any_level (flag)
Should be set to TRUE when the function is used as a cfun.
any_level_exclude
(character)
Applicable only when any_level = TRUE. Specifies levels of df[[.var]] to
exclude from the statistic (default = "Missing").

additional arguments for the lower level functions.

28 a_maxlev

Details
For each unique subject, only the maximum level of the ordered factor df[[.var]] is included in
the final count and percentage statistics.

Value

A RowsVerticalSection object.

Note

The denominator for proportions is computed using the denom_df argument. This serves as a tem-
porary workaround until the next version of rtables is released, which will support . alt_count_df
for use in afun/cfun.

Examples
treatments <- factor(c(”a"”, "b", "c"))
ae_severities <- c("Missing”, "Mild"”, "Moderate”", "Severe")

ae_severities <- ordered(ae_severities, levels = ae_severities)
my_adae <- data.frame(
ID=c(1, 1,1, 2,2, 3,3, 3,3, 4),
TRT = factor(c("a", "b", "b", "b", "c", "c", "a", "c", "b", "b")),
AESEV = ae_severities[c(4L, 1L, 2L, 1L, 2L, 1L, 2L, 3L, 1L, 2L)]
)
my_adsl <- data.frame(
ID = rep(1:5, each = 3),
TRT = factor(rep(c(”a”, "b", "c"), times = 5))
)

aesevall_spf <- make_combo_splitfun(
nm = "AESEV_ALL",
label = "Any AE",
levels = NULL,

)

lyt <- basic_table() |>
split_cols_by("TRT") |>
add_overall_col("Total") [|>
split_rows_by("AESEV", split_fun = aesevall_spf) |>
summarize_row_groups(
"AESEV",
cfun = a_maxlev,
extra_args = list(id = "ID", any_level = TRUE)

) 1>
analyze(
"AESEV",

afun = a_maxlev,
extra_args = list(id = "ID")
)
build_table(lyt, my_adae, alt_counts_df = my_adsl)

a_proportion_ci_factor 29

a_proportion_ci_factor
Formatted Analysis Function For Proportion Confidence Interval for
Factor

Description

Formatted Analysis Function For Proportion Confidence Interval for Factor.

Usage
a_proportion_ci_factor(df, .var, ...)
Arguments
df (data.frame)
including factor .var.
.var (string)
name of the factor variable.
see a_proportion_ci_logical() for additionally required arguments.
Value

The rtables: :rcell() result.

Examples

a_proportion_ci_factor(

df = DM,
.var = "SEX",
.alt_df = DM,

conf_level = 0.95,
formats = list(prop_ci = jjcsformat_xx("xx.x%, xx.x%")),
method = "clopper-pearson”

)

a_proportion_ci_logical
Formatted Analysis Function For Proportion Confidence Interval for
Logical

Description

Formatted Analysis Function For Proportion Confidence Interval for Logical.

30 a_relative_risk

Usage

a_proportion_ci_logical(x, .alt_df, conf_level, method, formats)

Arguments
X (logical)
including binary response values.
.alt_df (data.frame)
alternative data frame used for denominator calculation.
conf_level (numeric)
confidence level for the confidence interval.
method (string)
please see tern: :s_proportion() for possible methods.
formats (list)
including element prop_ci with the required format. Note that the value is in
percent already.
Value

The rtables: :rcell() result.

Examples

a_proportion_ci_logical(
x = DM$SEX == "F",
.alt_df = DM,
conf_level = 0.95,
formats = list(prop_ci = jjcsformat_xx("xx.xx% - xx.xx%")),
method = "wald”

a_relative_risk Relative risk estimation

Description

The analysis function a_relative_risk() is used to create a layout element to estimate the relative
risk for response within a studied population. Only the CMH method is available currently. The
primary analysis variable, vars, is a logical variable indicating whether a response has occurred for
each record. A stratification variable must be supplied via the strata element of the variables
argument.

a_relative_risk

Usage

a_relative_risk(

df,

.var,
ref_path,
.spl_context,

0

.stats = NULL,
.formats = NULL,
.labels = NULL,

.indent_mods

= NULL

variables = list(strata = NULL),

0.95,

weights_method = "cmh”

(data.frame)
input data frame.

(string)
name of the response variable.

)

s_relative_risk(
df,
.var,
.ref_group,
.in_ref_col,
conf_level =
method = "cmh"”,

)

Arguments

df

.var

ref_path

.spl_context

.Stats

.formats

.labels

.indent_mods

.ref_group

(character)
path to the reference group.

(environment)
split context environment.

Additional arguments passed to the statistics function.

(character)

statistics to calculate.

(list)

formats for the statistics.

(list)

labels for the statistics.

(list)

indentation modifications for the statistics.

(data.frame)
reference group data frame.

31

32 a_relative_risk

.in_ref_col (logical)
whether the current column is the reference column.

variables (list)
list with strata variable names.

conf_level (numeric)
confidence level for the confidence interval.

method (string)
method to use for relative risk calculation.

weights_method (string)
method to use for weights calculation in stratified analysis.

Details

The variance of the CMH relative risk estimate is calculated using the Greenland and Robins (1985)
variance estimation.

Value

e a_relative_risk() returns the corresponding list with formatted rtables: :CellValue().

e s_relative_risk() returns a named list of elements rel_risk_ci and pval.

Functions

e a_relative_risk(): Formatted analysis function which is used as afun. Note that the junco
specific ref_path and .spl_context arguments are used for reference column information.

* s_relative_risk(): Statistics function estimating the relative risk for response.

Note

This has been adapted from the odds_ratio functions in the tern package.

Examples

nex <- 100

dta <- data.frame(
"rsp” = sample(c(TRUE, FALSE), nex, TRUE),
"grp” = sample(c("A", "B"), nex, TRUE),
"f1" = sample(c("al”, "a2"), nex, TRUE),
"f2" = sample(c("x", "y", "z"), nex, TRUE),
stringsAsFactors = TRUE

1 <- basic_table() |>
split_cols_by(var = "grp") |>
analyze(

vars = "rsp”,

afun = a_relative_risk,

extra_args = list(
conf_level = 0.90,

a_sumimarize_ancova_j 33

variables = list(strata = "f1"),
ref_path = c("grp”, "B")
)
)

build_table(l, df = dta)

nex <- 100

dta <- data.frame(
"rsp” = sample(c(TRUE, FALSE), nex, TRUE),
"grp" = sample(c("A", "B"), nex, TRUE),
"f1" = sample(c("al”, "a2"), nex, TRUE),
"f2" = sample(c("x", "y", "z"), nex, TRUE),
stringsAsFactors = TRUE

)

s_relative_risk(
df = subset(dta, grp == "A"),
.var = "rsp”,
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
variables = list(strata = c("f1", "f2")),
conf_level = 0.90

)

a_summarize_ancova_j ANCOVA Summary Function

Description

Combination of tern::s_summary, and ANCOVA based estimates for mean and diff between columns,
based on ANCOVA function s_ancova_j.

Usage

a_summarize_ancova_j(
df,
.var,
.df_row,
ref_path,
.spl_context,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL

s_summarize_ancova_j(df, .var, .df_row, .ref_group, .in_ref_col, ...)

34 a_summarize_ancova_j

Arguments
df (data.frame)
data set containing all analysis variables.
.var (string)
single variable name that is passed by rtables when requested by a statistics
function.
.df_row (data.frame)
data set that includes all the variables that are called in .var and variables.
ref_path (character)

path to the reference group.

.spl_context (environment)
split context environment.

Additional arguments passed to s_ancova_j.

.stats (character)

statistics to calculate.
.formats (list)

formats for the statistics.
.labels (list)

labels for the statistics.

.indent_mods (list)
indentation modifications for the statistics.

.ref_group (data.frame or vector)
the data corresponding to the reference group.

.in_ref_col (flag)
TRUE when working with the reference level, FALSE otherwise.
Details
Combination of tern::s_summary, and ANCOVA based estimates for mean and diff between columns,
based on ANCOVA function s_ancova_j
Value

* a_summarize_ancova_j() returns the corresponding list with formatted rtables: :CellValue().

returns the statistics from tern: :s_summary(x), appended with a new statistics based upon AN-
COVA
Functions

* a_summarize_ancova_j(): Formatted analysis function which is used as afun. Note that
the junco specific ref_path and .spl_context arguments are used for reference column
information.

See Also

Other Inclusion of ANCOVA Functions: a_summarize_aval_chg_diff_j(), s_ancova_j()

a_sumimarize_ancova_j

Examples

basic_table() |>
split_cols_by("Species") |>
add_colcounts() |>
analyze(
vars = "Petal.Length”,
afun = a_summarize_ancova_j,
show_labels = "hidden",
na_str = tern::default_na_str(),

table_names = "unadj"”,
var_labels = "Unadjusted comparison”,
extra_args = list(
variables = list(arm = "Species"”, covariates = NULL),
conf_level = 0.95,
.labels = c(lsmean = "Mean”, lsmean_diff = "Difference in Means"),
ref_path = c("Species”, "setosa")
)
) 1>
analyze(

vars = "Petal.Length”,
afun = a_summarize_ancova_j,
show_labels = "hidden"”,
na_str = tern::default_na_str(),
table_names = "adj",
var_labels = "Adjusted comparison (covariates: Sepal.Length and Sepal.Width)",
extra_args = list(
variables = list(

arm = "Species”,
covariates = c("Sepal.Length”, "Sepal.Width")
),
conf_level = 0.95,
ref_path = c("Species”, "setosa")
)
E
build_table(iris)
library(dplyr)
library(tern)
df <- iris |> filter(Species == "virginica”)

.df_row <- iris

.var <- "Petal.Length”

variables <- list(arm = "Species”, covariates = "Sepal.Length * Sepal.Width")
.ref_group <- iris |> filter(Species == "setosa")

conf_level <- 0.95

s_summarize_ancova_j(

df,

.var = .var,

.df_row = .df_row,
variables = variables,
.ref_group = .ref_group,

.in_ref_col = FALSE,

35

36 a_summarize_aval_chg_diff j

conf_level = conf_level

)

a_summarize_aval_chg_diff_j
Analysis function 3-column presentation

Description

Analysis functions to produce a 1-row summary presented in a 3-column layout in the columns
(column 1 =N, column 2 = Value, column 3 = Change).

In the difference columns, only 1 column will be presented : difference + CI

When ancova = TRUE, the presented statistics will be based on ANCOVA method (s_summarize_ancova_j).
mean and ci (both for Value (column 2) and CHG (column 3)) using statistic 1smean_ci

mean and ci for the difference column are based on same ANCOVA model using statistic 1smean_diffci
When ancova = FALSE, descriptive statistics will be used instead.

In the difference column, the 2-sample t-test will be used.

Usage

a_summarize_aval_chg_diff_j(

df,

.df_row,

.spl_context,

ancova = FALSE,

comp_btw_group = TRUE,

ref_path = NULL,

.N_col,

denom = c("N", ".N_col"),

indatavar = NULL,

d =0,

id = "USUBJID",

interaction_y = FALSE,

interaction_item = NULL,

conf_level = 0.95,

variables = list(arm = "TRT@Q1A", covariates = NULL),

format_na_str = "",

.stats = list(coll = "count_denom_frac”, col23 = "mean_ci_3d", coldiff =
"meandiff_ci_3d"),

.formats = list(coll = NULL, col23 = "xx.dx (xx.dx, xx.dx)", coldiff =
"xx.dx (xx.dx, xx.dx)"),

.formats_fun = list(coll = jjcsformat_count_denom_fraction, col23 = jjcsformat_xx,
coldiff = jjcsformat_xx),

multivars = c("AVAL", "AVAL", "CHG")

a_summarize_aval_chg_diff_j 37

Arguments
df (data.frame)
data set containing all analysis variables.
.df_row (data.frame)

data frame across all of the columns for the given row split.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

ancova (logical)
If FALSE, only descriptive methods will be used.
If TRUE, ANCOVA methods will be used for each of the columns : AVAL,
CHG, DIFF.

comp_btw_group (logical)
If TRUE, comparison between groups will be performed.
When ancova = FALSE, the estimate of between group difference (on CHG)
will be based upon a two-sample t-test.
When ancova = TRUE, the same ANCOVA model will be used for the estimate
of between group difference (on CHG).

ref_path (character)
global reference group specification, see get_ref_info().

.N_col (integer)
column-wise N (column count) for the full column being analyzed that is typi-
cally passed by rtables.

denom (string)
choice of denominator for proportions. Options are:

* N: number of records in this column/row split.
There is no check in place that the current split only has one record per
subject. Users should be careful with this.

¢ .N_col: number of records in this column intersection (based on alt_counts_df
dataset)
(when alt_counts_df is a single record per subjects, this will match number
of subjects)

indatavar (string)
If not null, variable name to extra subset incoming df to non-missing values of
this variable.

d (default = 1)
choice of Decimal precision. Note that one extra precision will be added, as
means are presented.
Options are:

¢ numerical(1)

* variable name containing information on the precision, this variable should
be available on input dataset. The content of this variable should then be an
integer.

id (string)
subject variable name.

38

interaction_y

a_summarize_aval_chg_diff j

(character)
Will be passed onto the tern function s_ancova, when ancova = TRUE.

interaction_item

conf_level

variables

format_na_str

.stats

.formats

.formats_fun

multivars

Details

See Description

Value

(character)
Will be passed onto the tern function s_ancova, when ancova = TRUE.

(proportion)
Confidence level of the interval

(named list of strings)
list of additional analysis variables, with expected elements:

* arm (string)
group variable, for which the covariate adjusted means of multiple groups
will be summarized. Specifically, the first level of arm variable is taken as
the reference group.

e covariates (character)
a vector that can contain single variable names (such as *X1’), and/or inter-
action terms indicated by X1 * X2’.

(string)

(named list)

column statistics to select for the table. The following column names are to be
used: coll, col23, coldiff.

For col1, the following stats can be specified.

For col23, only mean_ci_3d is available. When ancova = TRUE these are LS
Means, otherwise, arithmetic means.

For coldiff, only meandiff_ci_3dis available. When ancova = TRUE these are
LS difference in means, otherwise, difference in means based upon 2-sample t-
test.

(named 1list)
formats for the column statistics. xx.d style formats can be used.

(named list)
formatting functions for the column statistics, to be applied after the conversion
of xx.d style to the appropriate precision.

(string(3))
Variables names to use in 3-col layout.

A function that can be used in an analyze function call

a_summarize_aval_chg diff j 39

See Also

S_summarize_ancova_]j

Other Inclusion of ANCOVA Functions: a_summarize_ancova_j(), s_ancova_j()

Examples

library(dplyr)

ADEG <- data.frame(
STUDYID = c(
"DUMMY", "DUMMY", "DUMMY", "DUMMY",6 "DUMMY",
"DUMMY" | "DUMMY", "DUMMY", "DUMMY",6 "DUMMY"

),
USUBJID = c(
XXXXXQ1", "XXXXXQ2", "XXXXX@3", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXXQ7", "XXXXXQ8", "XXXXXQ9", "XXXXX10"
),
TRTO1A = c(
"ARMA" | "ARMA", "ARMA", "ARMA" "ARMA", "Placebo”,
"Placebo”, "Placebo”, "ARMA", "ARMA"
),
PARAM = c("BP", "BP", "BP", "BP", "BP", "BP", "BP", "BP", "BP", "BP"),
AVISIT = c(
"Visit 1", "visit 1", "Visit 1", "Visit 1", "Visit 1",
"Visit 1", "visit 1", "visit 1", "Visit 1", "Visit 1"
),

AVAL = c(56, 78, 67, 87, 88, 93, 39, 87, 65, 55),
CHG = c(2, 3, -1, 9, -2, @, 6, -2, 5, 2)
)

ADEG <- ADEG |>
mutate(
TRTO1A = as.factor(TRTO1A),
STUDYID = as.factor(STUDYID)

)
ADEG$colspan_trt <- factor(ifelse(ADEG$TRTO1A == "Placebo”, " ", "Active Study Agent"),
levels = c("Active Study Agent”, " ")

)
ADEGS$rrisk_header <- "Risk Difference (%) (95% CI)"
ADEG$rrisk_label <- paste(ADEG$TRTQ1A, paste(”"vs", "Placebo"))

colspan_trt_map <- create_colspan_map(ADEG,
non_active_grp = "Placebo”,
non_active_grp_span_lbl = " "
active_grp_span_lbl = "Active Study Agent”,

colspan_var = "colspan_trt"”,
trt_var = "TRTQ1A"
)
ref_path <- c("colspan_trt”, " ", "TRTQT1A", "Placebo")

lyt <- basic_table() |>

40

split_cols_by(
"colspan_trt",
split_fun = trim_levels_to_map(map = colspan_trt_map)
E
split_cols_by("TRTO1A") |>
split_rows_by(
"PARAM" ,
label_pos = "topleft”,
split_label = "Blood Pressure”,
section_div = " ",
split_fun = drop_split_levels

) 1>
split_rows_by(
"AVISIT",

label_pos = "topleft”,

split_label = "Study Visit",

split_fun = drop_split_levels,

child_labels = "hidden”
) 1>
split_cols_by_multivar(

c("AVAL", "AVAL", "CHG"),

varlabels = c("n/N (%)", "Mean (CI)", "CFB (CI)")
) 1>
split_cols_by("rrisk_header”, nested = FALSE) |>
split_cols_by(

"TRTO1A",
split_fun = remove_split_levels("Placebo"),
labels_var = "rrisk_label”

) 1>

split_cols_by_multivar(c("CHG"), varlabels = c(" ")) |>
analyze("STUDYID",
afun = a_summarize_aval_chg_diff_j,
extra_args = list(
format_na_str = "-", d = 0,
ref_path = ref_path, variables = list(arm = "TRTQ1A", covariates
)
)

result <- build_table(lyt, ADEG)

result

a_summarize_ex_j

= NULL)

a_summarize_ex_j Tabulation for Exposure Tables

Description

A function to create the appropriate statistics needed for exposure table

a_summarize_ex_j 41

Usage

S

_summarize_ex_j(

df,

.var,

.df_row,
.spl_context,
comp_btw_group = TRUE,
ref_path = NULL,
ancova = FALSE,
interaction_y,
interaction_item,
conf_level,
daysconv,
variables

a_summarize_ex_j(

df,

.var,

.df_row,

.spl_context,
comp_btw_group = TRUE,
ref_path = NULL,

ancova = FALSE,
interaction_y = FALSE,
interaction_item = NULL,
conf_level = 0.95,

variables,

.stats = c("mean_sd"”, "median"”, "range", "quantiles"”, "total_subject_years"),
.formats = c(diff_mean_est_ci = jjcsformat_xx("xx.xx (xx.xx, xx.xx)")),
.labels = c(quantiles = "Interquartile range"),

.indent_mods = NULL,
na_str = rep("NA", 3),
daysconv = 1

)
Arguments

df (data.frame)
data set containing all analysis variables.

.var (string)
single variable name that is passed by rtables when requested by a statistics
function.

.df _row (data.frame)

data frame across all of the columns for the given row split.

spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

42

a_summarize_ex_j

comp_btw_group (logical)

ref_path

ancova

interaction_y

If TRUE, comparison between groups will be performed.

When ancova = FALSE, the estimate of between group difference (on CHG)
will be based upon two-sample t-test.

When ancova = TRUE, the same ANCOVA model will be used for the estimate
of between group difference (on CHG).

(character)
global reference group specification, see get_ref_info().

(logical)

If FALSE, only descriptive methods will be used.

If TRUE, ANCOVA methods will be used for each of the columns : AVAL,
CHG, DIFF.

(character)
Will be passed onto the tern function s_ancova, when ancova = TRUE.

interaction_item

conf_level

daysconv

variables

.stats

.formats

.labels

.indent_mods

na_str

(character)
Will be passed onto the tern function s_ancova, when ancova = TRUE.

(proportion)
Confidence level of the interval

(numeric)
conversion required to get the values into days (i.e 1 if original PARAMCD unit
is days, 30.4375 if original PARAMCD unit is in months)

(named list of strings)
list of additional analysis variables, with expected elements:

* arm (string)
group variable, for which the covariate adjusted means of multiple groups
will be summarized. Specifically, the first level of arm variable is taken as
the reference group.

¢ covariates (character)
a vector that can contain single variable names (such as *X1”), and/or inter-
action terms indicated by *X1 * X2’.

(character)
statistics to select for the table.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

(named character)
labels for the statistics (without indent).

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

(string)
string used to replace all NA or empty values in the output.

a_summarize_ex_j 43

Details
Creates statistics needed for standard exposure table. This includes differences and 95% CI and
total treatment years. This is designed to be used as an analysis (afun in analyze) function.

Value

* a_summarize_ex_j() returns the corresponding list with formatted rtables: :CellValue().

Functions

* s_summarize_ex_j(): Statistics function needed for the exposure tables.

* a_summarize_ex_j(): Formatted analysis function which is used as afun.

Examples

library(dplyr)
ADEX <- ex_adsl |> select(USUBJID, ARM, TRTSDTM, EOSSTT, EOSDY)

trtvar <- "ARM"
ctrl_grp <- "B: Placebo”
cutoffd <- as.Date("2023-09-24")

ADEX <- ADEX |>
create_colspan_var(

non_active_grp = ctrl_grp,
non_active_grp_span_lbl = " ",
active_grp_span_lbl = "Active Study Agent”,
colspan_var = "colspan_trt”,
trt_var = trtvar

) 1>

mutate(

diff_header = "Difference in Means (95% CI)",
diff_label = paste(!!rlang::sym(trtvar), "vs”
TRTDURY = case_when(

!is.na(EOSDY) ~ EOSDY,

TRUE ~ as.integer(cutoffd - as.Date(TRTSDTM) + 1)
)

, ctrl_grp),

)

colspan_trt_map <- create_colspan_map(ADEX,
non_active_grp = ctrl_grp,
non_active_grp_span_lbl = " ",
active_grp_span_lbl = "Active Study Agent”,
colspan_var = "colspan_trt"”,
trt_var = trtvar

)

nn

ref_path <- c("colspan_trt”, , trtvar, ctrl_grp)

lyt <- basic_table() |>
split_cols_by(

44

"colspan_trt",
split_fun = trim_levels_to_map(map = colspan_trt_map)
E
split_cols_by(trtvar) |>
split_cols_by("diff_header”, nested = FALSE) |>
split_cols_by(
trtvar,
split_fun = remove_split_levels(ctrl_grp),
labels_var = "diff_label”
) 1>
analyze("EOSDY",

afun = a_summarize_ex_j, var_labels = "Duration of treatment (Days)",
show_labels = "visible”,

indent_mod = oL,

extra_args = list(

daysconv = 1,
ref_path = ref_path,
variables = list(arm = trtvar, covariates = NULL),
ancova = TRUE,
comp_btw_group = TRUE
)
)

result <- build_table(lyt, ADEX, alt_counts_df = ADEX)
result

a_two_tier

a_two_tier Two Tier Analysis Function

Description

Usage

a_two_tier(
df,
labelstr = NULL,
.var,
.N_col,
.df_row,
inner_var,

The analysis function used as an afun in analyze. This function simulates a final additional level of
nesting with a traditional analyze call inside it.

This makes it possible to create what appear to be group summary or content rows and to optionally
or conditionally generate one or more "detail" rows underneath it.

For example, in a disposition table, one might want counts for completed and ongoing patients with
no further detail underneath, but a breakdown of specific reasons beneath the count of patients who
discontinued treatment.

a_two_tier 45

drill_down_levs,
.spl_context,
use_all_levels = FALSE,
grp_fun,

detail_fun,
.alt_df_full = NULL,

Arguments

df (data.frame)
data set containing all analysis variables.

labelstr (character)
label of the level of the parent split currently being summarized (must be present
as second argument in Content Row Functions). See rtables: : summarize_row_groups()
for more information.

.var (string)
single variable name that is passed by rtables when requested by a statistics
function.

.N_col (integer)

column-wise N (column count) for the full column being analyzed that is typi-
cally passed by rtables.

.df_row (data.frame)
data frame across all of the columns for the given row split.

inner_var (string)

single variable name to use when generating the detail rows.
drill_down_levs

(character)

the level(s) of . var under which detail rows should be generated.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.
use_all_levels (flag)
controls which factor levels will be present for inner_var (both in df/x and in
.df_row) when calling detail_fun. If TRUE, all levels (those present on the
factor .df_row[[inner_var]], *regardless if the level is observed in the row
group or not) will be present when creating detail rows. Otherwise (the default),
only the levels observed anywhere in the row group, i.e., within .df _row will be

present.
grp_fun (function)

analysis function to be used when generating the "group summary" outer rows.
detail_fun (function)

analysis function to be used when generating "detail" inner rows.

.alt_df_full (dataframe)
denominator dataset for fraction and relative risk calculations.
this argument gets populated by the rtables split machinery (see rtables::additional_fun_params).

additional arguments passed directly to grp_fun and detail_fun.

46 a_two_tier

Details

Both the analysis variable and inner_var must be factors. Detail rows are differentiated by having
an indent mod of one, causing them to hang indented under their corresponding group row.

Value

A RowsVerticalSection object including both the group row and all detail rows, if applicable, for
the facet.

Note

In its current form, this function may not retain any formatting or labeling instructions added by
grp_fun or detail_fun, and it will override any .indent_mods values specified by them. This
behavior may change in future versions.

Author(s)
GB, WW.

Examples

Example 1

lyt_obs_levels <- basic_table() |>
split_cols_by("ARM") |>
split_rows_by("EOSSTT", child_labels = "hidden") |>
analyze("EOSSTT",
afun = a_two_tier,
extra_args = list(
grp_fun = simple_analysis,
detail_fun = simple_analysis,
inner_var = "DCSREAS",
drill_down_levs = "DISCONTINUED"
)
)

tbl <- build_table(lyt_obs_levels, ex_adsl)
tbl

lyt_all_levels <- basic_table() [>
split_cols_by("ARM") |>
split_rows_by("EOSSTT"”, child_labels = "hidden") |>
analyze("EOSSTT",
afun = a_two_tier,
extra_args = list(
grp_fun = simple_analysis,
detail_fun = simple_analysis,
inner_var = "DCSREAS",
drill_down_levs = "DISCONTINUED",
use_all_levels = TRUE

a_two_tier 47

)

adsl_subset <- subset(ex_adsl, DCSREAS != "ADVERSE EVENT")
levels(adsl_subset$DCSREAS)

tbl_all_levels <- build_table(lyt_all_levels, adsl_subset)
tbl_all_levels

tbl_obs_levels <- build_table(lyt_obs_levels, adsl_subset)
tbl_obs_levels

Example 2
library(dplyr)

trtvar <- "ARM"
ctrl_grp <- "B: Placebo”

adsl <- ex_adsl |> select(c(”"USUBJID", "STRATA1", "EOSSTT", "DCSREAS", all_of(trtvar)))
adsl$colspan_trt <- factor(
ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
levels = c("Active Study Agent”, " ")
)
adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs"”, ctrl_grp))

colspan_trt_map <- create_colspan_map(
df = adsl,
non_active_grp = ctrl_grp,
non_active_grp_span_lbl = " ",
active_grp_span_lbl = "Active Study Agent”,
colspan_var = "colspan_trt",
trt_var = trtvar

)

a_freq_j_args <- list(
.stats = "count_unique_fraction”,
denom = "n_altdf",
ref_path = c("colspan_trt”,
)

non

, trtvar, ctrl_grp)

two_tier_args <- list(
grp_fun = a_freq_j,
detail_fun = a_freq_j,
inner_var = "DCSREAS",
drill_down_levs = "DISCONTINUED"
)

lyt_rrisk <- basic_table() |>
split_cols_by("colspan_trt", split_fun = trim_levels_to_map(map = colspan_trt_map)) |>
split_cols_by(trtvar) |>
split_cols_by("rrisk_header"”, nested = FALSE) |>
split_cols_by(trtvar, labels_var = "rrisk_label"”, split_fun = remove_split_levels(ctrl_grp)) |>

48 bspt_pruner

split_rows_by("STRATA1") |>
split_rows_by("EOSSTT", child_labels = "hidden") |>
analyze("EOSSTT", afun = a_two_tier, extra_args = c(two_tier_args, a_freq_j_args))

adsl_subset <- subset(

adsl,
EOSSTT != "COMPLETED" & (is.na(DCSREAS) | DCSREAS != "PROTOCOL VIOLATION")

)

tbl_rrisk <- build_table(lyt_rrisk, adsl_subset, alt_counts_df = adsl_subset)

tbl_rrisk

bspt_pruner Pruning Function for pruning based on a fraction and/or a difference
from the control arm
Description

This is a pruning constructor function which identifies records to be pruned based on the the fraction
from the percentages. In addition to just looking at a fraction within an arm, this function also allows
further flexibility to also prune based on a comparison versus the control arm.

Usage

bspt_pruner(
fraction = 0.05,
keeprowtext = "Analysis set: Safety”,
reg_expr = FALSE,
control = NULL,
diff_from_control = NULL,
only_more_often = TRUE,
cols = c("TRTO1A")

)
Arguments

fraction (proportion)
Fraction threshold. Function will keep all records strictly greater than this thresh-
old.

keeprowtext (character)
Row to be excluded from pruning.

reg_expr (logical)
Apply keeprowtext as a regular expression (grepl with fixed = TRUE)

control (character)

Control Group

bspt_pruner 49

diff_from_control
(numeric)
Difference from control threshold.

only_more_often
(logical)
TRUE: Only consider when column pct is more often than control. FALSE:
Also select a row where column pct is less often than control and abs(diff) above
threshold

cols (character)
Column path.

Value

Function that can be utilized as pruning function in prune_table.

Examples

ADSL <- data.frame(
USUBJID = c(
XXXXXQT", "XXXXX@2", "XXXXX@3", "XXXXX04", "XXXXX@5",
"XXXXX06", "XXXXXQ7", "XXXXX@8", "XXXXXQ9", "XXXXX1Q"

)Y
TRTOIP = c(
”ARMA”, "ARMB", "ARMA", "ARMB", "ARMB“,
"Placebo”, "Placebo”, "Placebo"”, "ARMA", "ARMB"
)?

FASFL = C("Y", "Y“, ”Y", "Y”, ”N”, "Y", "Y”, ”Y", "Y”, HYN),
SAFFL = C(”N", “N”, ”N”, "N”, ”N”, ”N", “N”, ”N”, "N”, ”N"),
PKFL = C("N”, ”N”, "N”, ”N", "N”, "N”, ”N”, "N”, ”N", uNn)

ADSL <- ADSL [>
dplyr::mutate(TRTQ1P = as.factor(TRTO1P)) |>
dplyr::mutate(SAFFL = factor (SAFFL, c("Y", "N"))) |>
dplyr::mutate(PKFL = factor(PKFL, c("Y", "N")))

lyt <- basic_table() |>
split_cols_by("TRTO1P") |>
add_overall_col("Total") |>
split_rows_by(
"FASFL",
split_fun = drop_and_remove_levels(”"N"),
child_labels = "hidden”

) 1>
analyze("FASFL",

var_labels = "Analysis set:",

afun = a_freq_j,

show_labels = "visible”,

extra_args = list(label = "Full”, .stats = "count_unique_fraction")
) 1>

split_rows_by(
"SAFFL",

50 build_formula

split_fun = remove_split_levels("N"),
child_labels = "hidden”

) 1>
analyze("SAFFL",
var_labels = "Analysis set:",
afun = a_freq_j,
show_labels = "visible”,
extra_args = list(label = "Safety”, .stats = "count_unique_fraction")
) 1>
split_rows_by(
"PKFL",

split_fun = remove_split_levels(”"N"),
child_labels = "hidden”

E
analyze("PKFL",

var_labels = "Analysis set:",

afun = a_freq_j,

show_labels = "visible”,

extra_args = list(label = "PK", .stats = "count_unique_fraction")
)

result <- build_table(lyt, ADSL)
result

result <- prune_table(
result,
prune_func = bspt_pruner(
fraction = 0.05,
keeprowtext = "Safety”,
cols = c("Total")
)
)

result

build_formula Building Model Formula

Description

This builds the model formula which is used inside fit_mmrm_j() and provided to mmrm: :mmrm()
internally. It can be instructive to look at the resulting formula directly sometimes.

Usage

build_formula(
vars,
cor_struct = c("unstructured”, "toeplitz"”, "heterogeneous toeplitz”, "ante-dependence”,
"heterogeneous ante-dependence”, "auto-regressive”, "heterogeneous auto-regressive",

check_wrap_nobreak 51

"compound symmetry”, "heterogeneous compound symmetry")
)
Arguments
vars (list)
variables to use in the model.
cor_struct (string)
specify the covariance structure to use.
Value

Formula to use in mmrm: :mmrm().

Examples

vars <- list(
response = "AVAL"”, covariates = c("RACE", "SEX"),
id = "USUBJID", arm = "ARMCD", visit = "AVISIT"
)
build_formula(vars, "auto-regressive")
build_formula(vars)

check_wrap_nobreak Check Word Wrapping

Description

Check a set of column widths for word-breaking wrap behavior.

Usage

check_wrap_nobreak(tt, colwidths, fontspec)

Arguments
tt (TableTree)
TableTree object
colwidths (numeric)
Column widths (in numbers of spaces under fontspec)
fontspec (font_spec)
Font specification object
Value

TRUE if the wrap is able to be done without breaking words, FALSE if wordbreaking is required to
apply colwidths.

52 cmhrms

cmhrms Cochran-Mantel-Haenszel Row Mean Scores test

Description

See https://psiaims.github.io/CAMIS/Comp/r-sas_cmh.html for a general comparison overview
between R and SAS.

Usage

a_cmhrms_j(
df,
.var,
ref_path,
.spl_context,
.ref_group,
.in_ref_col,
.df_row,
variables,
collapse_combo = TRUE,
.stats = NULL,
.formats = NULL,
.indent_mods = NULL,
.labels = NULL

)

s_cmhrms_j(
df,
.var,
.ref_group,
.in_ref_col,
.df_row,
variables,
collapse_combo = FALSE
)

a_cmhrms_j_with_exclude(
df,
exclude_levels,
.var,
.spl_context,
.ref_group,
.in_ref_col,
.df_row,

L

https://psiaims.github.io/CAMIS/Comp/r-sas_cmh.html

cmhrms

53

.stats = NULL,
.formats = NULL,

.indent_mods

= NULL,

.labels = NULL

Arguments

df

.var

ref_path
.spl_context
.ref_group
.in_ref_col

.df_row

variables
collapse_combo
.Sstats

.formats

.indent_mods

.labels

exclude_levels

Value

(data.frame)

data set containing all analysis variables.

(string)

single variable name that is passed by rtables when requested by a statistics
function.

(character)

global reference group specification, see get_ref_info().
(data.frame)

gives information about ancestor split states that is passed by rtables.
(data.frame or vector)

the data corresponding to the reference group.

(logical)

TRUE when working with the reference level, FALSE otherwise.

(data.frame)
data frame across all of the columns for the given row split.

additional arguments for the lower level functions.

(list)

list with arm and strata variable names.

(logical)

If TRUE, multiple arm levels from df will be combined into 1 level.

(character)
statistics to select for the table.

(named character or list)

formats for the statistics. See Details in analyze_vars for more information on
the "auto' setting.

(named integer)

indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

(named character)

labels for the statistics (without indent).

(list)

A named list where names correspond to split variables and values are vectors
of levels to exclude.

* s_cmhrms_j a single element list containing the p-value from row mean score test.

* a_cmhrms_j a VerticalRowsSection object (single row).

54 cmp_ctun

Functions

e a_cmhrms_j(): Formatted analysis function which is used as afun.

e s_cmhrms_j(): Statistics function for the calculation of the p-value based upon the row mean
scores test.

e a_cmhrms_j_with_exclude(): Wrapper for the afun which can exclude row split levels
from producing the analysis. These have to be specified in the exclude_levels argument,
see ?do_exclude_split for details.

cmp_cfun Summary Analysis Function for Compliance Columns

Description

A simple statistics function which prepares the numbers with percentages in the required format,
for use in a split content row. The denominator here is from the expected visits column.

Usage

cmp_cfun(df, labelstr, .spl_context, variables, formats)

Arguments
df (data.frame)
data set containing all analysis variables.
labelstr (character)

label of the level of the parent split currently being summarized (must be present
as second argument in Content Row Functions). See rtables: : summarize_row_groups()
for more information.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

variables (list)
with variable names of logical columns for expected, received and missing
visits.

formats (list)

with the count_percent format to use for the received and missing visits columns.

Value

The rtables: :in_rows() result with the counts and proportion statistics.

See Also

cmp_post_fun() for the corresponding split function.

cmp_post_fun 55

cmp_post_fun Split Function for Compliance Columns

Description

Here we just split into 3 columns for expected, received and missing visits.

Usage

cmp_post_fun(ret, spl, fulldf, .spl_context)

cmp_split_fun(df, spl, vals = NULL, labels = NULL, trim = FALSE, .spl_context)

Arguments
ret (list)
result from previous split function steps.
spl (split)
split object.
fulldf (data.frame)

full data frame.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

df (data.frame)
data set containing all analysis variables.

vals (character)
values to use for the split.

labels (named character)
labels for the statistics (without indent).

trim (logical)
whether to trim the values.
Value
a split function for use with rtables::split_rows_by when creating proportion-based tables with com-
pliance columns.

See Also

rtables: :make_split_fun() describing the requirements for this kind of post-processing func-
tion.

56 column_stats

column_stats Statistics within the column space

Description

A function factory used for obtaining statistics within the columns of your table. Used in change
from baseline tables. This takes the visit names as its row labels.

Usage

column_stats(
exclude_visits = c("Baseline (DB)"),
var_names = c("AVAL", "CHG", "BASE"),
stats = list(main = c¢(N = "N", mean = "Mean”, SD = "SD", SE = "SE", Med = "Med"”, Min =
"Min"”, Max = "Max"), base = c(mean = "Mean"))

Arguments

exclude_visits (character vector)
Vector of visit(s) for which you do not want the statistics displayed in the base-
line mean or change from baseline sections of the table.

var_names (character vector)
Vector of variable names to use instead of the default AVAL, CHG, BASE. The
first two elements are treated as main variables with full statistics, and the third
element is treated as the base variable. By default, the function expects these
specific variable names in your data, but you can customize them to match your
dataset’s column names.

stats (list)
A list with two components, main and base, that define the statistics to be cal-
culated for the main variables (default: AVAL, CHG) and the base variable (de-
fault: BASE).
Default for main variables: ¢(N = "N", mean = "Mean", SD = "SD", SE = "SE",
Med = "Med", Min = "Min", Max = "Max").
Default for base variable: c(mean = "Mean").
You can customize these statistics by providing your own named vectors in the
list. The names are used internally for calculations, and the values are used as
display labels in the table.

Value

An analysis function (for use with rtables::analyze) implementing the specified statistics.

cond_rm_facets

57

cond_rm_facets

Conditional Removal of Facets

Description

Conditional Removal of Facets

Usage

cond_rm_facets(

facets = NULL,

facets_regex
ancestor_pos
split = NULL,
split_regex
value = NULL,
value_regex
keep_matches

Arguments

facets

facets_regex

ancestor_pos

split

split_regex

value

= NULL,
:‘],

NULL,

NULL,

= FALSE

(character or NULL)
Vector of facet names to be removed if condition(s) are met

(character)
Regular expression to identify facet names to be removed if condition(s) are met.

(numeric)

Row in spl_context to check the condition within. E.g., 1 represents the first
split, 2 represents the second split nested within the first, etc. NA specifies that
the conditions should be checked at all split levels. Negative integers indicate
position counting back from the current one, e.g., -1 indicates the direct parent
(most recent split before this one). Negative and positive/NA positions cannot
be mixed.

(character or NULL)
If specified, name of the split at position ancestor_pos must be identical to this
value for the removal condition to be met.

(character or NULL)

If specified, a regular expression the name of the split at position ancestor_pos
must match for the removal condition to be met. Cannot be specified at the same
time as split.

(character or NULL)
If specified, split (facet) value at position ancestor_pos must be identical to
this value for removal condition to be met.

58 cond_rm_facets

value_regex (character or NULL)
If specified, a regular expression the value of the split at position ancestor_pos
must match for the removal condition to be met. Cannot be specified at the same
time as value.

keep_matches (logical)
Given the specified condition is met, should the facets removed be those match-
ing facets/facets_regex (FALSE, the default), or those not matching (TRUE).

Details

Facet removal occurs when the specified condition(s) on the split(s) and or value(s) are met within
at least one of the split_context rows indicated by ancestor_pos; otherwise the set of facets is
returned unchanged.

If facet removal is performed, either all facets which match facets (or facets_regex will be
removed (the default keep_matches == FALSE case), or all non-matching facets will be removed
(when keep_matches_only == TRUE).

Value
A function suitable for use in make_split_fun’s post argument which encodes the specified con-
dition.

Note

A degenerate table is likely to be returned if all facets are removed.

Examples

rm_a_from_placebo <- cond_rm_facets(

facets = "A",
ancestor_pos = NA,
value_regex = "Placeb”,
split = "ARM"

)
mysplit <- make_split_fun(post = list(rm_a_from_placebo))

lyt <- basic_table() |>
split_cols_by("ARM") |>
split_cols_by("STRATA1", split_fun = mysplit) |>
analyze("AGE", mean, format = "xx.x"
build_table(lyt, ex_adsl)

rm_bc_from_combo <- cond_rm_facets(
facets = c("B", "C"),
ancestor_pos = -1,
value_regex = "Combi"

)
mysplit2 <- make_split_fun(post = list(rm_bc_from_combo))

lyt2 <- basic_table() [|>
split_cols_by("ARM") |>

count and fraction related formatting functions 59

split_cols_by("STRATA1", split_fun = mysplit2) |>

analyze("AGE", mean, format = "xx.x"
tbl2 <- build_table(lyt2, ex_adsl)
tbl2

rm_bc_from_combo2 <- cond_rm_facets(

facets_regex = "*A$",
ancestor_pos = -1,
value_regex = "Combi",
keep_matches = TRUE

)
mysplit3 <- make_split_fun(post = list(rm_bc_from_combo2))

lyt3 <- basic_table() |>
split_cols_by("ARM") |>
split_cols_by("STRATA1", split_fun = mysplit3) |>
analyze("AGE", mean, format = "xx.x"

tbl3 <- build_table(lyt3, ex_adsl)

stopifnot(identical(cell_values(tbl2), cell_values(tbl3)))

count and fraction related formatting functions
Formatting functions for count and fraction, and for count denomina-
tor and fraction values

Description

Formats a count together with fraction (and/or denominator) with special consideration when count
is O, or fraction is 1.
See also: tern::format_count_fraction_fixed_dp()

Usage
jjcsformat_cnt_den_fract_fct(
d=1,
type = c("count_fraction”, "count_denom_fraction”, "fraction_count_denom"),
verbose = FALSE
)
jjcsformat_count_fraction(x, round_type = valid_round_type, output, ...)

valid_round_type, output, ...)

jjcsformat_count_denom_fraction(x, round_type

jjcsformat_fraction_count_denom(x, round_type = valid_round_type, output, ...)

60

Arguments

d

type

verbose

round_type

output

Value

count and fraction related formatting functions

(numeric(1))
Number of digits to round fraction to (default = 1)

(character(1)
One of count_fraction, count_denom_fraction, fraction_count_denom,
to specify the type of format the function will represent.

(logical)
Whether to print verbose output

(numeric vector)
Vector with elements num and fraction or num, denom and fraction.

(character(1))
the type of rounding to perform. See formatters: :format_value() for more
details.

(string)
output type. See formatters::format_value() for more details.

Additional arguments passed to other methods.

A formatting function to format input into string in the format count / denom (ratio percent).
If count is 0, the format is @. If fraction is >0.99, the format is count / denom (>99.9 percent)

See Also

Other JJCS formatting functions: jjcsformat_xx()

Examples

jjcsformat_count_fraction(c(7, 0.7))
jjcsformat_count_fraction(c(70000, 70000 / 70001))
jjcsformat_count_fraction(c(235, 235 / 235))

fmt <- jjcsformat_cnt_den_fract_fct(type = "count_fraction”, d = 2)
fmt(c(23, 23 / 235))

jjcsformat_count_denom_fraction(c(7, 10, 0.7))
jjcsformat_count_denom_fraction(c(70000, 70001, 70000 / 70001))
jjcsformat_count_denom_fraction(c(235, 235, 235 / 235))

fmt <- jjcsformat_cnt_den_fract_fct(type = "count_denom_fraction”, d

2)

fmt(c(23, 235, 23 / 235))

jjcsformat_fraction_count_denom(c(7, 10, 0.7))
jjcsformat_fraction_count_denom(c (70000, 70001, 70000 / 70001))
jjcsformat_fraction_count_denom(c(235, 235, 235 / 235))

fmt <- jjcsformat_cnt_den_fract_fct(type = "fraction_count_denom”, d

2)

fmt(c(23, 235, 23 / 235))

count_pruner 61

count_pruner Count Pruner

Description

This is a pruning constructor function which identifies records to be pruned based on the count
(assumed to be the first statistic displayed when a compound statistic (e.g., ## / ## (XX.X percent)
is presented).

Usage

count_pruner(
count = 0,
cat_include = NULL,
cat_exclude = NULL,
cols = c("TRTQT1A")

)
Arguments
count (numeric)
count threshold. Function will keep all records strictly greater than this thresh-
old.
cat_include (character)
Category to be considered for pruning
cat_exclude (character)
Category to be excluded from pruning
cols (character)
column path (character or integer (column indices))
Value

Function that can be utilized as pruning function in prune_table.

Examples

ADSL <- data.frame(
USUBJID = c(
XXXXXQ1", "XXXXXQ2", "XXXXX@3", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXXQ7", "XXXXX@Q8", "XXXXXQ9", "XXXXX1Q"

),
TRTO1P = factor(
c(
"ARMA”, "ARMB", "ARMA”, "ARMB"”, "ARMB”",
"Placebo”, "Placebo”, "Placebo”, "ARMA", "ARMB”
)

)?

62

FASFL = C(IIYH’ "Y”, ”Y”, “Y", ”N”, “Y”, "Y”, ”Y”, “Y", ”Y”),
SAFFL = C("N“, “N”, ”N", "N”, ”N", nNuy “N”, ”N", "N”, IIN"),
PKFL = C("N”, ”N”, ”N”, ”N”, ”N", "N”, ”N”, ”N”, ”N”, uNu)

)

lyt <- basic_table() |>
split_cols_by("TRTQ1P") |>
add_overall_col("Total”) |>
analyze("FASFL",
var_labels = "Analysis set:",
afun = a_freq_j,
extra_args = list(label = "Full”, val = "Y"),

show_labels = "visible”
) 1>
analyze("SAFFL",
var_labels = "Analysis set:",

afun = a_freq_j,
extra_args = list(label = "Safety”, val = "Y"),

show_labels = "visible”
) 1>
analyze("PKFL",
var_labels = "Analysis set:”,

afun = a_freq_j,
extra_args = list(label = "PK", val = "Y"),
show_labels = "visible”
)
result <- build_table(lyt, ADSL)

result

result <- prune_table(

coxph_hr

result,
prune_func = count_pruner(cat_exclude = c("Safety"), cols = "Total")
)
result
coxph_hr Workaround statistics function to add HR with CI
Description

This is a workaround for tern: :s_coxph_pairwise(), which adds a statistic containing the hazard

ratio estimate together with the confidence interval.

Usage

a_coxph_hr(
df,

coxph_hr

.var,
ref_path,

.spl_context,

L

63

.stats = NULL,
.formats = NULL,
.labels = NULL,

.indent_mods

s_coxph_hr(
df,
.ref_group,
.in_ref_col,
.var,
is_event,

= NULL

strata = NULL,
control = control_coxph(),

alternative = c("two.sided”, "less", "greater")
)
Arguments

df (data.frame)
data set containing all analysis variables.

.var (string)
single variable name that is passed by rtables when requested by a statistics
function.

ref_path (character)

.spl_context

.Stats

.formats

.labels

.indent_mods

.ref_group

global reference group specification, see get_ref_info().

(data.frame)
gives information about ancestor split states that is passed by rtables.

additional arguments for the lower level functions.

(character)
statistics to select for the table.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

(named character)
labels for the statistics (without indent).

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

(data.frame or vector)
the data corresponding to the reference group.

64 coxph_hr

.in_ref_col (logical)
TRUE when working with the reference level, FALSE otherwise.

is_event (character)
variable name storing Logical values: TRUE if event, FALSE if time to event is
censored.

strata (character or NULL)

variable names indicating stratification factors.

control (list)
relevant list of control options.

alternative (string)
whether two. sided, or one-sided less or greater p-value should be displayed.

Value

* s_coxph_hr returns a list containing the same statistics returned by tern::s_coxph_pairwise
and the additional 1r_stat_df statistic.

* a_coxph_hr returns a VerticalRowsSection object.

Functions

* a_coxph_hr(): Formatted analysis function which is used as afun.

e s_coxph_hr(): Statistics function forked from tern: :s_coxph_pairwise(). The difference
is that it returns the additional statistic 1r_stat_df (log rank statistic with degrees of free-
dom).

Examples

library(dplyr)

adtte_f <- tern::tern_ex_adtte |>
filter (PARAMCD == "0S") [>
mutate(is_event = CNSR == 0)

df <- adtte_f |> filter(ARMCD == "ARM A")
df_ref_group <- adtte_f |> filter(ARMCD == "ARM B")

basic_table() |>
split_cols_by(var = "ARMCD", ref_group = "ARM A") |>
add_colcounts() |>
analyze("AVAL",
afun = s_coxph_hr,

extra_args = list(is_event = "is_event"),
var_labels = "Unstratified Analysis”,
show_labels = "visible”

) 1>

build_table(df = adtte_f)

basic_table() |>
split_cols_by(var = "ARMCD", ref_group = "ARM A") |>

create_colspan_map

add_colcounts() |>
analyze("AVAL",
afun = s_coxph_hr,
extra_args = list(
is_event = "is_event”,
strata = "SEX",

control = tern::control_coxph(pval_method = "wald")
)!
var_labels = "Unstratified Analysis”,
show_labels = "visible”
) 1>

build_table(df = adtte_f)

adtte_f <- tern::tern_ex_adtte |>
dplyr::filter (PARAMCD == "0S") |>
dplyr::mutate(is_event = CNSR == 0)

df <- adtte_f |> dplyr::filter(ARMCD == "ARM A")

df_ref <- adtte_f |> dplyr::filter(ARMCD == "ARM B")

s_coxph_hr(
df = df,
.ref_group = df_ref,
.in_ref_col = FALSE,
.var = "AVAL",
is_event = "is_event”,
strata = NULL

65

create_colspan_map Creation of Column Spanning Mapping Dataframe

Description

A function used for creating a data frame containing the map that is compatible with rtables split

function. trim_levels_to_map

Usage

create_colspan_map(
df,
non_active_grp = c("Placebo"”),

n o n

non_active_grp_span_lbl = ,

active_grp_span_lbl = "Active Study Agent",

colspan_var = "colspan_trt",
trt_var = "TRTQ1A",
active_first = TRUE

66 create_colspan_map

Arguments

df (data.frame)
The name of the data frame in which the spanning variable is to be appended to

non_active_grp (character)
The value(s) of the treatments that represent the non-active or comparator treat-
ment groups default value = c("Placebo’)

non_active_grp_span_lbl
(character)
The assigned value of the spanning variable for the non-active or comparator
treatment groups default value =~

active_grp_span_lbl
(character)
The assigned value of the spanning variable for the active treatment group(s)
default value =’ Active Study Agent’

colspan_var (character)
The desired name of the newly created spanning variable default value = ’colspan_trt’

trt_var (character)
The name of the treatment variable that is used to determine which spanning
treatment group value to apply. default value = "TRTO1A’

active_first (logical)
whether the active columns come first.

Details

This function creates a data frame containing the map that is compatible with rtables split function
trim_levels_to_map. The levels of the specified trt_var variable will be stored within the trt_var
variable and the colspan_var variable will contain the corresponding spanning header value for each
treatment group.

Value

A data frame that contains the map to be used with rtables split function trim_levels_to_map.

Examples

library(tibble)

df <- tribble(
~TRTO1A,
"Placebo”,
"Active 1",
"Active 2"

)

df$TRTO1A <- factor(df$TRTO1A, levels = c("Placebo”, "Active 1", "Active 2"))

colspan_map <- create_colspan_map(
df = df,

create_colspan_var 67

non_active_grp = c("Placebo”),
non_active_grp_span_lbl = " "
active_grp_span_lbl = "Active Study Agent”,
colspan_var = "colspan_trt"”,
trt_var = "TRTQ1A"

)

colspan_map

create_colspan_var Creation of Column Spanning Variables

Description

A function used for creating a spanning variable for treatment groups.

Usage

create_colspan_var(
df,
non_active_grp = c("Placebo"),
non_active_grp_span_lbl = " "
active_grp_span_lbl = "Active Study Agent",

colspan_var = "colspan_trt”,
trt_var = "TRT@Q1A"
)
Arguments
df (data.frame)

The name of the data frame in which the spanning variable is to be appended to

non_active_grp (character)
The value(s) of the treatments that represent the non-active or comparator treat-
ment groups default value = c¢("Placebo’)

non_active_grp_span_1lbl
(character)
The assigned value of the spanning variable for the non-active or comparator
treatment groups default value =~

active_grp_span_lbl
(character)
The assigned value of the spanning variable for the active treatment group(s)
default value =’ Active Study Agent’

colspan_var (character)
The desired name of the newly created spanning variable default value = ’colspan_trt’

trt_var (character)
The name of the treatment variable that is used to determine which spanning
treatment group value to apply. default value = "TRTO1A’

68 c_proportion_logical

Details

This function creates a spanning variable for treatment groups that is intended to be used within the
column space.

Value

A data frame that contains the new variable as specified in colspan_var.

Examples

library(tibble)

df <- tribble(
~TRTO1A,
"Placebo”,
"Active 1",
"Active 2"

)
df$TRTO1A <- factor(df$TRTO1A, levels = c("Placebo”, "Active 1", "Active 2"))

colspan_var <- create_colspan_var(
df = df,
non_active_grp = c("Placebo”),
non_active_grp_span_lbl = " "

active_grp_span_lbl = "Active Treatment”,
colspan_var = "colspan_trt"”,
trt_var = "TRTOTA"

)

colspan_var

c_proportion_logical c_function for proportion of TRUE in logical vector

Description

A simple statistics function which prepares the numbers with percentages in the required format,
for use in a split content row. The denominator here is from the column N. Note that we don’t use
here .alt_df because that might not have required row split variables available.

Usage

c_proportion_logical(x, labelstr, label_fstr, format, .N_col)

do_exclude_split 69

Arguments
X (logical)
binary variable we want to analyze.
labelstr (string)
label string.
label_fstr (string)
format string for the label.
format (character or list)
format for the statistics.
.N_col (numeric)
number of columns.
Value

The rtables: :in_rows() result with the proportion statistics.

See Also

s_proportion_logical() for the related statistics function.

do_exclude_split Predicate to Check if Split Should be Excluded

Description

Predicate to Check if Split Should be Excluded

Usage

do_exclude_split(exclude_levels, .spl_context)

Arguments

exclude_levels (list)
A named list where names correspond to split variables and values are vectors
of levels to exclude.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

Value

TRUE if the current split context matches any of the exclude levels, FALSE otherwise.

70 event_free
Examples
do_exclude_split(
exclude_levels = list(AVISIT = "Baseline"),
.spl_context = data.frame(
split = c("AVISIT”, "ARM"),
value = c("Week 4", "Placebo")
)
)
do_exclude_split(
exclude_levels = 1list(AVISIT = "Baseline"),
.spl_context = data.frame(
split = c("AVISIT”, "ARM"),
value = c("Baseline”, "Placebo")
)
)
event_free Workaround statistics function to time point survival estimate with CI
Description

This is a workaround for tern: :s_surv_timepoint(), which adds a statistic containing the time

point specific survival estimate together with the confidence interval.

Usage
a_event_free(
df,
.var,
.stats = NULL,

.formats = NULL,
.labels = NULL,
.indent_mods = NULL

s_event_free(
df,
.var,
time_point,
time_unit,
is_event,
percent = FALSE,
control = control_surv_timepoint()

event_free

Arguments

df

.var

.stats

.formats

.labels

.indent_mods

time_point

time_unit

is_event

percent

control

Value

71

(data.frame)
data set containing all analysis variables.

(string)
single variable name that is passed by rtables when requested by a statistics
function.

additional arguments for the lower level functions.

(character)
statistics to select for the table.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

(named character)
labels for the statistics (without indent).

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

(numeric)
time point at which to estimate survival.

(string)
unit of time for the time point.

(character)
variable name storing Logical values: TRUE if event, FALSE if time to event is
censored.

(flag)
whether to return in percent or not.

(list)
relevant list of control options.

* s_event_free returns a list as returned by the tern::s_surv_timepoint() with an addi-
tional three-dimensional statistic event_free_ci which combines the event_free_rate and
rate_ci statistics.

* a_event_freeis analogous to tern::a_surv_timepoint but with the additional three-dimensional
statistic described above available via . stats.

Functions

* a_event_free(): Formatted analysis function which is used as afun.

e s_event_free(): Statistics function which works like tern: :s_surv_timepoint (), the dif-
ference is that it returns the additional statistic event_free_ci.

72

Examples

adtte_f <- tern::tern_ex_adtte |>
dplyr::filter (PARAMCD == "0S") |>
dplyr: :mutate(
AVAL = tern::day2month(AVAL),
is_event = CNSR ==

)

basic_table() |>
split_cols_by(var = "ARMCD") |>
analyze(
vars = "AVAL",
afun = a_event_free,
show_labels = "hidden"”,
na_str = tern::default_na_str(),
extra_args = list(

time_unit = "week”,
time_point = 3,
is_event = "is_event”
)
) 1>

build_table(df = adtte_f)
adtte_f <- tern::tern_ex_adtte |>
dplyr::filter (PARAMCD == "0S") |>
dplyr: :mutate(
AVAL = tern::day2month(AVAL),
is_event = CNSR ==

)

s_event_free(
df = adtte_f,
.var = "AVAL",
time_point = 6,
is_event = "is_event”,
time_unit = "month”

export_as_docx_j

export_as_docx_j Export a VIableTree or a listing_df object into docx

Description

[Experimental]

This function is based on rtables.officer::export_as_docx(). See notes to understand why

this is experimental.

Usage

export_as_docx_j(

export_as_docx_j 73

tt,

tblid,

output_dir,

theme = theme_docx_default_j(font = "Times New Roman"”, font_size = 9L, bold = NULL),
add_page_break = FALSE,

titles_as_header = TRUE,

integrate_footers = TRUE,

section_properties = officer: :prop_section(page_size = officer::page_size(width =11,
height = 8.5, orient = orientation), page_margins = officer::page_mar(bottom =1, top

=1, right = 1, left = 1, gutter = @, footer = 1, header = 1)),

doc_metadata = NULL,

template_file = system.file("template_file.docx"”, package = "junco"),
orientation = "portrait”,

paginate = FALSE,

nosplitin = character(),

string_map = junco::default_str_map,

markup_df_docx = dps_markup_df_docx,

combined_docx = FALSE,

tlgtype = (utils::getFromNamespace("tlg_type”, "junco"))(tt),

col_gap = ifelse(tlgtype == "Listing”, 0.5, 3),

pagenum = ifelse(tlgtype == "Listing”, TRUE, FALSE),

round_type = formatters::obj_round_type(tt),

alignments = list(),

border = flextable::fp_border_default(width = .75, color = "black"),
border_mat = make_header_bordmat(obj = tt),

watermark = FALSE,

)
Arguments
tt a VTableTree or a listing_df object to export.
tblid Character. Output ID to be displayed in the Title and last line of footer.
output_dir a directory path to save the docx.
theme (optional) a function factory. See theme_docx_default_j() or rtables.officer::theme_docx_default()

for more details.

add_page_break (optional) Default = FALSE.
titles_as_header
(optional) Default = TRUE.
integrate_footers
(optional) Default = TRUE.
section_properties
(optional). A "prop_section" object containing information about page size, ori-

entation, margins, etc. See officer::prop_section() for more details. No need to
be specified by end user.

doc_metadata (optional). Default = NULL.

74

template_file

orientation
paginate
nosplitin
string_map
markup_df_docx
combined_docx
tlgtype
col_gap

pagenum

round_type

alignments

border

border_mat

watermark

Note

export_as_docx_j

(optional). Default = "doc/template_file.docx". Paragraph styles are inherited
from this file.

(optional) Default = "portrait". One of: "portrait", "landscape".

(optional) Default = FALSE.

(optional) Default = character(). Named list.

(optional) Default = default_str_map.

(optional) Default = dps_markup_df_docx.

(optional). Default = FALSE. Whether to also export an "allparts" docx version.
(optional). No need to be specified by end user.

(optional). Default = 3 (Tables) or 0.5 (Listings).

(optional). Whether to display page numbers. Only applicable to listings (i.e.
for tables and figures this argument is ignored).

("iec" or "sas")

the type of rounding to perform. iec, the default, performs rounding compli-
ant with IEC 60559, while sas performs nearest-value rounding consistent with
rounding within SAS. See [formatters::format_value()] for more details.

(list)
List of named lists. Vectorized. (Default = 1ist()) Used to specify individual
column or cell alignments. Each named list contains row, col, and value.

(optional) an fp_border object.

(matrix)

Am x k matrix where m is the number of columns of tt and k is the number of
lines the header takes up. See tidytlg::add_bottom_borders for what the matrix
should contain. Users should only specify this when the default behavior does
not meet their needs.

(logical)
whether to display the watermark "Confidential". By default, this is set to
FALSE. In the future, this argument will be the actual watermark (i.e. a string)
to display.

other parameters.

This function has been tested for common use cases but may not work or have unexpected or
undesired behavior in corner cases. As such it is not considered fully production ready and is being
made available for further testing and early adoption. Please report any issues you encounter to the
developers. This function may be removed from junco in the future if the functionality is merged
into rtables.officer.

export_graph_as_docx 75

export_graph_as_docx export_graph_as_docx

Description

[Experimental]

Export graph in DOCX format. See notes to understand why this is experimental.

Usage

export_graph_as_docx(
g = NULL,
plotnames = NULL,
tblid,
output_dir,
title = NULL,
footers = NULL,
orientation = "portrait”,
plotwidth = 8,
plotheight = 5.51,
units = c("in", "cm”, "mm", "px")[1],
border = flextable::fp_border_default(width = .75, color = "black")

Arguments

g (optional) Default = NULL. A ggplot2 object, or a list of them, to export. At
least one of g or plotnames must be provided. If both are provided, ’g’ precedes
and "plotnames’ will be ignored.

plotnames (optional) Default = NULL. A file path, or a list of them, to previously saved
.png files. These will be opened and exported in the output file. At least one
of g or plotnames must be provided. If both are provided, ’g’ precedes and
"plotnames’ will be ignored.

tblid Character. Output ID that will appear in the Title and footer.

output_dir Character. File path where to save the output.

title (optional) Default = NULL. Character, or list of them, with the titles to be dis-
played.

footers (optional) Default = NULL. Character, or list of them, with the footers to be
displayed.

orientation (optional) Default = "portrait". One of: "portrait", "landscape".

plotwidth (optional) Default = 8. Plot size in units expressed by the units argument. If not
supplied, uses the size of the current graphics device.

plotheight (optional) Default = 5.51. Plot size in units expressed by the units argument. If

not supplied, uses the size of the current graphics device.

76 find_missing_chg_after_avisit

units (optional) Default = "in". One of the following units in which the plotwidth and
plotheight arguments are expressed: "in", "cm", "mm" or "px".
border (optional). An fp_border object to use as borders for the Title and Footers.
Note

This function has been tested for common use cases but may not work or have unexpected or
undesired behavior in corner cases. As such it is not considered fully production ready and is being
made available for further testing and early adoption. Please report any issues you encounter to the
developers. This function may be removed from junco in the future if the functionality is merged
into rtables.officer.

find_missing_chg_after_avisit
Helper for Finding AVISIT after which CHG are all Missing

Description

Helper for Finding AVISIT after which CHG are all Missing.

Usage

find_missing_chg_after_avisit(df)

Arguments
df (data.frame)
with CHG and AVISIT variables.
Value

A string with either the factor level after which AVISIT is all missing, or NA.

Examples

df <- data.frame(
AVISIT = factor(c(1, 2, 3, 4, 5)),
CHG = c(5, NA, NA, NA, 3)

)

find_missing_chg_after_avisit(df)

df2 <- data.frame(
AVISIT = factor(c(1, 2, 3, 4, 5)),
CHG = c(5, NA, 3, NA, NA)
)
find_missing_chg_after_avisit(df2)

df3 <- data.frame(
AVISIT = factor(c(1, 2, 3, 4, 5)),

fit_ancova 77

CHG = c(NA, NA, NA, NA, NA)
)
find_missing_chg_after_avisit(df3)

fit_ancova ANCOVA Analysis

Description

Performs the ANCOVA analysis, separately for each visit.

Usage

fit_ancova(
vars = list(response = "AVAL", covariates = c(), arm = "ARM", visit = "AVISIT", id =
"USUBJID"),
data,
conf_level = 0.95,
weights_emmeans = "proportional”

)

Arguments

vars (named list of string or character)
specifying the variables in the ANCOVA analysis. The following elements need to
be included as character vectors and match corresponding columns in data:

* response: the response variable.

* covariates: the additional covariate terms (might also include interac-
tions).

* id: the subject ID variable (not really needed for the computations but for
internal logistics).

* arm: the treatment group variable (factor).

e visit: the visit variable (factor).

Note that the arm variable is by default included in the model, thus should not
be part of covariates.

data (data.frame)
with all the variables specified in vars. Records with missing values in any
independent variables will be excluded.

conf_level (proportion)
confidence level of the interval.
weights_emmeans
(string)
argument from emmeans: :emmeans(), 'counterfactual' by default.

78 fit mmrm_j

Value

A tern_model object which is a list with model results:

e fit: A list with a fitted stats: : 1Im() result for each visit.
* mse: Mean squared error, i.e. variance estimate, for each visit.
» df: Degrees of freedom for the variance estimate for each visit.

e 1smeans: This is a list with data frames estimates and contrasts. The attribute weights
savse the settings used (weights_emmeans).

* vars: The variable list.

* labels: Corresponding list with variable labels extracted from data.

* ref_level: The reference level for the arm variable, which is always the first level.
* treatment_levels: The treatment levels for the arm variable.

e conf_level: The confidence level which was used to construct the 1smeans confidence inter-
vals.

Examples

library(mmrm)

fit <- fit_ancova(

vars = list(
response = "FEV1",
covariates = c("RACE", "SEX"),
arm = "ARMCD",
id = "USUBJID",
visit = "AVISIT"

),

data = fev_data,

conf_level = 0.9,

weights_emmeans = "equal”
)
fit_mmrm_j MMRM Analysis
Description

Does the MMRM analysis. Multiple other functions can be called on the result to produce tables and
graphs.

fit mmrm_j 79

Usage
fit_mmrm_j(
vars = list(response = "AVAL", covariates = c(), id = "USUBJID", arm = "ARM" | visit =
"AVISIT"),
data,
conf_level = 0.95,
cor_struct = "unstructured”,
weights_emmeans = "counterfactual”,

averages_emmeans = list(),

Arguments

vars (named list of string or character)
specifying the variables in the MMRM. The following elements need to be included
as character vectors and match corresponding columns in data:

* response: the response variable.

e covariates: the additional covariate terms (might also include interac-
tions).

* id: the subject ID variable.

e arm: the treatment group variable (factor).

e visit: the visit variable (factor).

* weights: optional weights variable (if NULL or omitted then no weights will
be used).

Note that the main effects and interaction of arm and visit are by default in-
cluded in the model.

data (data.frame)
with all the variables specified in vars. Records with missing values in any
independent variables will be excluded.

conf_level (proportion)
confidence level of the interval.

cor_struct (string)
specifying the covariance structure, defaults to 'unstructured’. See the de-
tails.
weights_emmeans
(string)
argument from emmeans: :emmeans(), 'counterfactual' by default.
averages_emmeans
(list)
optional named list of visit levels which should be averaged and reported along
side the single visits.

additional arguments for mmrm: :mmrm(), in particular reml and options listed in
mmrm: :mmrm_control ().

80 fit mmrm_j

Details

Multiple different degree of freedom adjustments are available via the method argument for mmrm: :mmrm().
In addition, covariance matrix adjustments are available via vcov. Please see mmrm: :mmrm_control ()
for details and additional useful options.

For the covariance structure (cor_struct), the user can choose among the following options.
* unstructured: Unstructured covariance matrix. This is the most flexible choice and default.
If there are T visits, then T * (T+1) / 2 variance parameters are used.

* toeplitz: Homogeneous Toeplitz covariance matrix, which uses T variance parameters.

* heterogeneous toeplitz: Heterogeneous Toeplitz covariance matrix, which uses 2 * T - 1
variance parameters.

* ante-dependence: Homogeneous Ante-Dependence covariance matrix, which uses T vari-
ance parameters.

* heterogeneous ante-dependence: Heterogeneous Ante-Dependence covariance matrix,
which uses 2 * T - 1 variance parameters.

* auto-regressive: Homogeneous Auto-Regressive (order 1) covariance matrix, which uses
2 variance parameters.

* heterogeneous auto-regressive: Heterogeneous Auto-Regressive (order 1) covariance
matrix, which uses T + 1 variance parameters.

» compound symmetry: Homogeneous Compound Symmetry covariance matrix, which uses 2
variance parameters.

* heterogeneous compound symmetry: Heterogeneous Compound Symmetry covariance ma-
trix, which uses T + 1 variance parameters.

Value
A tern_model object which is a list with model results:

e fit: The mmrm object which was fitted to the data. Note that via mmrm: : component(fit,
'optimizer") the finally used optimization algorithm can be obtained, which can be useful
for refitting the model later on.

e cov_estimate: The matrix with the covariance matrix estimate.

* diagnostics: A list with model diagnostic statistics (REML criterion, AIC, corrected AIC,
BIC).

¢ lsmeans: This is a list with data frames estimates and contrasts. The attributes averages
and weights save the settings used (averages_emmeans and weights_emmeans).

* vars: The variable list.

* labels: Corresponding list with variable labels extracted from data.

e cor_struct: input.

* ref_level: The reference level for the arm variable, which is always the first level.
* treatment_levels: The treatment levels for the arm variable.

e conf_level: The confidence level which was used to construct the 1smeans confidence inter-
vals.

* additional: List with any additional inputs passed via . . .

get_mmrm_Ismeans 81

Note

This function has the _j suffix to distinguish it from mmrm: : fit_mmrm(). It is a copy from the
tern.mmrm package and later will be replaced by tern.mmrm::fit_mmrm(). No new features are
included in this function here.

Examples

mmrm_results <- fit_mmrm_j(
vars = list(

response = "FEV1",
covariates = c("RACE", "SEX"),
id = "USUBJID",
arm = "ARMCD",
visit = "AVISIT"
),
data = mmrm::fev_data,
cor_struct = "unstructured”,
weights_emmeans = "equal”,

averages_emmeans = list(
"VIS1+2" = c("VIS1", "VIS2")
)
)

get_mmrm_lsmeans Extract Least Square Means from MMRM

Description

Extracts the least square means from an MMRM fit.

Usage

get_mmrm_lsmeans(fit, vars, conf_level, weights, averages = list())

Arguments
fit (mmrm)
result of mmrm: :mmrm().
vars (named list of string or character)

specifying the variables in the MMRM. The following elements need to be included
as character vectors and match corresponding columns in data:

* response: the response variable.

* covariates: the additional covariate terms (might also include interac-

tions).

* id: the subject ID variable.

e arm: the treatment group variable (factor).

e visit: the visit variable (factor).

82 get_ref_info

* weights: optional weights variable (if NULL or omitted then no weights will
be used).

Note that the main effects and interaction of arm and visit are by default in-
cluded in the model.

conf_level (proportion)
confidence level of the interval.

weights (string)

type of weights to be used for the least square means, see emmeans: : emmeans ()
for details.

averages (list)
named list of visit levels which should be averaged and reported along side the
single visits.

Value

A list with data frames estimates and contrasts. The attributes averages and weights save the
settings used.

get_ref_info Obtain Reference Information for a Global Reference Group

Description

This helper function can be used in custom analysis functions, by passing an extra argument ref_path
which defines a global reference group by the corresponding column split hierarchy levels.

Usage

get_ref_info(ref_path, .spl_context, .var = NULL)

Arguments

ref_path (character)
reference group specification as an rtables colpath, see details.

.spl_context (data.frame)
see rtables::spl_context.

.var (character)
the variable being analyzed, see rtables::additional_fun_params.

Details

The reference group is specified in colpath hierarchical fashion in ref_path: the first column split
variable is the first element, and the level to use is the second element. It continues until the last
column split variable with last level to use. Note that depending on .var, either a data. frame (if
.var is NULL) or a vector (otherwise) is returned. This allows usage for analysis functions with df
and x arguments, respectively.

get_ref_info 83

Value

A list with ref_group and in_ref_col, which can be used as .ref_group and .in_ref_col as if
being directly passed to an analysis function by rtables, see rtables::additional_fun_params.

Examples

dm <- DM

dm$colspan_trt <- factor(
ifelse(dm$ARM == "B: Placebo”, " ", "Active Study Agent"),
levels = c("Active Study Agent”, " ")

)

colspan_trt_map <- create_colspan_map(
dm,
non_active_grp = "B: Placebo”,

n on

non_active_grp_span_lbl = ,
active_grp_span_lbl = "Active Study Agent”,

colspan_var = "colspan_trt"”,
trt_var = "ARM"
)
standard_afun <- function(x, .ref_group, .in_ref_col) {
in_rows(
"Difference of Averages” = non_ref_rcell(
mean(x) - mean(.ref_group),
is_ref = .in_ref_col,
format = "xx.xx"
)
)
3

result_afun <- function(x, ref_path, .spl_context, .var) {
ref <- get_ref_info(ref_path, .spl_context, .var)
standard_afun(x, .ref_group = ref$ref_group, .in_ref_col = ref$in_ref_col)

}
ref_path <- c("colspan_trt”, " ", "ARM", "B: Placebo”)

lyt <- basic_table() |>
split_cols_by(
"colspan_trt",
split_fun = trim_levels_to_map(map = colspan_trt_map)
) 1>
split_cols_by("ARM") |>
analyze(
"AGE",
extra_args = list(ref_path = ref_path),
afun = result_afun

)

build_table(lyt, dm)

84 get_titles_from_file

get_titles_from_file Get Titles/Footers For Table From Sources

Description

Retrieves the titles and footnotes for a given table from a CSV/XLSX file or a data.frame.

Usage
get_titles_from_file(
id,
file = .find_titles_file(input_path),
input_path = ".",
title_df = .read_titles_file(file)
)
Arguments
id (character(1))
The identifier for the table of interest.
file (character(1))
A path to CSV or xIsx file containing title and footer information for one or
more outputs. See Details. Ignored if title_df is specified.
input_path (character(1))
A path to look for titles.csv/titles.xIsx. Ignored if file or title_df is specified.
title_df (data.frame)
A data.frame containing titles and footers for one or more outputs. See Details.
Details

Retrieves the titles for a given output id (see below) and outputs a list containing the title and
footnote objects supported by rtables. Both titles.csv and titles.xlsx (if readxl is installed) files are
supported, with titles.csv being checked first.

Data is expected to have “TABLE ID™, “IDENTIFIER™, and “TEXT™ columns,
where “IDENTIFIER™ has the value "TITLE® for a title and “FOOT*~ for
footer materials where “*° is a positive integer. “TEXT" contains

the value of the title/footer to be applied.

Value

List object containing: title, subtitles, main_footer, prov_footer for the table of interest. Note: the
subtitles and prov_footer are currently set to NULL. Suitable for use with set_titles().

get_visit_levels 85

get_visit_levels Get Visit Levels in Order Defined by Numeric Version

Description

Get Visit Levels in Order Defined by Numeric Version

Usage

get_visit_levels(visit_cat, visit_n)

Arguments
visit_cat (character)
the categorical version.
visit_n (numeric)
the numeric version.
Value

The unique visit levels in the order defined by the numeric version.

Examples

get_visit_levels(
visit_cat = c("Week 1", "Week 11", "Week 2"),
visit_n = c(1, 5, 2)

)

h_get_trtvar_refpath Get Treatment Variable Reference Path

Description

Retrieves the treatment variable reference path from the provided context.

Usage
h_get_trtvar_refpath(ref_path, .spl_context, df)

Arguments

ref_path (character)
Reference path for treatment variable.

.spl_context (data.frame)
Current split context.

df (data.frame)
Data frame.

86 h_odds_ratio

Value

List containing treatment variable details.

h_odds_ratio Helper functions for odds ratio estimation

Description

[Stable]

Functions to calculate odds ratios in s_odds_ratio_j().
Usage

or_glm_j(data, conf_level)

or_clogit_j(data, conf_level, method = "exact")

or_cmh(data, conf_level)

Arguments
data (data.frame)
data frame containing at least the variables rsp and grp, and optionally strata
for or_clogit_j().
conf_level (numeric)
confidence level for the confidence interval.
method (string)
whether to use the correct (' exact') calculation in the conditional likelihood or
one of the approximations, or the CMH method. See survival::clogit() for
details.
Value

A named list of elements or_ci, n_tot and pval.

Functions

e or_glm_j(): Estimates the odds ratio based on stats::glm(). Note that there must be
exactly 2 groups in data as specified by the grp variable.

e or_clogit_j(): Estimates the odds ratio based on survival::clogit(). This is done for
the whole data set including all groups, since the results are not the same as when doing
pairwise comparisons between the groups.

* or_cmh(): Estimates the odds ratio based on CMH. Note that there must be exactly 2 groups
in data as specified by the grp variable.

inches_to_spaces

See Also

odds_ratio

Examples

data <- data.frame(

rsp = as.logical(c(1, 1, 0, 1, 0, @, 1, 1)),
grp = letters[c(1, 1, 1, 2, 2, 2, 1, 2)],
strata = letters[c(1, 2, 1, 2, 2, 2, 1, 2)],
stringsAsFactors = TRUE
)
or_glm_j(data, conf_level = 0.95)
data <- data.frame(
rsp = as.logical(c(1, 1, 0, 1, @, @, 1, 1, 0, @0, 1, 1, 0, 1, @, 0, 1, 1, 0, 9)),
grp = letters[c(1, 1, 1, 2, 2, 2, 3,3, 3,3, 1,1,1,2,2,2,3,3, 3, 3],
strata = LETTERS[c(1, 1, 1, 1,1, 1, 1,1, 1,1, 2,2, 2,2,2,2,2,2, 2, 2)],
stringsAsFactors = TRUE
)
or_clogit_j(data, conf_level = 0.95)
set.seed(123)
data <- data.frame(
rsp = as.logical(rbinom(n = 40, size = 1, prob = 0.5)),
grp = letters[sample(1:2, size = 40, replace = TRUE)],
strata = LETTERS[sample(1:2, size = 40, replace = TRUE)],

stringsAsFactors = TRUE

)

or_cmh(data, conf_level = 0.95)

87

inches_to_spaces Conversion of inches to spaces.

Description

Conversion of inches to spaces.

Usage

inches_to_spaces(ins, fontspec, raw = FALSE, tol
Arguments

ins (numeric)

Vector of widths in inches.

= sqrt(.Machine$double.eps))

88 insert_blank_line

fontspec (font_spec)
The font specification to use.

raw (logical(1))
Should the answer be returned unrounded (TRUE), or rounded to the nearest rea-
sonable value (FALSE, the default).

tol (numeric(1))
The numeric tolerance. Values between an integer n, and n+tol will be returned
as n, rather than n+1, if raw == FALSE. Ignored when raw is TRUE.

Value

The number of either fractional (raw = TRUE) or whole (raw = FALSE) spaces that will fit within ins
inches in the specified font.

insert_blank_line Insertion of Blank Lines in a Layout

Description

This is a hack for rtables in order to be able to add row gaps, i.e. blank lines. In particular, by
default this function needs to maintain a global state for avoiding duplicate table names. The global
state variable is hidden by using a dot in front of its name. However, this likely won’t work with
parallelisation across multiple threads and also causes non-reproducibility of the resulting rtables
object. Therefore also a custom table name can be used.

Usage

insert_blank_line(lyt, table_names = NULL)

Arguments
1yt (layout)
input layout where analyses will be added to.
table_names (character)
this can be customized in case that the same vars are analyzed multiple times,
to avoid warnings from rtables.
Value

The modified layout now including a blank line after the current row content.

Jjesformat_xx 89

Examples
ADSL <- ex_adsl
lyt <- basic_table() |>

split_cols_by("ARM") |>
split_rows_by("STRATA1") |>

analyze(vars = "AGE"”, afun = function(x) {
in_rows(
"Mean (sd)" = rcell(c(mean(x), sd(x)), format = "xx.xx (xx.xx)")
)
1>
insert_blank_line() |>
analyze(vars = "AGE"”, table_names = "AGE_Range"”, afun = function(x) {
in_rows(
"Range"” = rcell(range(x), format = "xx.xx - xx.xx"
)
D)

build_table(lyt, ADSL)

jjcsformat_xx Utility for specifying custom formats

Description

Utility for specifying custom formats that can be used as a format in formatters: :format_value

A function factory to generate formatting functions for p-value formatting that support rounding
close to the significance level specified.

A function factory to generate formatting functions for range formatting that includes information
about the censoring of survival times.

Usage

jjcsformat_xx(
str,
na_str = na_str_dflt,
na_str_dflt = "NE",
replace_na_dflt = TRUE
)

jjcsformat_pval_fct(alpha = 0.05)

jjcsformat_range_fct(str, censor_char = "+"
Arguments
str (string)

the format specifying the number of digits to be used, for the range values, e.g.
"xx.xx".

90 Jjesformat_xx

na_str String for NA values.

na_str_dflt Character to represent NA value

replace_na_dflt
logical(1). Should an na_string of "NA" within the formatters framework be
overridden by na_str_default? Defaults to TRUE, as a way to have a different
default na string behavior from the base formatters framework.

alpha (numeric)
the significance level to account for during rounding.

censor_char (string)
the character (of length 1) to be appended to min or max

Value

Either a supported format string, or a formatting function that can be used as format in formatters: : format_value

The p-value in the standard format. If count is 0, the format is @. If it is smaller than 0.001, then
<@.001, if it is larger than 0.999, then >0.999 is returned. Otherwise, 3 digits are used. In the
special case that rounding from below would make the string equal to the specified alpha, then a
higher number of digits is used to be able to still see the difference. For example, 0.0048 is not
rounded to 0.005 but stays at 0.0048 if alpha = 0.005 is set.

A function that formats a numeric vector with 4 elements:

* minimum
* maximum
¢ censored minimum? (1 if censored, O if event)

* censored maximum? (1 if censored, 0 if event) The range along with the censoring information
is returned as a string with the specified numeric format as (min, max), and the censor_char
is appended to min or max if these have been censored.

See Also

Other JJCS formatting functions: count and fraction related formatting functions

Examples

value <- c(1.65, 8.645)
fmt <- jjcsformat_xx("xx.x"
is.function(fmt)

fmt
format_value(value[1], fmt, round_type = "sas")
format_value(value[1], fmt, round_type = "iec")

if (is.function(fmt)) fmt(valuel[1])

fmt2 <- jjcsformat_xx("xx.x (xx.xxx)")
is.function(fmt2)

value <- c(1.65, 8.645)

format_value(value, fmt2, round_type = "sas")
format_value(value, fmt2, round_type = "iec")

only possible when resulting format is a function

Jjjes_num_formats 91

if (is.function(fmt2)) fmt2(value, round_type = "sas")

value <- c(1.65, NA)

format_value(value, fmt2, round_type = "iec”, na_str = c("nel”, "ne2"))
if (is.function(fmt2)) fmt2(value, round_type = "iec"”, na_str = c("nel”, "ne2"))
my_pval_format <- jjcsformat_pval_fct(0.005)

my_pval_format(0.2802359)

my_pval_format(0.0048)

my_pval_format(0.00499)

my_pval_format(0.004999999)

my_pval_format(0.0051)

my_pval_format(0.0009)

my_pval_format(0.9991)

"

my_range_format <- jjcsformat_range_fct("xx.xx")
my_range_format(c(@.35235, 99.2342, 1, 0))
my_range_format(c(0.35235, 99.2342, 0, 1))
my_range_format(c(0.35235, 99.2342, 0, 0))
my_range_format(c(@.35235, 99.2342, 1, 1))

my_range_format <- jjcsformat_range_fct("xx.xx", censor_char = "x")
my_range_format(c(0.35235, 99.2342, 1, 1))

jjcs_num_formats Numeric Formatting Function

Description

Formatting setter for selected numerical statistics.

Usage

jjcs_num_formats(d, cap = 4)

Arguments
d (numeric)
precision of individual values
cap (numeric)
cap to numerical precision (d > cap — will use precision as if cap was specified
as precision)
Value
list:

* fmt : named vector with formatting function (jjcsformat_xx) for numerical stats: range, me-
dian, mean_sd, sd

* spec : named vector with formatting specifications for numerical stats: range, median, mean_sd,
sd

92 Jj_complex_scorefun
Examples
P1_precision <- jjcs_num_formats(d = @)$fmt
jjcs_num_formats(2)$fmt
jjcs_num_formats(2)$spec
jj_complex_scorefun Complex Scoring Function
Description
A function used for sorting AE tables (and others) as required.
Usage
jj_complex_scorefun(
spanningheadercolvar = "colspan_trt”,
usefirstcol = FALSE,
colpath = NULL,
firstcat = NULL,
lastcat = NULL
)
Arguments
spanningheadercolvar
(character)
Name of spanning header variable that defines the active treatment columns. If
you do not have an active treatment spanning header column then user can define
this as NA.
usefirstcol (logical)
This allows you to just use the first column of the table to sort on.
colpath (character)
Name of column path that is needed to sort by (default=NULL). This overrides
other arguments if specified (except firstcat and lastcat which will be applied if
requested on this colpath).
firstcat (logical)
If you wish to put any category at the top of the list despite any n’s, user can
specify it here.
lastcat (logical)

If you wish to put any category at the bottom of the list despite any n’s, user can
specify it here.

Jj_complex_scorefun 93

Details
This sort function sorts as follows:

» Takes all the columns from a specified spanning column header (default= colspan_trt) and
sorts by the last treatment column within this.

* If no spanning column header variable exists (e.g you have only one active treatment arm
and have decided to remove the spanning header from your layout), it will sort by the first
treatment column in your table.

This function is not really designed for tables that have sub-columns. However, if users wish to
override any default sorting behavior, they can simply specify their own colpath to use for sorting
on (default = NULL)

Value

A function which can be used as a score function (scorefun in sort_at_path).

Examples

library(dplyr)
ADAE <- data.frame(
USUBJID = c(
UXXXXXQ1", "XXXXX@2", "XXXXXQ3", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXXQ7", "XXXXX@Q8", "XXXXXQ9", "XXXXX1Q"
),
AEBODSYS = c(
"soc 1", "soc 2", "soc 1", "socC 2", "SoC 2",
"sSoc 2", "soc 2", "soc 1", "soC 2", "SoC 1"

),

AEDECOD = c(
"Coded Term 2", "Coded Term 1", "Coded Term 3", "Coded Term 4",
"Coded Term 4", "Coded Term 4", "Coded Term 5", "Coded Term 3",
"Coded Term 1", "Coded Term 2"

),

TRTO1A = c(
"ARMA", "ARMB", "ARMA", "ARMB", "ARMB",
"Placebo”, "Placebo”, "Placebo"”, "ARMA", "ARMB"

),

TRTEMFL = c("Y", "Y", "N", "y" ~"y", "y" "y UN", "Y' "Y")

ADAE <- ADAE |>
dplyr::mutate(TRTO1A = as.factor(TRTO1A))

ADAE$colspan_trt <- factor(ifelse(ADAE$TRTO1A == "Placebo”, " ", "Active Study Agent"),
levels = c("Active Study Agent”, " ")
)

ADAE$rrisk_header <- "Risk Difference (%) (95% CI)"
ADAES$rrisk_label <- paste(ADAE$TRTO1A, paste(”"vs", "Placebo"))

colspan_trt_map <- create_colspan_map(ADAE,

Jj_complex_scorefun

non_active_grp = "Placebo”,
non_active_grp_span_lbl = " "
active_grp_span_lbl = "Active Study Agent”,

colspan_var = "colspan_trt"”,
trt_var = "TRTQ1A"
)
ref_path <- c("colspan_trt”, " ", "TRT@Q1A", "Placebo")

ADSL <- unique(ADAE |> select(USUBJID, "colspan_trt"”, "rrisk_header”, "rrisk_label”, "TRTQ1A"))

lyt <- basic_table() |>
split_cols_by(
"colspan_trt",
split_fun = trim_levels_to_map(map = colspan_trt_map)
) 1>
split_cols_by("TRTQ1A") |>
split_cols_by("rrisk_header”, nested = FALSE) |>
split_cols_by(
"TRTO1A",
labels_var = "rrisk_label”,
split_fun = remove_split_levels("Placebo”)
) 1>
analyze(
"TRTEMFL",
a_freq_j,
show_labels = "hidden"”,
extra_args = list(
method = "wald”,
label = "Subjects with >=1 AE",
ref_path = ref_path,
.stats = "count_unique_fraction”
)
) 1>
split_rows_by("AEBODSYS",
split_label = "System Organ Class”,
split_fun = trim_levels_in_group("AEDECOD"),
label_pos = "topleft”,
section_div = c(" "),
nested = FALSE

) 1>
summarize_row_groups(
"AEBODSYS",

cfun = a_freq_j,
extra_args = list(
method = "wald",
ref_path = ref_path,
.stats = "count_unique_fraction”
)
) 1>
analyze(
"AEDECOD",
afun = a_freq_j,

keep_non_null_rows 95
extra_args = list(
method = "wald”,
ref_path = ref_path,
.stats = "count_unique_fraction”
)
)
result <- build_table(lyt, ADAE, alt_counts_df = ADSL)
result
result <- sort_at_path(
result,
c("root”, "AEBODSYS"),
scorefun = jj_complex_scorefun()
)
result <- sort_at_path(
result,
c("root”, "AEBODSYS", "x", "AEDECOD"),
scorefun = jj_complex_scorefun()
)
result
keep_non_null_rows Pruning Function to accommodate removal of completely NULL rows
within a table
Description

Condition function on individual analysis rows. Flag as FALSE when all columns are NULL, as

then the row should not be kept. To be utilized as a row_condition in function tern::keep_rows

Usage

keep_non_null_rows(tr)

Arguments
tr (TableTree)
The TableTree object to prune.
Value

A function that can be utilized as a row_condition in the tern::keep_rows function.

96 listing_column_widths

Examples
library(dplyr)

ADSL <- data.frame(

USUBJID = c(
UXXXXXQ1", "XXXXX02", "XXXXX@Q3", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXXQ7", "XXXXX@Q8", "XXXXXQ9", "XXXXX1@"

),

TRTOIP = c(
"ARMA", "ARMB", "ARMA", "ARMB", "ARMB", "Placebo”,
"Placebo”, "Placebo”, "ARMA", "ARMB"

),

AGE = c(34, 56, 75, 81, 45, 75, 48, 19, 32, 31),

SAFFL = c("N", "N", "N", "N", "N", "N", "N", "N", "N", "N"),

PKFL = c(”"N", "N", "N", "N", "N", "N", "N", "N", "N", "N")

ADSL <- ADSL |>
mutate(TRTQ1P = as.factor(TRTO1P))

create_blank_line <- function(x) {

list(
"Mean” = rcell(mean(x), format = "xx.x"),
" " = rcell(NULL),
"Max" = rcell(max(x))

)

lyt <- basic_table() |>
split_cols_by("TRTQ1P") |>
analyze("AGE", afun = create_blank_line)

result <- build_table(lyt, ADSL)

result
result <- prune_table(result, prune_func = tern::keep_rows(keep_non_null_rows))

result

listing_column_widths Define Column Widths

Description

def_colwidths uses heuristics to determine suitable column widths given a table or listing, and a
font.

listing_column_widths

Usage

97

listing_column_widths(

mpf,

incl_header = TRUE,

col_gap = 0.5,

pg_width_ins = 8.88,

fontspec = font_spec("Times", 8, 1.2),
verbose = FALSE

)

def_colwidths(
tt,
fontspec,

label_width_ins = 2,
col_gap = ifelse(type == "Listing", 0.5, 3),
type = tlg_type(tt)

Arguments

mpf

incl_header

col_gap
pg_width_ins

fontspec

verbose

tt

label_width_ins

type

Details

(listing_df or MatrixPrintForm derived thereof)
The listing calculate column widths for.

(logical(1))
Should the constraint to not break up individual words be extended to words in
the column labels? Defaults to TRUE

Column gap in spaces. Defaults to .5 for listings and 3 for tables.

(numeric(1))

Number of inches in width for the portion of the page the listing will be printed
to. Defaults to 8.88 which corresponds to landscape orientation on a standard
page after margins.

Font specification

(logical(1))
Should additional information messages be displayed during the calculation of
the column widths? Defaults to FALSE.

input TableTree

Label Width in Inches.

Type of the TableTree, used to determine column width calculation method.

Listings are assumed to be rendered landscape on standard Al paper, such that all columns are
rendered on one page. Tables are allowed to be horizontally paginated, and column widths are
determined based only on required word wrapping. See the Automatic Column Widths vignette
for a detailed discussion of the algorithms used.

98 make_combo_splitfun

Value
e listing_column_widths: a vector of column widths suitable to use in tt_to_tlgrtf and

other exporters.

» def_colwidths: a vector of column widths (including the label row pseudo-column in the
table case) suitable for use rendering tt in the specified font.

make_combo_splitfun Split Function Helper

Description

A function which aids the construction for users to create their own split function for combined
columns.

Usage

make_combo_splitfun(nm, label = nm, levels = NULL, rm_other_facets = TRUE)

Arguments
nm (character)
Name/virtual ’value’ for the new facet.
label (character)
Label for the new facet.
levels (character or NULL)

The levels to combine into the new facet, or NULL, indicating the facet should
include all incoming data.

rm_other_facets
(logical)
Should facets other than the newly created one be removed. Defaults to TRUE.

Value

Function usable directly as a split function.

Examples

aesevall_spf <- make_combo_splitfun(nm = "AESEV_ALL", label = "Any AE"”, levels = NULL)

make_rbmi_cluster

make_rbmi_cluster Create a rbmi ready cluster

Description

This function is a wrapper around parallel: :makePSOCKcluster () but takes care of configuring
rbmi to be used in the sub-processes as well as loading user defined objects and libraries and setting

the seed for reproducibility.

Usage

make_rbmi_cluster(cluster_or_cores = 1, objects = NULL, packages = NULL)

Arguments

cluster_or_cores

(integer or cluster object)

Number of parallel processes to use or an existing cluster to make use of
objects (list)

A named list of objects to export into the sub-processes
packages (character vector)

A character vector of libraries to load in the sub-processes

Value

e If cluster_or_cores is 1, this function will return NULL.

o If cluster_or_cores is a number greater than 1, a cluster with cluster_or_cores cores is

returned.

e If cluster_or_cores is a cluster created via parallel: :makeCluster (), then this function

returns it after inserting the relevant rbmi objects into the existing cluster.

Examples

Not run:
make_rbmi_cluster(5)
closeAllConnections()

VALUE <- 5
myfun <- function(x) {
x + day(VALUE)

3
make_rbmi_cluster(5, list(VALUE = VALUE, myfun = myfun), c("lubridate”))
closeAllConnections()

cl <- parallel::makeCluster(5)
make_rbmi_cluster(cl)

closeAllConnections()

End(Not run)

100

odds_ratio

odds_ratio Odds ratio estimation

Description

[Stable] A set of functions for Odds-Ratio (OR) calculation.

Usage

a_odds_ratio_j(
df,
.var,
.df_row,
ref_path,
.spl_context,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)

s_odds_ratio_j(
df,
.var,
.ref_group,
.in_ref_col,
.df_row,
variables = list(arm = NULL, strata = NULL),
conf_level = 0.95,
groups_list = NULL,
na_if_no_events = TRUE,

method = c("exact"”, "approximate", "efron”, "breslow”, "cmh")
)
Arguments
df (data.frame)
input data frame.
.var (string)
name of the response variable.
.df _row (data.frame)
data frame containing all rows.
ref_path (character)

path to the reference group.

odds_ratio 101

.spl_context (environment)
split context environment.

Additional arguments passed to the statistics function.

.stats (character)

statistics to calculate.
.formats (list)

formats for the statistics.
.labels (list)

labels for the statistics.

.indent_mods (list)
indentation modifications for the statistics.

.ref_group (data.frame)
reference group data frame.

.in_ref_col (logical)
whether the current column is the reference column.

variables (list)
list with arm and strata variable names.

conf_level (numeric)
confidence level for the confidence interval.

groups_list (list)
list of groups for combination.

na_if_no_events

(flag)
whether the point estimate should be NA if there are no events in one arm. The
p-value and confidence interval will still be computed.

method (string)
whether to use the correct ('exact') calculation in the conditional likelihood or
one of the approximations, or the CMH method. See survival::clogit() for
details.

Value
* a_odds_ratio_j() returns the corresponding list with formatted rtables::CellValue().

e s_odds_ratio_j() returns a named list with the statistics or_ci (containing est, 1cl, and
ucl), pval and n_tot.

Functions

* a_odds_ratio_j(): Formatted analysis function which is used as afun. Note that the junco
specific ref_path and . spl_context arguments are used for reference column information.

e s_odds_ratio_j(): Statistics function which estimates the odds ratio between a treatment
and a control. A variables list with arm and strata variable names must be passed if a
stratified analysis is required.

102 odds_ratio

Note

The a_odds_ratio_j() and s_odds_ratio_j() functions have the _j suffix to distinguish them
from tern::a_odds_ratio() and tern::s_odds_ratio(), respectively. These functions differ
as follows:

* Additional method = 'cmh' option is provided to calculate the Cochran-Mantel-Haenszel es-
timate.

* The p-value is returned as an additional statistic.

Once these updates are contributed back to tern, they can later be replaced by the tern versions.

Examples

set.seed(12)

dta <- data.frame(
rsp = sample(c(TRUE, FALSE), 100, TRUE),
grp = factor(rep(c("A", "B"), each = 50), levels = c("A", "B")),
strata = factor(sample(c("C", "D"), 100, TRUE))

)

a_odds_ratio_j(

df = subset(dta, grp == "A"),

.var = "rsp”,

ref_path = c("grp”, "B"),

.spl_context = data.frame(
cur_col_split = I(list("grp")),
cur_col_split_val = I(list(c(grp = "A"))),
full_parent_df = I(list(dta))

),

.df_row = dta

1 <- basic_table() |>
split_cols_by(var = "grp") |[>
analyze(

"rsp”,
afun = a_odds_ratio_j,
show_labels = "hidden”,
extra_args = list(
ref_path = c("grp”, "B"),
.stats = c("or_ci”, "pval")
)
)

build_table(l, df = dta)

12 <- basic_table() |>
split_cols_by(var = "grp"”) |>
analyze(

"rsp”,
afun = a_odds_ratio_j,

par_lapply 103

show_labels = "hidden”,

extra_args = list(
variables = list(arm = "grp", strata = "strata"),
method = "cmh",
ref_path = c("grp”, "A"),
.stats = c("or_ci”, "pval”)

)

)

build_table(12, df = dta)
s_odds_ratio_j(
df = subset(dta, grp == "A"),

.var = "rsp”,

.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,

.df_row = dta

)

s_odds_ratio_j(
df = subset(dta, grp == "A"),

.var = "rsp”,

.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,

.df_row = dta,

variables = list(arm = "grp", strata = "strata")

)

s_odds_ratio_j(
df = subset(dta, grp == "A"),
method = "cmh”,
.var = "rsp”,
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
.df_row = dta,
variables = list(arm = "grp", strata = c("strata"))

par_lapply Parallelise Lapply

Description

Simple wrapper around lapply and parallel::clusterApplylLB to abstract away the logic of
deciding which one to use.

Usage

par_lapply(cl, fun, x, ...)

104

Arguments

cl

fun

Value

(cluster object)
Cluster created by parallel: :makeCluster() or NULL

(functions)
Function to be run

(object)
Object to be looped over

Extra arguments passed to fun

list of results of calling fun on elements of x.

prop_diff

prop_diff

Proportion difference estimation

Description

The analysis function a_proportion_diff_j() can be used to create a layout element to estimate
the difference in proportion of responders within a studied population. The primary analysis vari-
able, vars, is a logical variable indicating whether a response has occurred for each record. See
the method parameter for options of methods to use when constructing the confidence interval of
the proportion difference. A stratification variable can be supplied via the strata element of the
variables argument.

Usage

a_proportion_diff_j(

df,

.var,
ref_path,
.spl_context,

L

.stats = NULL,
.formats = NULL,
.labels = NULL,

.indent_mods

)

= NULL

s_proportion_diff_j(

df,

.var,
.ref_group,
.in_ref_col,

variables = list(strata = NULL),
conf_level = 0.95,

prop_diff 105

method = c("waldcc”, "wald”, "cmh”, "cmh_sato”, "cmh_mn"”, "ha", "newcombe”,
"newcombecc”, "strat_newcombe”, "strat_newcombecc"),
weights_method = "cmh”
)
Arguments
df (data.frame)
input data frame.
.var (string)
name of the response variable.
ref_path (character)

path to the reference group.

.spl_context (environment)
split context environment.

Additional arguments passed to the statistics function.

.stats (character)
statistics to calculate.

.formats (list)
formats for the statistics.
.labels (list)

labels for the statistics.

.indent_mods (list)
indentation modifications for the statistics.

.ref_group (data.frame)
reference group data frame.

.in_ref_col (logical)
whether the current column is the reference column.

variables (list)
list with strata variable names.

conf_level (numeric)
confidence level for the confidence interval.

method (string)
method to use for confidence interval calculation.

weights_method (string)
method to use for weights calculation in stratified analysis.

Value
e a_proportion_diff_j() returns the corresponding list with formatted rtables: :CellValue().

e s_proportion_diff_j() returns a named list of elements diff, diff_ci, diff_est_ci and
diff_ci_3d.

106 prop_diff

Functions

e a_proportion_diff_j(): Formatted analysis function which is used as afun in estimate_proportion_diff().

* s_proportion_diff_j(): Statistics function estimating the difference in terms of responder
proportion.

Note

The a_proportion_diff_j() function has the _j suffix to distinguish it from tern: :a_proportion_diff().
The functions here are a copy from the tern package with additional features:

e Additional statistic diff_est_ci is returned.

* ref_path needs to be provided as extra argument to specify the control group column.

When performing an unstratified analysis, methods 'cmh’, 'cmh_sato', 'cmh_mn', 'strat_newcombe',
and 'strat_newcombecc' are not permitted.

Examples

nex <- 100

dta <- data.frame(
"rsp” = sample(c(TRUE, FALSE), nex, TRUE),
"grp” = sample(c("A", "B"), nex, TRUE),
"f1" = sample(c("al”, "a2"), nex, TRUE),
"f2" = sample(c("x", "y", "z"), nex, TRUE),
stringsAsFactors = TRUE

1 <- basic_table() |>
split_cols_by(var = "grp") |>
analyze(

vars = "rsp",
afun = a_proportion_diff_j,
show_labels = "hidden"”,
na_str = tern::default_na_str(),
extra_args = list(
conf_level = 0.9,
method = "ha",
ref_path = c("grp”, "B")
)
)

build_table(l, df = dta)

s_proportion_diff_j(
df = subset(dta, grp == "A"),
.var = "rsp”,
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
conf_level = 0.90,
method = "ha"

prop_diff_test 107

s_proportion_diff_j(
df = subset(dta, grp == "A"),
.var = "rsp”,
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
variables = list(strata = c("f1", "f2")),
conf_level = 0.90,
method = "cmh"

prop_diff_test Difference test for two proportions

Description

[Stable]

The analysis function a_test_proportion_diff () can be used to create a layout element to test
the difference between two proportions. The primary analysis variable, vars, indicates whether a
response has occurred for each record. See the method parameter for options of methods to use to
calculate the p-value. Additionally, a stratification variable can be supplied via the strata element
of the variables argument. The argument alternative specifies the direction of the alternative
hypothesis.

Usage

a_test_proportion_diff(
df,
.var,
ref_path,
.spl_context,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL

)
Arguments
df (data.frame)
data set containing all analysis variables.
.var (string)

single variable name that is passed by rtables when requested by a statistics
function.

108

ref_path

.spl_context

.stats

.formats

.labels

.indent_mods

Value

* a_test_proportion_diff() returns the corresponding list with formatted rtables: :CellValue().

Functions

prop_diff_test

(character)
global reference group specification, see get_ref_info().

(data.frame)
gives information about ancestor split states that is passed by rtables.

Additional arguments passed to tern::s_test_proportion_diff(), includ-
ing:
* method (string)
one of chisq, cmh, cmh_wh, fisher or schouten; specifies the test used to
calculate the p-value.

(character)
statistics to select for the table.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

(named character)
labels for the statistics (without indent).

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

* a_test_proportion_diff(): Formatted analysis function which is used as afun

Note

This function has been forked from the tern package. Additional features are:

* Additional ref_path argument for flexible reference column path specification.

Examples

dta <- data.frame(
rsp = sample(c(TRUE, FALSE), 100, TRUE),
grp = factor(rep(c("A", "B"), each = 50)),
strata = factor(rep(c("Vv", "W", "X", "Y", "Z"), each = 20))

)

1 <- basic_table() |>
split_cols_by(var = "grp") |>

analyze(

vars = "rsp”,

afun = a_test_proportion_diff,
show_labels = "hidden”,
extra_args = list(

prop_post_fun 109

method = "cmh",
variables = list(strata = "strata"),
ref_path = c("grp”, "B")

)
)

build_table(l, df = dta)

prop_post_fun Split Function for Proportion Analysis Columns

Description

Here we just split into 3 columns n, % and Cum %.

Usage
prop_post_fun(ret, spl, fulldf, .spl_context)

prop_split_fun(df, spl, vals = NULL, labels = NULL, trim = FALSE, .spl_context)

Arguments
ret (list)
return value from the previous split function.
spl (list)
split information.
fulldf (data.frame)

full data frame.

.spl_context (environment)
split context environment.

df A data frame that contains all analysis variables.
vals A character vector that contains values to use for the split.
labels A character vector that contains labels for the statistics (without indent).
trim A single logical that indicates whether to trim the values.
Value

a split function for use in rtables::split_rows_by.

See Also

rtables: :make_split_fun() describing the requirements for this kind of post-processing func-
tion.

110 prop_ratio_cmh

prop_ratio_cmh Relative Risk CMH Statistic

Description

Calculates the relative risk which is defined as the ratio between the response rates between the
experimental treatment group and the control treatment group, adjusted for stratification factors by
applying Cochran-Mantel-Haenszel (CMH) weights.

Usage

prop_ratio_cmh(rsp, grp, strata, conf_level = 0.95)

Arguments
rsp (logical)
whether each subject is a responder or not.
grp (factor)
defining the groups.
strata (factor)
variable with one level per stratum and same length as rsp.
conf_level (proportion)
confidence level of the interval.
Value

A list with elements rel_risk_ci and pval.

Examples

set.seed(2)
rsp <- sample(c(TRUE, FALSE), 100, TRUE)
grp <- sample(c("Placebo”, "Treatment”), 100, TRUE)
grp <- factor(grp, levels = c("Placebo”, "Treatment"))
strata_data <- data.frame(
"f1" = sample(c(”a”, "b"), 100, TRUE),
"f2" = sample(c("x", "y", "z"), 100, TRUE),
stringsAsFactors = TRUE
)

prop_ratio_cmh(
rsp = rsp, grp = grp, strata = interaction(strata_data),
conf_level = 0.90

)

prop_table_afun 111

prop_table_afun Formatted Analysis Function for Proportion Analysis

Description

This function applies to a factor x when a column split was prepared with prop_split_fun()
before.

Usage

prop_table_afun(x, .spl_context, formats, add_total_level = FALSE)

Arguments

X (factor)
factor variable to analyze.

.spl_context (environment)
split context environment.

formats (list)
formats for the statistics.
add_total_level

(flag)
whether to add a total level.
Details

In the column named n, the counts of the categories as well as an optional Total count will be
shown. In the column named percent, the percentages of the categories will be shown, with an
optional blank entry for Total. In the column named cum_percent, the cumulative percentages
will be shown instead.

Value

A VerticalRowsSection as returned by rtables::in_rows.

rbmi_analyse Analyse Multiple Imputed Datasets

Description

This function takes multiple imputed datasets (as generated by the impute() function from the rbmi
package) and runs an analysis function on each of them.

112

Usage

rbmi_analyse(

imputations,

rbmi_analyse

fun = rbmi_ancova,
delta = NULL,

L

cluster_or_cores = 1,

.validate

Arguments

imputations

fun
delta

TRUE

An imputations object as created by the impute() function from the rbmi pack-
age.

An analysis function to be applied to each imputed dataset. See details.

A data. frame containing the delta transformation to be applied to the imputed
datasets prior to running fun. See details.

Additional arguments passed onto fun.

cluster_or_cores

.validate

Details

(numeric or cluster object)

The number of parallel processes to use when running this function. Can also
be a cluster object created by make_rbmi_cluster(). See the parallelisation
section below.

(logical)

Should imputations be checked to ensure it conforms to the required format
(default = TRUE) ? Can gain a small performance increase if this is set to FALSE
when analysing a large number of samples.

This function works by performing the following steps:

M e

Extract a dataset from the imputations object.

Apply any delta adjustments as specified by the delta argument.

Run the analysis function fun on the dataset.

Repeat steps 1-3 across all of the datasets inside the imputations object.

Collect and return all of the analysis results.

The analysis function fun must take a data.frame as its first argument. All other options to
rbmi_analyse() are passed onto fun via fun must return a named list with each element
itself being a list containing a single numeric element called est (or additionally se and df if
you had originally specified the method_bayes() or method_approxbayes() functions from the rbmi

package) i.e.:

myfun <- function(dat, ...) {
mod_1 <- 1lm(data = dat, outcome ~ group)

rbmi_analyse 113

mod_2 <- Im(data = dat, outcome ~ group + covar)
x <- list(
trt_1 = list(
est = coef(mod_1)[['group']], # Use [[1] for safety
se = sqrt(vcov(mod_1)['group', 'group'l), # Use ['',"'"']
df = df.residual(mod_1)
),
trt_2 = list(
est = coef(mod_2)[['group']l], # Use [[1] for safety
se = sqrt(vcov(mod_2)['group', 'group']), # Use ['',"'"']
df = df.residual(mod_2)
)
)

return(x)

Please note that the vars$subjid column (as defined in the original call to the draws() function
from the rbmi package) will be scrambled in the data.frames that are provided to fun. This is to say
they will not contain the original subject values and as such any hard coding of subject ids is strictly
to be avoided.

By default fun is the rbmi_ancova() function. Please note that this function requires that a vars
object, as created by the set_vars() function from the rbmi package, is provided via the vars ar-
gument e.g. rbmi_analyse(imputeObj, vars =set_vars(...)). Please see the documentation
for rbmi_ancova() for full details. Please also note that the theoretical justification for the con-
ditional mean imputation method (method = method_condmean() in the draws() function from the
rbmi package) relies on the fact that ANCOVA is a linear transformation of the outcomes. Thus
care is required when applying alternative analysis functions in this setting.

The delta argument can be used to specify offsets to be applied to the outcome variable in the
imputed datasets prior to the analysis. This is typically used for sensitivity or tipping point analyses.
The delta dataset must contain columns vars$subjid, vars$visit (as specified in the original
call to the draws() function from the rbmi package) and delta. Essentially this data.frame is
merged onto the imputed dataset by vars$subjid and vars$visit and then the outcome variable
is modified by:

imputed_datal[[vars$outcome]] <- imputed_data[[vars$outcome]] + imputed_datal[['delta']]

Please note that in order to provide maximum flexibility, the delta argument can be used to modify
any/all outcome values including those that were not imputed. Care must be taken when defining
offsets. It is recommend that you use the helper function delta_template() from the rbmi package to
define the delta datasets as this provides utility variables such as is_missing which can be used to
identify exactly which visits have been imputed.

Value

An analysis object, as defined by rbmi, representing the desired analysis applied to each of the
imputed datasets in imputations.

114 rbmi_analyse

Parallelisation

To speed up the evaluation of rbmi_analyse() you can use the cluster_or_cores argument to
enable parallelisation. Simply providing an integer will get rbmi to automatically spawn that many
background processes to parallelise across. If you are using a custom analysis function then you
need to ensure that any libraries or global objects required by your function are available in the
sub-processes. To do this you need to use the make_rbmi_cluster () function for example:

my_custom_fun <- function(...) <some analysis code>
cl <- make_rbmi_cluster(
4,
objects = list('my_custom_fun' = my_custom_fun),
packages = c('dplyr', 'nlme')
)
rbmi_analyse(
imputations = imputeObj,
fun = my_custom_fun,
cluster_or_cores = cl

)
parallel::stopCluster(cl)

Note that there is significant overhead both with setting up the sub-processes and with transferring
data back-and-forth between the main process and the sub-processes. As such parallelisation of the
rbmi_analyse() function tends to only be worth it when you have > 2000 samples generated by
the draws() function from the rbmi package. Conversely using parallelisation if your samples are
smaller than this may lead to longer run times than just running it sequentially.

It is important to note that the implementation of parallel processing within the analyse() function
from the rbmi package has been optimised around the assumption that the parallel processes will be
spawned on the same machine and not a remote cluster. One such optimisation is that the required
data is saved to a temporary file on the local disk from which it is then read into each sub-process.
This is done to avoid the overhead of transferring the data over the network. Our assumption is that
if you are at the stage where you need to be parallelising your analysis over a remote cluster then
you would likely be better off parallelising across multiple rbmi runs rather than within a single
rbmi run.

Finally, if you are doing a tipping point analysis you can get a reasonable performance improvement
by re-using the cluster between each call to rbmi_analyse() e.g.

cl <- make_rbmi_cluster(4)

ana_1 <- rbmi_analyse(
imputations = imputeObj,
delta = delta_plan_1,
cluster_or_cores = cl

)

ana_2 <- rbmi_analyse(
imputations = imputeObj,
delta = delta_plan_2,
cluster_or_cores = cl

rbmi_analyse 115

ana_3 <- rbmi_analyse(
imputations = imputeObj,
delta = delta_plan_3,
cluster_or_cores = cl

)
parallel::clusterStop(cl)

See Also

The extract_imputed_dfs() function from the rbmi package for manually extracting imputed datasets.
The delta_template() function from the rbmi package for creating delta data.frames.

rbmi_ancova() for the default analysis function.

Examples

if (requireNamespace("rbmi”, quietly = TRUE)) {
library(rbmi)
library(dplyr)

dat <- antidepressant_data
dat$GENDER <- as.factor(dat$GENDER)
dat$POOLINV <- as.factor(dat$POOLINV)
set.seed(123)
pat_ids <- sample(levels(dat$PATIENT), nlevels(dat$PATIENT) / 4)
dat <- dat |>
filter (PATIENT %in% pat_ids) |>
droplevels()
dat <- expand_locf(
dat,
PATIENT = levels(dat$PATIENT),
VISIT = levels(dat$VISIT),
vars = c("BASVAL", "THERAPY"),
group = c("PATIENT"),
order = c("PATIENT", "VISIT")
)
dat_ice <- dat |>
arrange (PATIENT, VISIT) |>
filter(is.na(CHANGE)) |>
group_by (PATIENT) |>
slice(1) [>
ungroup() |>
select (PATIENT, VISIT) |>
mutate(strategy = "JR")
dat_ice <- dat_ice[-which(dat_ice$PATIENT == 3618),]
vars <- set_vars(
outcome = "CHANGE",
visit = "VISIT",
subjid = "PATIENT",
group = "THERAPY",
covariates = c("THERAPY")

116

rbmi_ancova

drawObj <- draws(
data = dat,
data_ice = dat_ice,
vars = vars,

method = method_condmean(type = "jackknife"”, covariance = "csh"),
quiet = TRUE

)

references <- c("DRUG" = "PLACEBO", "PLACEBO" = "PLACEBO")

imputeObj <- impute(drawObj, references)

rbmi_analyse(imputations = imputeObj, vars = vars)

rbmi_ancova

Analysis of Covariance

Description

Performs an analysis of covariance between two groups returning the estimated "treatment effect”
(i.e. the contrast between the two treatment groups) and the least square means estimates in each

group.
Usage
rbmi_ancova(
data,
vars,
visits = NULL,
weights = c("counterfactual”, "equal”, "proportional_em", "proportional”)
)
Arguments
data A data. frame containing the data to be used in the model.
vars A vars object as generated by the set_vars() function from the rbmi package.
Only the group, visit, outcome and covariates elements are required. See
details.
visits An optional character vector specifying which visits to fit the ancova model at.
If NULL, a separate ancova model will be fit to the outcomes for each visit (as
determined by unique(datal[[vars$visit]])). See details.
weights Character, either "counterfactual” (default), "equal”, "proportional_em”

or "proportional”. Specifies the weighting strategy to be used when calculat-
ing the Ismeans. See the weighting section for more details.

rbmi_ancova

Details

The function works as follows:

1.

117

Select the first value from visits.
2. Subset the data to only the observations that occurred on this visit.

3. Fit a linear model as vars$outcome ~ vars$group + vars$covariates.

4. Extract the "treatment effect” & least square means for each treatment group.
5

. Repeat points 2-3 for all other values in visits.

If no value for visits is provided then it will be set to unique (datal[[vars$visit]]).

In order to meet the formatting standards set by rbmi_analyse() the results will be collapsed into
a single list suffixed by the visit name, e.g.:

lis

t(

var_visit_1 =
trt_B_visit_1
Ism_A_visit_1
lsm_B_visit_1
var_visit_2 =
trt_B_visit_2
Ism_A_visit_2
lsm_B_visit_2

list(est = ..
list(est =
list(est =

list(est = ...

list(est

list(est
list(est
list(est

),

)
)
s

Please note that "trt" refers to the treatment effects, and "lsm" refers to the least square mean results.
In the above example vars$group has two factor levels A and B. The new "var" refers to the model

estimated variance of the residuals.

If you want to include interaction terms in your model this can be done by providing them to the
covariates argument of the set_vars() function from the rbmi package e.g. set_vars(covariates
=c("sexxage")).

Value

a list of variance (var_x), treatment effect (trt_x), and least square mean (1sm_x) estimates for
each visit, organized as described in Details above.

Note

These functions have the rbmi_ prefix to distinguish them from the corresponding rbmi package
functions, from which they were copied from. Additional features here include:

* Support for more than two treatment groups.

e Variance estimates are returned.

118 rbmi_ancova_single

See Also

rbmi_analyse()
stats::1m()

The set_vars() function from the rbmi package

rbmi_ancova_single Implements an Analysis of Covariance (ANCOVA)

Description

Performance analysis of covariance. See rbmi_ancova() for full details.

Usage
rbmi_ancova_single(
data,
outcome,
group,
covariates,
weights = c("counterfactual”, "equal"”, "proportional_em"”, "proportional”)
)
Arguments
data A data. frame containing the data to be used in the model.
outcome string, the name of the outcome variable in data.
group string, the name of the group variable in data.
covariates character vector containing the name of any additional covariates to be included
in the model as well as any interaction terms.
weights Character, either "counterfactual” (default), "equal”, "proportional_em”
or "proportional”. Specifies the weighting strategy to be used when calculat-
ing the Ismeans. See the weighting section for more details.
Details

* group must be a factor variable with only 2 levels.

e outcome must be a continuous numeric variable.

Value

a list containing var with variance estimates as well as trt_x and 1sm_x entries. See rbmi_ancova()
for full details.

See Also

rbmi_ancova()

rbmi_mmrm 119

Examples

if (requireNamespace("rbmi”, quietly = TRUE)) {

iris2 <- iris[iris$Species %in% c("versicolor"”, "virginica"),]

iris2$Species <- factor(iris2$Species)

rbmi_ancova_single(iris2, "Sepal.Length”, "Species"”, c("Petal.Length * Petal.Width"))
3

rbmi_mmrm MMRM Analysis for Imputed Datasets

Description

Performs an MMRM for two or more groups returning the estimated ’treatment effect’ (i.e. the
contrast between treatment groups and the control group) and the least square means estimates in

each group.
Usage
rbmi_mmrm(
data,
vars,
cov_struct = c("us”, "toep”, "cs", "ar1"),
visits = NULL,
weights = c("counterfactual”, "equal”),
)
Arguments
data (data.frame)
containing the data to be used in the model.
vars (vars)
list as generated by the set_vars() function from the rbmi package. Only the
subjid, group, visit, outcome and covariates elements are required. See
details.
cov_struct (string)
the covariance structure to use. Note that the same covariance structure is as-
sumed for all treatment groups.
visits (NULL or character)

An optional character vector specifying which visits to fit the MMRM at. If
NULL, the MMRM model will be fit to the whole dataset.

weights (string)
the weighting strategy to be used when calculating the least square means, either
'counterfactual' or 'equal’.
additional arguments passed to mmrm: :mmrm(), in particular method and vcov
to control the degrees of freedom and variance-covariance adjustment methods
as well as reml decide between REML and ML estimation.

120 rbmi_mmrm

Details
The function works as follows:

1. Optionally select the subset of the data corresponding to ‘visits.

2. Fit an MMRM as vars$outcome ~ vars$group + vars$visit + vars$covariates with the
specified covariance structure for visits within subjects.

3. Extract the ’treatment effect’ & least square means for each treatment group vs the control
group.

In order to meet the formatting standards set by the analyse() function from the rbmi package, the
results will be collapsed into a single list suffixed by the visit name, e.g.:

list(
var_B_visit_1 = list(est = ...),
trt_B_visit_1 = list(est = ...),
Ism_A_visit_1 = list(est = ...),
lsm_B_visit_1 = list(est = ...),
var_B_visit_2 = list(est = ...),
trt_B_visit_2 = list(est = ...),
Ism_A_visit_2 = list(est = ...),
1sm_B_visit_2 = list(est = ...),

)

Please note that ’trt’ refers to the treatment effects, and ’Ism’ refers to the least square mean results.
In the above example vars$group has two factor levels A and B. The new ’var’ refers to the model
estimated variance of the residuals at the given visit, together with the degrees of freedom (which
is treatment group specific).

If you want to include additional interaction terms in your model this can be done by providing them
to the covariates argument of the set_vars() function from the rbmi package e.g. set_vars(covariates
=c('sexxage')).

Value
a list of variance (var_x), treatment effect (trt_x), and least square mean (1sm_x) estimates for
each visit, organized as described in Details above.

Note

The group and visit interaction group:visit is not included by default in the model, therefore
please add that to covariates manually if you want to include it. This will make sense in most
cases.

See Also

rbmi_analyse()
mmrm: :mmrm()

The set_vars() function from the rbmi package

rbmi_mmrm_single_info 121

rbmi_mmrm_single_info Extract Single Visit Information from a Fitted MMRM for Multiple
Imputation Analysis

Description

Extracts relevant estimates from a given fitted MMRM. See rbmi_mmrm() for full details.

Usage

rbmi_mmrm_single_info(fit, visit_level, visit, group, weights)

Arguments
fit (mmrm)
the fitted MMRM.
visit_level (string)
the visit level to extract information for.
visit (string)
the name of the visit variable.
group (string)
the name of the group variable.
weights (string)
the weighting strategy to be used when calculating the least square means, either
'counterfactual' or 'equal’.
Value

a list with trt_x*, var_* and 1sm_x elements. See rbmi_mmrm for full details.

See Also

rbmi_mmrm()

rbmi_pool Pool analysis results obtained from the imputed datasets

Description

Pool analysis results obtained from the imputed datasets

122 real_add_overall facet
Usage
rbmi_pool(
results,
conf.level = 0.95,
alternative = c("two.sided”, "less"”, "greater"),
type = c("percentile”, "normal")
)
Arguments
results an analysis object created by analyse().
conf.level confidence level of the returned confidence interval. Must be a single number
between 0 and 1. Default is 0.95.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided”
(default), "greater” or "less”.
type a character string of either "percentile” (default) or "normal”. Determines
what method should be used to calculate the bootstrap confidence intervals. See
details. Only used if method_condmean(type = "bootstrap”) was specified in
the original call to draws().
Details

This has been forked from the rbmi package, mainly to support in addition the pooling of variance
estimates. See pool() for more details.

Value

A list of class pool.

real_add_overall_facet

Add Overall Facet

Description

A function to help add an overall facet to your tables.

Usage

real_add_overall_facet(name, label)

Arguments

name

label

(character)
Name/virtual 'value’ for the new facet.

(character)
Label for the new facet.

remove_col _count 123

Value

Function usable directly as a split function.

Note

Current add_overall_facet is bugged. Can be used directly after it’s fixed https://github.com/insightsengineering/rtables/issues

Examples

splfun <- make_split_fun(post = list(real_add_overall_facet("Total”, "Total")))

remove_col_count Removal of Unwanted Column Counts

Description

Remove the N=xx column headers for specified span_label_var columns - default is 'rrisk_header’.

Usage

remove_col_count(obj, span_label_var = "rrisk_header")
Arguments

obj (TableTree)

TableTree object.

span_label_var (character)
The spanning header text variable value for which column headers will be re-
moved from.

Details

This works for only the lowest level of column splitting (since colcounts is used).

Value

TableTree object with column counts in specified columns removed.

124 remove_rows

remove_rows Pruning function to remove specific rows of a table regardless of
counts

Description

This function will remove all rows of a table based on the row text provided by the user.

Usage

remove_rows (removerowtext = NULL, reg_expr = FALSE)

Arguments

removerowtext (character)
Define a text string for which any row with row text will be removed.

reg_expr (logical)
Apply removerowtext as a regular expression (grepl with fixed = TRUE)

Value

Function that can be utilized as pruning function in prune_table.

Examples

ADSL <- data.frame(
USUBJID = c(
XXXXXQT", "XXXXXQ2", "XXXXX@3", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXXQ7", "XXXXX0Q8", "XXXXXQ9", "XXXXX10"

)Y

TRTO1P = c(
"ARMA”, "ARMB”, "ARMA”, "ARMB”, "ARMB", "Placebo”,
"Placebo”, "Placebo”, "ARMA”, "ARMB"

)Y

Category = c(
"Cat 1", "Cat 2", "Cat 1", "Unknown", "Cat 2",
"Cat 1", "Unknown", "Cat 1", "Cat 2", "Cat 1"
),
SAFFL = c("N", "N", "N", "N", "N", "N", "N", "N", "N", "N"),
PKFL = c("N", "N", "N", "N", "N", "N", "N", "N", "N", "N")
)

ADSL <- ADSL |>
dplyr::mutate(TRTQ1P = as.factor(TRTQ1P))

lyt <- basic_table() |>
split_cols_by("TRTO1P") |>
analyze(
"Category”,

resp01_acfun 125

afun = a_freq_j,
extra_args = list(.stats = "count_unique_fraction”)

)

result <- build_table(lyt, ADSL)

result
result <- prune_table(result, prune_func = remove_rows(removerowtext = "Unknown"))
result
resp@1_acfun Formatted Analysis and Content Summary Function for Response Ta-
bles (RESPOI)
Description

This function applies to both factor and logical columns called . var from df. Depending on the
position in the split, it returns the right formatted results for the RESPO1 and related layouts.

Usage

resp@1_acfun(
df,
labelstr = NULL,
label = NULL,
.var,
.spl_context,
include_comp,
.alt_df,
conf_level,
arm,
strata,
formats,
methods

Arguments

df (data.frame)
data set containing all analysis variables.

labelstr (character)
label of the level of the parent split currently being summarized (must be present
as second argument in Content Row Functions). See rtables: : summarize_row_groups()
for more information.

label (string)
only for logicals, which label to use. (For factors, the labels are the factor levels.)

126

.var

.spl_context

include_comp

.alt_df

conf_level

arm

strata

formats

methods

Value

resp01_acfun

(string)
single variable name that is passed by rtables when requested by a statistics
function.

(data.frame)
gives information about ancestor split states that is passed by rtables.

(character or flag)
whether to include comparative statistic results, either character for factors or
flag for logicals.

(data.frame)
alternative data frame used for denominator calculation.

(proportion)
confidence level of the interval.

(string)
column name in the data frame that identifies the treatment arms.

(character or NULL)
variable names indicating stratification factors.

(list)
containing formats for prop_ci, comp_stat_ci and pval.

(list)

containing methods for comparative statistics. The element comp_stat_ci can
be ’rr’ (relative risk), or_cmh’ (odds ratio with CMH estimation and p-value)
or ’or_logistic’ (odds ratio estimated by conditional or standard logistic regres-
sion). The element pval can be ’fisher’ (Fisher’s exact test) or ’chisq’ (chi-
square test), only used when using unstratified analyses with *or_logistic’. The
element prop_ci specifies the method for proportion confidence interval calcu-
lation.

The formatted result as rtables: :in_rows() result.

Examples

fake_spl_context
cur_col_split_v
)
dm <- droplevels(
resp@1_acfun(
dm,
.alt_df = dm,
.var = "COUNTRY
.spl_context =
conf_level = 0.
include_comp =
arm = "SEX",
strata = "RACE"
methods = list(
comp_stat_ci

<- data.frame(
al = I(list(c(ARM = "A: Drug X", count_prop = "count_prop”)))

subset(DM, SEX %in% c("F”", "M")))

fake_spl_context,
9,
c("USA", "CHN"Y,

’

= "or_cmh"”,

resp01_a_comp_stat_factor 127

nn

pval = s
prop_ci = "wald”
),
formats = list(
prop_ci = jjcsformat_xx("xx.% - xx.%"),
comp_stat_ci = jjcsformat_xx("xx.xx (XX.XXx = XX.xx)"),
pval = jjcsformat_pval_fct(@.05)
)
)
fake_spl_context2 <- data.frame(
cur_col_split_val = I(list(c(ARM = "Overall”, comp_stat_ci = "comp_stat_ci")))
)
resp@1_acfun(
dm,
.alt_df = dm,
.var = "COUNTRY",
.spl_context = fake_spl_context2,
conf_level = 0.9,
include_comp = c("USA", "CHN"),
arm = "SEX",
strata = "RACE",
methods = list(

comp_stat_ci = "or_cmh”,
pval = ",
prop_ci = "wald"

),
formats = list(
prop_ci = jjcsformat_xx("xx.% - xx.%"),
comp_stat_ci = jjcsformat_xx("xx.xx (XX.xXx = Xx.xx)"),
pval = jjcsformat_pval_fct(@.05)
)
)

resp@1_a_comp_stat_factor

Formatted Analysis Function for Comparative Statistic in Response
Tables (RESPOI)

Description

This function applies to a factor column called . var from df.

Usage

resp@1_a_comp_stat_factor(df, .var, include, ...)
Arguments

df (data.frame)

data set containing all analysis variables.

128 resp01_a_comp_stat_logical

.var (string)
single variable name that is passed by rtables when requested by a statistics
function.

include (character)

for which factor levels to include the comparison statistic results.

see resp@1_a_comp_stat_logical() for additional required arguments.

Value

The formatted result as rtables: :rcell().

Examples

dm <- droplevels(subset(formatters::DM, SEX %in% c("F", "M")))

resp@1_a_comp_stat_factor(
dm,
.var = "COUNTRY",
conf_level = 0.9,
include = c("USA", "CHN"),
arm = "SEX",
strata = "RACE",
stat = "comp_stat_ci”,
methods = list(comp_stat_ci = "or_cmh"),
formats = list(
comp_stat_ci = jjcsformat_xx("xx.xx (XXx.xx = xx.xx)"),
pval = jjcsformat_pval_fct(@.05)
)
)

resp@1_a_comp_stat_logical

Formatted Analysis Function for Comparative Statistic in Response
Tables (RESPOI1)

Description

This function applies to a logical column called .var from df. The response proportion is com-
pared between the treatment arms identified by column arm.

Usage

resp@1_a_comp_stat_logical(
df,
.var,
conf_level,
include,
arm,

resp01_a_comp_stat_logical 129

strata,
formats,
methods,
stat = c("comp_stat_ci"”, "pval")
)
Arguments
df (data.frame)
data set containing all analysis variables.
.var (string)
single variable name that is passed by rtables when requested by a statistics
function.
conf_level (proportion)
confidence level of the interval.
include (flag)
whether to include the results for this variable.
arm (string)
column name in the data frame that identifies the treatment arms.
strata (character or NULL)
variable names indicating stratification factors.
formats (list)
containing formats for comp_stat_ci and pval.
methods (list)
containing methods for comparative statistics. The element comp_stat_ci can
be ’rr’ (relative risk), ’or_cmh’ (odds ratio with CMH estimation and p-value)
or “or_logistic’ (odds ratio estimated by conditional or standard logistic regres-
sion). The element pval can be ’fisher’ (Fisher’s exact test) or "chisq’ (chi-
square test), only used when using unstratified analyses with “or_logistic’.
stat (string)
the statistic to return, either comp_stat_ci or pval.
Value

The formatted result as rtables::rcell().

See Also

resp@1_a_comp_stat_factor() for the factor equivalent.

Examples

dm <- droplevels(subset(formatters::DM, SEX %in% c("F", "M")))
dm$RESP <- as.logical(sample(c(TRUE, FALSE), size = nrow(DM), replace = TRUE))

resp@1_a_comp_stat_logical(

dm,

130 resp01_counts_cfun

.var = "RESP",

conf_level = 0.9,

include = TRUE,

arm = "SEX",

strata = "RACE",

stat = "comp_stat_ci”,

methods = list(comp_stat_ci = "or_cmh"),

formats = list(
comp_stat_ci = jjcsformat_xx("xx.xx (XX.XX = XX.xx)"),
pval = jjcsformat_pval_fct(@.05)

)
)
resp@1_counts_cfun Content Row Function for Counts of Subgroups in Response Tables
(RESPOI)
Description

Content Row Function for Counts of Subgroups in Response Tables (RESPO1)

Usage

resp@1_counts_cfun(df, labelstr, .spl_context, .alt_df, label_fstr)

Arguments
df (data.frame)
data set containing all analysis variables.
labelstr (character)

label of the level of the parent split currently being summarized (must be present
as second argument in Content Row Functions). See rtables: : summarize_row_groups()
for more information.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

.alt_df (data.frame)
alternative data frame used for denominator calculation.

label_fstr (string)
format string for the label.

Value

The correct rtables: :in_rows() result.

resp01_split_fun_fct 131

Examples

fake_spl_context <- data.frame(

cur_col_split_val = I(list(c(ARM = "A: Drug X", count_prop = "count_prop”)))
)
resp@1_counts_cfun(

df = DM,

labelstr = "Blue”,

.spl_context = fake_spl_context,

.alt_df = DM,

label_fstr = "Color: %s”

resp@1_split_fun_fct Split Function Factory for the Response Tables (RESPOI)

Description

The main purpose here is to have a column dependent split into either comparative statistic (relative
risk or odds ratio with p-value) in the *Overall’ column, and count proportions and corresponding
confidence intervals in the other treatment arm columns.

Usage
resp@1_split_fun_fct(method = c("rr", "or_logistic”, "or_cmh"), conf_level)
Arguments
method (string)
which method to use for the comparative statistics.
conf_level (proportion)
confidence level of the interval.
Value

A split function for use in the response table RESPO1 and similar ones.

See Also

rtables: :make_split_fun() describing the requirements for this kind of post-processing func-
tion.

Examples

split_fun <- resp@1_split_fun_fct(
method = "or_cmh",
conf_level = 0.95

)

132

response_by_var

response_by_var

Count denom fraction statistic

Description

Derives the count_denom_fraction statistic (i.e., ’xX /xX (Xx.x percent)’)

Summarizes the number of unique subjects with a response =Y’ for a given variable (e.g. TRTEMFL)
within each category of another variable (e.g., SEX). Note that the denominator is derived using in-
put df, in order to have these aligned with alt_source_df, it is expected that df includes all subjects.

Usage

response_by_var(

df,

labelstr

.var,

.N_col,

NULL,

resp_var = NULL,
id = "USUBJID",
.format = jjcsformat_count_denom_fraction,

Arguments

df

labelstr

.var

.N_col

resp_var

id

.format

(data.frame)
Name of dataframe being analyzed.

(character vector)
Custom label for the variable being analyzed.

(character)
Name of the variable being analyzed. Records with non-missing values will be
counted in the denominator.

(numeric)
The total for the current column.

(character)
Name of variable, for which, records with a value of ’Y’ will be counted in the
numerator.

(character)
Name of column in df which will have patient identifiers

(character)
Format for the count/denominator/fraction output.

Additional arguments passed to the function.

response_by_var 133

Details

This is an analysis function for use within analyze. Arguments df, .var will be populated auto-
matically by rtables during the tabulation process.

Value

aRowsVerticalSection for use by the internal tabulation machinery of rtables

Examples
library(dplyr)

ADAE <- data.frame(
USUBJID = c(
XXXXXQ1", "XXXXXQ2", "XXXXX@3", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXXQ7", "XXXXXQ8", "XXXXXQ9", "XXXXX10@"

),
SEX_DECODE = c(
"Female"”, "Female”, "Male”, "Female"”, "Male",
"Female”, "Male"”, "Female”, "Male"”, "Female"”
),
TRTO1A = c(
"ARMA”, "ARMB", "ARMA", "ARMB", "ARMB",
"Placebo”, "Placebo”, "Placebo”, "ARMA", "ARMB"
),
TRTEMFL = c("y", "y", ""N", "y", B !"y" ry" oUtymooUNT)OUYUOoUy™Y

ADAE <- ADAE |>
mutate(
TRTO1A = as.factor(TRTO1A),
SEX_DECODE = as.factor(SEX_DECODE)
)

lyt <- basic_table() |>

split_cols_by("TRTQ1A") |>

analyze(
vars = "SEX_DECODE",
var_labels = "Sex, n/Ns (%)",
show_labels = "visible”,
afun = response_by_var,
extra_args = list(resp_var = "TRTEMFL"),
nested = FALSE

result <- build_table(lyt, ADAE)

result

134 rm_other_facets_fact

rm_levels Removal of Levels

Description

Custom function for removing level inside pre step in make_split_fun.

Usage

rm_levels(excl)

Arguments
excl (character)
Choose which level(s) to remove
Value

A function implementing pre-processing split behavior (for use in make_split_fun(pre =) which
removes the levels in excl from the data before facets are generated.

rm_other_facets_fact rm_other_facets_fact

Description

rm_other_facets_fact

Usage

rm_other_facets_fact(nm)

Arguments

nm character. names of facets to keep. all other facets will be removed

Value

a function suitable for use within the post portion make_split_fun

safe_prune_table

135

safe_prune_table

Safely Prune Table With Empty Table Message If Needed

Description

Safely Prune Table With Empty Table Message If Needed

Usage

safe_prune_table(

tt,

prune_func = prune_empty_level,

stop_depth =
empty_msg =

n

NA,

n

- No Data To Display - ",

spancols = FALSE

Arguments

tt

prune_func

stop_depth

empty_msg

spancols

Value

(TableTree or related class)
a TableTree object representing a populated table.

(function)
a function to be called on each subtree which returns TRUE if the entire subtree
should be removed.

(numeric(1))

the depth after which subtrees should not be checked for pruning. Defaults to
NA which indicates pruning should happen at all levels.

(character(1))

The message to place in the table if no rows were left after pruning
(logical(1))

Should empty_msg be spanned across the table’s columns (TRUE) or placed in
the rows row label (FALSE). Defaults to FALSE currently.

tt pruned based on the arguments, or, if pruning would remove all rows, a TableTree with the same
column structure, and one row containing the empty message spanning all columns.

Examples

prfun <- function(tt) TRUE

lyt <- basic_table() |>
split_cols_by("ARM") |>
split_cols_by("STRATA1") |>
split_rows_by("SEX") |>

analyze("AGE")

136 summarize_coxreg_multivar

tbl <- build_table(lyt, ex_adsl)

safe_prune_table(tbl, prfun)

set_titles Set Output Titles

Description

Retrieves titles and footnotes from the list specified in the titles argument and appends them to the
TableTree specified in the obj argument.

Usage

set_titles(obj, titles)

Arguments
obj (TableTree)
The TableTree to which the titles and footnotes will be appended.
titles (list)
The list object containing the titles and footnotes to be appended.
Value

The TableTree object specified in the obj argument, with titles and footnotes appended.

summarize_coxreg_multivar
Layout Generating Function for TEFOS03 and Related Cox Regres-
sion Layouts

Description

Layout Generating Function for TEFOS03 and Related Cox Regression Layouts

Usage

summarize_coxreg_multivar(

lyt,

var,

variables,

control = control_coxreg(),

formats = list(coef_se = jjcsformat_xx("xx.xx (xx.xx)"), hr_est =
jjesformat_xx("xx.xx"), hr_ci = jjcsformat_xx("(xx.xx, xx.xx)"), pval =
jjcsformat_pval_fct(0))

summarize_Ismeans_wide 137

Arguments

lyt

var

variables

control

formats

Value

(layout)
input layout where analyses will be added to.

(string)
any variable from the data, because this is not used.

(named list of string)
list of additional analysis variables.

(list)
relevant list of control options.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

1yt modified to add the desired cox regression table section.

Examples

anl <- tern::tern_ex_adtte |>
dplyr::mutate(EVENT = 1 - CNSR)

variables <- list(

time = "AVAL",

event = "EVENT",

arm = "ARM",

covariates = c("SEX", "AGE")

)

basic_table() |>

summarize_coxreg_multivar(
var = "STUDYID",
variables = variables

) 1>
build_table(df

= anl)

summarize_lsmeans_wide

Layout Generating Function for LS Means Wide Table Layouts

Description

Layout Generating Function for LS Means Wide Table Layouts

138

Usage

summarize_Ismeans_wide

summarize_lsmeans_wide(

yt,
variables,
ref_level,

treatment_levels,

conf_level,

pval_sided = "2",

include_variance = TRUE,

include_pval = TRUE,

formats = list(lsmean = jjcsformat_xx("xx.x"), mse = jjcsformat_xx("xx.x"), df =
jjcsformat_xx("xx."), lsmean_diff = jjcsformat_xx("xx.x"), se =
jjesformat_xx("xx.xx"), ci = jjcsformat_xx("(xx.xx, xx.xx)"), pval =
jjcsformat_pval_fct(@))

Arguments

lyt

variables

ref_level

(layout)
empty layout, i.e. result of rtables: :basic_table()

(named list of string)
list of additional analysis variables.

(string)
the reference level of the treatment arm variable.

treatment_levels

conf_level

pval_sided

(character)
the non-reference levels of the treatment arm variable.

(proportion)
confidence level of the interval.

(string)
either ’2’ for two-sided or 1’ for 1-sided with greater than control or ’-1” for
1-sided with smaller than control alternative hypothesis.

include_variance

include_pval

formats

Value

Modified layout.

(flag)
whether to include the variance statistics (M.S. error and d.f.).

(flag)
whether to include the p-value column.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

summarize_mmrm 139

Examples

variables <- list(
response = "FEV1",
covariates = c("RACE", "SEX"),

arm = "ARMCD",
id = "USUBJID",
visit = "AVISIT"

)
fit <- fit_ancova(
vars = variables,
data = mmrm::fev_data,
conf_level = 0.9,
weights_emmeans = "equal”
)
anl <- broom::tidy(fit)
basic_table() |>
summarize_lsmeans_wide(
variables = variables,
ref_level = fit$ref_level,
treatment_levels = fit$treatment_levels,
pval_sided = "2",
conf_level = 0.8
) 1>
build_table(df = anl)

summarize_mmrm Dynamic tabulation of MMRM results with tables

Description

[Stable]

These functions can be used to produce tables for MMRM results, within tables which are split by
arms and visits. This is helpful when higher-level row splits are needed (e.g. splits by parameter or
subgroup).

Usage

s_summarize_mmrm(
df,
.var,
variables,
ref_levels,
.spl_context,
alternative = c("two.sided”, "less"”, "greater"),
show_relative = c("reduction”, "increase"),

140 summarize_mmrm

a_summarize_mmrm(
df,
.var,
.spl_context,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL

)
Arguments

df (data.frame)
data set containing all analysis variables.

.var (string)
single variable name that is passed by rtables when requested by a statistics
function.

variables (named list of string)
list of additional analysis variables.

ref_levels (list)

with visit and arm reference levels.

.spl_context (data.frame)
gives information about ancestor split states that is passed by rtables.

alternative (string)
whether two. sided, or one-sided less or greater p-value should be displayed.

show_relative (string)
should the ’reduction’ (control - treatment, default) or the ’increase’ (treatment
- control) be shown for the relative change from baseline?

eventually passed to fit_mmrm_j() via h_summarize_mmrm().

.stats (character)
statistics to select for the table.

.formats (named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

.labels (named character)
labels for the statistics (without indent).

.indent_mods (named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

Value

* a_summarize_mmrm() returns the corresponding list with formatted rtables: :CellValue().

summarize_row_counts 141

Functions

e s_summarize_mmrm(): Statistics function which is extracting estimates, not including any
results when in the reference visit, and only showing LS mean estimates when in the reference
arm and not in reference visit. It uses s_lsmeans() for the final processing.

* a_summarize_mmrm(): Formatted analysis function which is used as afun.

Examples

set.seed(123)
longdat <- data.frame(
ID = rep(DM$ID, 5),
AVAL = c(
rep(@, nrow(DM)),
rnorm(n = nrow(DM) * 4)
),
VISIT = factor(rep(paste@("V", 0:4), each = nrow(DM)))
) 1>
dplyr::inner_join(DM, by = "ID")

basic_table() |>
split_rows_by("VISIT") |>
split_cols_by("ARM") |>
analyze(
vars = "AVAL",
afun = a_summarize_mmrm,
na_str = tern::default_na_str(),
show_labels = "hidden”,
extra_args = list(
variables = list(
covariates = c("AGE"),
id = "ID",
arm = "ARM",
visit = "VISIT"
),
conf_level = 0.9,
cor_struct = "toeplitz",
ref_levels = 1list(VISIT = "V@", ARM = "B: Placebo”)
)
) 1>
build_table(longdat) |[>
prune_table(all_zero)

summarize_row_counts Layout Creating Function Adding Row Counts

Description

This is a simple wrapper of rtables: :summarize_row_groups() and the main additional value is
that we can choose whether we want to use the alternative (usually ADSL) data set for the counts
(default) or use the original data set.

142 s_ancova_j

Usage
summarize_row_counts(lyt, label_fstr = "%s", alt_counts = TRUE)
Arguments
lyt (layout)
input layout where analyses will be added to.
label_fstr (string)
a sprintf style format string. It can contain up to one %s which takes the current
split value and generates the row label.
alt_counts (flag)
whether row counts should be taken from alt_counts_df (TRUE) or from df
(FALSE).
Value

A modified layout where the latest row split now has a row group summaries (as created by rta-
bles::summarize_row_groups for the counts).

Examples

basic_table() |>
split_cols_by("ARM") |>
add_colcounts() |>
split_rows_by("RACE", split_fun = drop_split_levels) |>
summarize_row_counts(label_fstr = "RACE value - %s") |>
analyze("AGE", afun = list_wrap_x(summary), format = "xx.xx") |>
build_table(DM, alt_counts_df = rbind(DM, DM))

s_ancova_j Junco Extended ANCOVA Function

Description

Extension to tern:::s_ancova, 3 extra statistics are returned:

* lsmean_se: Marginal mean and estimated SE in the group.
e lsmean_ci: Marginal mean and associated confidence interval in the group.

e Ismean_diffci: Difference in mean and associated confidence level in one combined statis-
tic. In addition, the LS mean weights can be specified. In addition, also a NULL .ref_group
can be specified, the Ismean_diff related estimates will be returned as NA.

s_ancova_j

Usage

s_ancova_j(
df,
.var,
.df_row,
variables,
.ref_group,
.in_ref_col,
conf_level,

143

interaction_y = FALSE,
interaction_item = NULL,
weights_emmeans = "counterfactual”

Arguments

df

.var

.df _row

variables

.ref_group

.in_ref_col

conf_level

interaction_y

(data.frame)
data set containing all analysis variables.

(string)
single variable name that is passed by rtables when requested by a statistics
function.

(data.frame)
data set that includes all the variables that are called in .var and variables.

(named list of string)
list of additional analysis variables, with expected elements:

e arm(string)
group variable, for which the covariate adjusted means of multiple groups
will be summarized. Specifically, the first level of arm variable is taken as
the reference group.

e covariates (character)
a vector that can contain single variable names (such as "X1"), and/or inter-
action terms indicated by "X1 * X2".

(data.frame or vector)
the data corresponding to the reference group.

(flag)
TRUE when working with the reference level, FALSE otherwise.

(proportion)
confidence level of the interval.

(stringor flag)

a selected item inside of the interaction_item variable which will be used to
select the specific ANCOVA results. if the interaction is not needed, the default
option is FALSE.

interaction_item

(string or NULL)
name of the variable that should have interactions with arm. if the interaction is
not needed, the default option is NULL.

144 s_proportion_factor

weights_emmeans
(string)
argument from emmeans: :emmeans(), "counterfactual” by default.

Value

Returns a named list of 8 statistics (3 extra compared to tern:::s_ancova()).

See Also

Other Inclusion of ANCOVA Functions: a_summarize_ancova_j(), a_summarize_aval_chg_diff_j()

Examples

library(dplyr)
library(tern)

df <- iris |> filter(Species == "virginica")

.df_row <- iris

.var <- "Petal.lLength”

variables <- list(arm = "Species"”, covariates = "Sepal.Length * Sepal.Width")
.ref_group <- iris [> filter(Species == "setosa")

conf_level <- 0.95

s_ancova_j(df, .var, .df_row, variables, .ref_group, .in_ref_col = FALSE, conf_level)

s_proportion_factor s_function for proportion of factor levels

Description

A simple statistics function which prepares the numbers with percentages in the required format.
The denominator here is from the alternative counts data set in the given row and column split.

If a total row is shown, then here just the total number is shown (without 100%).

Usage

s_proportion_factor(
X,
.alt_df,
use_alt_counts = TRUE,
show_total = c("none”, "top”, "bottom"),
total_label = "Total”

s_proportion_logical 145

Arguments
X (factor)
categorical variable we want to analyze.
.alt_df (data.frame)

alternative data frame used for denominator calculation.

use_alt_counts (flag)
whether the .alt_df should be used for the total, i.e. the denominator. If not,
then the number of non-missing values in x is used.

show_total (string)
show the total level optionally on the top or in the bottom of the factor levels.

total_label (string)
which label to use for the optional total level.

Value

The rtables: :in_rows() result with the proportion statistics.

See Also

s_proportion_logical() for tabulating logical x.

s_proportion_logical s_function for proportion of TRUE in logical vector

Description

A simple statistics function which prepares the numbers with percentages in the required format.
The denominator here is from the alternative counts data set in the given row and column split.

Usage

s_proportion_logical(x, label = "Responders”, .alt_df)

Arguments
X (logical)
binary variable we want to analyze.
label (string)
label to use.
.alt_df (data.frame)
alternative data frame used for denominator calculation.
Value

The rtables: :in_rows() result with the proportion statistics.

146 tabulate_Ismeans

See Also

s_proportion_factor() for tabulating factor x.

tabulate_lsmeans Tabulation of Least Square Means Results

Description

[Stable]

These functions can be used to produce tables from LS means, e.g. from fit_mmrm_j() or fit_ancova().

Usage

S3 method for class 'tern_model'
tidy(x, ...)

s_lsmeans(
df,
.in_ref_col,
alternative = c("two.sided”, "less"”, "greater"),
show_relative = c("reduction”, "increase")

)

a_lsmeans(
df,
ref_path,
.spl_context,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL

Arguments
X (numeric)
vector of numbers we want to analyze.
additional arguments for the lower level functions.

df (data.frame)
data set containing all analysis variables.

.in_ref_col (logical)
TRUE when working with the reference level, FALSE otherwise.

alternative (string)
whether two. sided, or one-sided less or greater p-value should be displayed.

tabulate_Ismeans

show_relative

ref_path

.spl_context

.Stats

.formats

.labels

.indent_mods

Value

147

(string)
should the 'reduction’ (control - treatment, default) or the ’increase’ (treatment
- control) be shown for the relative change from baseline?

(character)
global reference group specification, see get_ref_info().

(data.frame)
gives information about ancestor split states that is passed by rtables.

(character)
statistics to select for the table.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

(named character)
labels for the statistics (without indent).

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

» For s_lsmeans, a list containing the same statistics returned by tern.mmrm::s_mmrm_lsmeans,
with the additional diff_mean_est_ci three-dimensional statistic.

» For a_lsmeans, a VertalRowsSection as returned by rtables::in_rows.

Functions

* tidy(tern_model): Helper method (for broom: :tidy()) to prepare a data.frame from an
tern_model object containing the least-squares means and contrasts.

* s_lsmeans(): Statistics function which is extracting estimates from a tidied least-squares
means data frame.

* a_lsmeans(): Formatted Analysis function to be used as afun

Note

These functions have been forked from the tern.mmrm package. Additional features are:

* Additional ref_path argument for tern.mmrm::summarize_lsmeans().

* The function is more general in that it also works for LS means results from ANCOVA

» Additional statistic diff_mean_est_ci is returned

¢ P-value sidedness can be chosen

148 tabulate Ismeans

Examples

result <- fit_mmrm_j(
vars = list(

response = "FEV1",
covariates = c("RACE", "SEX"),
id = "USUBJID",
arm = "ARMCD",
visit = "AVISIT"
),
data = mmrm::fev_data,
cor_struct = "unstructured”,
weights_emmeans = "equal”
)

df <- broom::tidy(result)

s_lsmeans(df[8, 1, .in_ref_col = FALSE)
s_lsmeans(df[8, 1, .in_ref_col = FALSE, alternative = "greater"”, show_relative = "increase"”)

dat_adsl <- mmrm::fev_data |>
dplyr::select(USUBJID, ARMCD) |>
unique()

basic_table() |>
split_cols_by("ARMCD") |>
add_colcounts() |>
split_rows_by("AVISIT") |>
analyze(
"AVISIT",
afun = a_lsmeans,
show_labels = "hidden"”,
na_str = tern::default_na_str(),
extra_args = list(
.stats = c(
gy
"adj_mean_se",
"adj_mean_ci”,
"diff_mean_se",
"diff_mean_ci”
),
.labels = c(
adj_mean_se = "Adj. LS Mean (Std. Error)",
adj_mean_ci = "95% CI",
diff_mean_ci = "95% CI"

’

),
.formats = c(adj_mean_se = jjcsformat_xx("xx.x (xx.xx)")),
alternative = "greater”,
ref_path = c("ARMCD", result$ref_level)
)
) 1>

build_table(
df = broom::tidy(result),

tabulate_rbmi

149

alt_counts_df = dat_adsl

)

tabulate_rbmi

Tabulation of RBMI Results

Description

[Stable]

These functions can be used to produce tables from RBMI.

Usage

h_tidy_pool(x, visit_name, group_names)

s_rbmi_lsmeans(df,

a_rbmi_lsmeans(

df,
ref_path,

.spl_context,

L

.in_ref_col, show_relative = c("reduction”, "increase"))

.stats = NULL,

.formats =

NULL,

.labels = NULL,

.indent_mods

Arguments

X

visit_name

group_names

df

.in_ref_col

show_relative

= NULL

(list)
is a list of pooled object from rbmi analysis results. This list includes analysis
results, confidence level, hypothesis testing type.

(string)
single visit level.

(character)
group levels.

(data.frame)
input with LS means results.

(flag)

whether reference column is specified.

(string)

’reduction’ if (control - treatment, default) or ’increase’ (treatment - control)
of relative change from baseline?

150

ref_path

.spl_context

.stats

.formats

.labels

.indent_mods

Value

tabulate_rbmi

(character)
global reference group specification, see get_ref_info().

(data.frame)
gives information about ancestor split states that is passed by rtables.

additional arguments for the lower level functions.

(character)
statistics to select for the table.

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on
the 'auto' setting.

(named character)
labels for the statistics (without indent).

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodi-
fied default behavior. Can be negative.

e h_tidy_pool() returns a data. frame with results of pooled analysis for a single visit.

e s_rbmi_lsmeans() returns a list of statistics extracted from a tidied LS means data frame.

Functions

e h_tidy_pool(): Helper function to produce data frame with results of pool for a single visit.

e s_rbmi_lsmeans(): Statistics function which is extracting estimates from a tidied RBMI
results data frame.

* a_rbmi_lsmeans(): Formatted Analysis function which is used as afun.

Note

These functions have been forked from tern.rbmi. Additional features are:

* Additional ref_path argument.

e Extraction of variance statistics in the tidy () method.

* Adapted to rbmi forked functions update with more than two treatment groups.

theme_docx_default_j

151

theme_docx_default_j Obtain the default theme for the docx

Description

[Experimental]

This function is based on rtables.officer::theme_docx_default(). See notes to understand
why this is experimental.

Usage
theme_docx_default_j(
font = "Times New Roman”,
font_size = 9L,
cell_margins = c(0, 0, 0, 0),
bold = c("header”, "content_rows"”, "label_rows", "top_left"),

bold_manual = NULL,
border = flextable::fp_border_default(width = @0.75, color = "black")

Arguments

font

font_size

cell_margins

bold

bold_manual

border

Value

(string)
font. Defaults to "Times New Roman".

(integer(1))
font size. Defaults to 9.

(numeric(1) or numeric(4))
a numeric or a vector of four numbers indicating c("left", "right", "top", "bot-
tom"). It defaults to Omm in Word pt to all 4 margins.

(character)

parts of the table text that should be in bold. Can be any combination of c("header",
"content_rows", "label_rows", "top_left"). The first one renders all column
names bold (not topleft content). The second and third option use format-
ters::make_row_df() to render content or/and label rows as bold.

(named list or NULL)
list of index lists. See example for needed structure. Accepted groupings/names
are c("header”, "body").

(fp_border)
border to use. Defaults to width = 0.75 and color = "black"

a function that applies the given theme to a flextable.

152 tt_to_flextable_j

Note

This function has been tested for common use cases but may not work or have unexpected or
undesired behavior in corner cases. As such it is not considered fully production ready and is being
made available for further testing and early adoption. Please report any issues you encounter to the
developers. This function may be removed from junco in the future if the functionality is merged
into rtables.officer.

tt_to_flextable_j Convert a VIableTree or a listing_df object to a flextable

Description

[Experimental]

This function is based on rtables.officer::tt_to_flextable(). See notes to understand why
this is experimental.

Usage

tt_to_flextable_j(
tt,
tblid,
theme = theme_docx_default_j(font = "Times New Roman"”, font_size = 9L, bold = NULL),
border = flextable::fp_border_default(width = @.75, color = "black"),
indent_size = NULL,
titles_as_header = TRUE,
bold_titles = TRUE,
integrate_footers = TRUE,
counts_in_newline = FALSE,
paginate = FALSE,
fontspec = formatters::font_spec("Times”, 9L, 1.2),
lpp = NULL,
cpp = NULL,

colwidths = NULL,

tf_wrap = !is.null(cpp),

max_width = cpp,

total_page_height = 10,

total_page_width = my_pg_width_by_orient(orientation),
autofit_to_page = TRUE,

orientation = "portrait”,

nosplitin = character(),

string_map = junco::default_str_map,

markup_df_docx = dps_markup_df_docx,
reduce_first_col_indentation = FALSE,

tlgtype = (utils::getFromNamespace("tlg_type”, "junco"))(tt),
col_gap = ifelse(tlgtype == "Listing”, 0.5, 3),

tt_to_flextable_j 153

pagenum = ifelse(tlgtype == "Listing”, TRUE, FALSE),
round_type = formatters::obj_round_type(tt),
alignments = list(),

border_mat = make_header_bordmat(obj = tt)

)
Arguments
tt a VTableTree or a listing_df object
tblid Character. Output ID to be displayed in the Title and last line of footer.
theme (optional) a function factory. See theme_docx_default_j() or rtables.officer::theme_docx_default()
for more details.
border (optional) an fp_border object.
indent_size (optional) Numeric. Not used and set to 9 points internally.

titles_as_header

(optional) Default = TRUE.
bold_titles (optional) Default = TRUE.
integrate_footers

(optional) Default = TRUE.
counts_in_newline

(optional) Default = FALSE.

paginate (optional) Default = FALSE.

fontspec (optional) a font_spec object.

lpp (optional) Default = NULL. Not used.

cpp (optional) Default = NULL. Not used.
other arguments.

colwidths (optional) Default = NULL.

tf_wrap (optional) Default = FALSE. Not used.

max_width (optional) Default = NULL. Not used.

total_page_height
(optional) Default = 10. Not used.
total_page_width
(optional). No need to be specified by end user. Set to 6.38 ("portrait") or 8.88
("landscape").
autofit_to_page
(optional) Default = TRUE. Not used and set to FALSE internally.

orientation (optional) Default = "portrait". One of: "portrait", "landscape".
nosplitin (optional) Default = character(). Named list.
string_map (optional) Default = default_str_map.

markup_df_docx (optional) Default = dps_markup_df_docx.
reduce_first_col_indentation
(optional) Default = FALSE.

154

tlgtype
col_gap
pagenum

round_type

alignments

border_mat

Value

a flextable object.

Note

tt_to_tbldf

(optional). No need to be specified by end user.

(optional). Default = 3 (Tables) or 0.5 (Listings).

(optional). Default = FALSE (Tables) or TRUE (Listings).

("iec" or "sas")

the type of rounding to perform. iec, the default, performs rounding compli-

ant with IEC 60559, while sas performs nearest-value rounding consistent with
rounding within SAS. See [formatters::format_value()] for more details.

(list)
List of named lists. Vectorized. (Default = 1ist()) Used to specify individual
column or cell alignments. Each named list contains row, col, and value.

(matrix)

Am x k matrix where m is the number of columns of tt and k is the number of
lines the header takes up. See tidytlg::add_bottom_borders for what the matrix
should contain. Users should only specify this when the default behavior does
not meet their needs.

This function has been tested for common use cases but may not work or have unexpected or
undesired behavior in corner cases. As such it is not considered fully production ready and is being
made available for further testing and early adoption. Please report any issues you encounter to the
developers. This function may be removed from junco in the future if the functionality is merged
into rtables.officer.

tt_to_tbldf

Create TableTree as DataFrame via gentlg

Description

Create TableTree as DataFrame via gentlg

Usage

tt_to_tbldf(

tt,

fontspec = font_spec("Times"”, 9L, 1),
string_map = default_str_map,
markup_df = dps_markup_df,

round_type
validate

obj_round_type(tt),
TRUE

tt_to_tlgrtf 155

Arguments
tt (TableTree)
TableTree object to convert to a data frame
fontspec (font_spec)
Font specification object
string_map (list)
Unicode mapping for special characters
markup_df (data.frame)
Data frame containing markup information
round_type (character(1))
the type of rounding to perform. See formatters: :format_value() for more
details.
validate logical(1). Whether to validate the table structure using rtables: :validate_table_struct().
Defaults to TRUE. If FALSE, a message will be displayed instead of stopping with
an error when validation fails.
Value

tt represented as a tb1l data.frame suitable for passing to tidytlg::gentlg via the huxme argument.

tt_to_tlgrtf TableTree to .rtf Conversion

Description

A function to convert TableTree to .rtf

Usage

tt_to_tlgrtf(
tt,
file = NULL,
orientation = c("portrait”, "landscape"),
colwidths = def_colwidths(tt, fontspec, col_gap = col_gap, label_width_ins =
label_width_ins, type = tlgtype),
label_width_ins = 2,
watermark = NULL,

pagenum = ifelse(tlgtype == "Listing”, TRUE, FALSE),
fontspec = font_spec("Times", 9L, 1.2),

pg_width = pg_width_by_orient(orientation == "landscape"),
margins = c(@, @, 0, 0),

paginate = tlg_type(tt) == "Table”,

col_gap = ifelse(tlgtype == "Listing”, 0.5, 3),
nosplitin = list(row = character(), col = character()),
verbose = FALSE,

156 tt_to_tlgrtf

tlgtype = tlg_type(tt),

string_map = default_str_map,

markup_df = dps_markup_df,

combined_rtf = FALSE,

one_table = TRUE,

border_mat = make_header_bordmat(obj = tt),
round_type = obj_round_type(tt),

alignments = list(),

validate = TRUE,

Arguments
tt (TableTree)
TableTree object to convert to RTF
file (character(1))
File to create, including path, but excluding .rtf extension.
orientation (character)
Orientation of the output ("portrait" or "landscape")
colwidths (numeric vector)

Column widths for the table
label_width_ins

(numeric)

Label width in inches

watermark (optional) String containing the desired watermark for RTF outputs. Vectorized.

pagenum (logical)
Whether to add page numbers to the output. Only applicable to listings (i.e. it is
ignored for tables and figures).

fontspec (font_spec)
Font specification object

pg_width (numeric)
Page width in inches

margins (numeric vector)
Margins in inches (top, right, bottom, left)

paginate (logical)
Whether to paginate the output

col_gap (numeric)
Column gap in spaces

nosplitin (list)
list(row=, col=). Path elements whose children should not be paginated within
if it can be avoided. e.g., list(col="TRTO1A") means don’t split within treatment
arms unless all the associated columns don’t fit on a single page.

verbose (logical)
Whether to print verbose output

tt_to_tlgrtf 157

tlgtype (character)
Type of the output (Table, Listing, or Figure)

string_map (data.frame)
Unicode mapping for special characters

markup_df (data.frame)
Data frame containing markup information

combined_rtf (logical(1))
In the case where the result is broken up into multiple parts due to width, should
a combined rtf file also be created. Defaults to FALSE.

one_table (logical(1))
If ttisa(non-MatrixPrintForm) list, should the parts be added to the rtf within
a single table (TRUE, the default) or as separate tables. End users will not gener-
ally need to set this.

border_mat (matrix)
Am x k matrix where m is the number of columns of tt and k is the number of
lines the header takes up. See tidytlg::add_bottom_borders for what the matrix
should contain. Users should only specify this when the default behavior does
not meet their needs.

round_type (character(1))
the type of rounding to perform. See formatters: :format_value() for more
details.

alignments (list)

List of named lists. Vectorized. (Default = 1ist()) Used to specify individual
column or cell alignments. Each named list contains row, col, and value, which
are passed to huxtable: :set_align() to set the alignments.

validate logical(1). Whether to validate the table structure using rtables: :validate_table_struct().
Defaults to TRUE. If FALSE, a message will be displayed when validation fails.

Additional arguments passed to gentlg

Details

This function aids in converting the rtables TableTree into the desired .rtf file.

Value

If file is non-NULL, this is called for the side-effect of writing one or more RTF files. Otherwise,
returns a list of huxtable objects.

Note

file should always include path. Path will be extracted and passed separately to gentlg.

When one_table is FALSE, only the width of the row label pseudocolumn can be directly controlled
due to a limitation in tidytlg::gentlg. The proportion of the full page that the first value in
colwidths would take up is preserved and all other columns equally split the remaining available
width. This will cause, e.g., the elements within the allparts rtf generated when combined_rtf is
TRUE to differ visually from the content of the individual part rtfs.

Index

* Inclusion of ANCOVA Functions
a_summarize_ancova_j, 33
a_summarize_aval_chg_diff_j, 36
s_ancova_j, 142

* JJCS formatting functions
count and fraction related

formatting functions, 59
jjcsformat_xx, 89

a_cmhrms_j (cmhrms), 52
a_cmhrms_j_with_exclude (cmhrms), 52
a_coxph_hr (coxph_hr), 62
a_eairl100_j, 5
a_event_free (event_free), 70
a_freg_combos_j, 8
a_freq_j, 12
a_freq_j_with_exclude (a_freq_j), 12
a_freq_resp_var_j, 21
a_freq_subcol_j, 23
a_lsmeans (tabulate_lsmeans), 146
a_maxlev, 26
a_odds_ratio_j (odds_ratio), 100
a_proportion_ci_factor, 29
a_proportion_ci_logical, 29
a_proportion_ci_logical(), 29
a_proportion_diff_j (prop_diff), 104
a_proportion_diff_j(), 104, 106
a_rbmi_lsmeans (tabulate_rbmi), 149
a_relative_risk, 30
a_relative_risk(), 30
a_summarize_ancova_j, 33, 39, 144
a_summarize_aval_chg_diff_j, 34, 36, 144
a_summarize_ex_j, 40
a_summarize_mmrm (summarize_mmrm), 139
a_test_proportion_diff
(prop_diff_test), 107
a_test_proportion_diff(), 107
a_two_tier, 44
analyze, 26, 44
analyze_values, 4

158

broom: :tidy(), 147
bspt_pruner, 48
build_formula, 50

c_proportion_logical, 68

check_wrap_nobreak, 51

cmhrms, 52

cmp_cfun, 54

cmp_post_fun, 55

cmp_post_fun(), 54

cmp_split_fun (cmp_post_fun), 55

column_stats, 56

cond_rm_facets, 57

count and fraction related formatting
functions, 59

count_pruner, 61

coxph_hr, 62

create_colspan_map, 65

create_colspan_var, 67

def_colwidths (listing_column_widths),
96
do_exclude_split, 69

emmeans: :emmeans(), 77, 79, 82, 144
event_free, 70
export_as_docx_j, 72
export_graph_as_docx, 75

find_missing_chg_after_avisit, 76
fit_ancova, 77

fit_ancova(), 146

fit_mmrm_j, 78

fit_mmrm_j(), 50, 140, 146
formatters::format_value(), 60, 155, 157

get_mmrm_lsmeans, 81

get_ref_info, 82
get_ref_info(), 37,42, 53,63, 108, 147, 150
get_titles_from_file, 84
get_visit_levels, 85

INDEX

h_get_trtvar_refpath, 85
h_odds_ratio, 86
h_summarize_mmrm(), 140
h_tidy_pool (tabulate_rbmi), 149
huxtable::set_align(), 157

inches_to_spaces, 87
insert_blank_line, 88

jj_complex_scorefun, 92
jjcs_num_formats, 91
jjcsformat_cnt_den_fract_fct (count
and fraction related
formatting functions), 59
jjcsformat_count_denom_fraction (count
and fraction related
formatting functions), 59
jjcsformat_count_fraction (count and
fraction related formatting
functions), 59
jjcsformat_fraction_count_denom (count
and fraction related
formatting functions), 59
jjcsformat_pval_fct (jjcsformat_xx), 89
jjcsformat_range_fct (jjcsformat_xx), 89
jjcsformat_xx, 60, 89

keep_non_null_rows, 95
listing_column_widths, 96

make_combo_splitfun, 98
make_rbmi_cluster, 99
make_rbmi_cluster(), 112, 114
mmrm: : fit_mmrm(), 81

mmrm: :mmrm(), 50, 51, 79-81, 119, 120
mmrm: :mmrm_control(), 79, 80

odds_ratio, 87, 100
or_clogit_j (h_odds_ratio), 86
or_clogit_j(), 86

or_cmh (h_odds_ratio), 86
or_glm_j (h_odds_ratio), 86

par_lapply, 103
parallel::clusterApplylB, /103
parallel::makeCluster(), 104
prop_diff, 104
prop_diff_test, 107
prop_post_fun, 109

159

prop_ratio_cmh, 110

prop_split_fun (prop_post_fun), 109
prop_split_fun(), 111
prop_table_afun, 111

rbmi_analyse, 111
rbmi_analyse(), 112,117, 118, 120
rbmi_ancova, 116
rbmi_ancova(), 113,115,118
rbmi_ancova_single, 118
rbmi_mmrm, 119, 121
rbmi_mmrm(), 121
rbmi_mmrm_single_info, 121
rbmi_pool, 121
real_add_overall_facet, 122
relative_risk (a_relative_risk), 30
remove_col_count, 123
remove_rows, 124
resp@1_a_comp_stat_factor, 127
resp@1_a_comp_stat_factor(), 129
resp@1_a_comp_stat_logical, 128
resp@1_a_comp_stat_logical(), 128
resp@1_acfun, 125
resp@1_counts_cfun, 130
resp@1_split_fun_fct, 131
response_by_var, 132
rm_levels, 134
rm_other_facets_fact, 134
rtables.officer::export_as_docx(), 72
rtables.officer::theme_docx_default(),
151
rtables.officer::tt_to_flextable(),
152
rtables::additional_fun_params, 10, 16,
25,27,45, 82, 83
rtables: :analyze, 56
rtables: :basic_table(), 138
rtables::CellvValue(), 6, 32, 34,43, 101,
105, 108, 140
rtables::in_rows, 111, 147
rtables::in_rows(), 54, 69, 126, 130, 145
rtables: :make_split_fun(), 55, 109, 131
rtables: :rcell(), 29, 30, 128, 129
rtables: :spl_context, 82
rtables: :split_rows_by, 55, 109
rtables: :summarize_row_groups, /142
rtables: :summarize_row_groups(), 9, 23,
27,45, 54, 125, 130, 141

160

s_ancova_j, 34, 39, 142
s_cmhrms_j (cmhrms), 52
s_coxph_hr (coxph_hr), 62
s_event_free (event_free), 70
s_freq_j (a_freq_j), 12
s_lsmeans (tabulate_lsmeans), 146
s_lsmeans(), 141
s_odds_ratio_j (odds_ratio), 100
s_odds_ratio_j(), 86
s_proportion_diff_j (prop_diff), 104
s_proportion_factor, 144
s_proportion_factor(), 146
s_proportion_logical, 145
s_proportion_logical(), 69, 145
s_rbmi_lsmeans (tabulate_rbmi), 149
s_relative_risk (a_relative_risk), 30
s_summarize_ancova_j
(a_summarize_ancova_j), 33
s_summarize_ex_j (a_summarize_ex_j), 40
s_summarize_mmrm (summarize_mmrm), 139
safe_prune_table, 135
set_titles, 136
set_titles(), 84
stats::glm(), 86
stats::1m(), 78, 118
summarize_coxreg_multivar, 136
summarize_lsmeans_wide, 137
summarize_mmrm, 139
summarize_row_counts, 141
summarize_row_groups, 26
survival::clogit(), 86, 101

tabulate_lsmeans, 146
tabulate_rbmi, 149
tern::a_odds_ratio(), 102
tern::a_proportion_diff(), 106
tern::a_surv_timepoint, 71
tern::format_count_fraction_fixed_dp(),
59
tern: :s_coxph_pairwise, 64
tern: :s_coxph_pairwise(), 62, 64
tern::s_odds_ratio(), 102
tern::s_proportion(), 30
tern::s_proportion_diff(), 15
tern::s_summary, 33, 34
tern::s_surv_timepoint(), 70, 71
tern::s_test_proportion_diff(), 108
theme_docx_default_j, 151
tidy.tern_model (tabulate_lsmeans), 146

INDEX

tidytlg::add_bottom_borders, 74, 154,
157

tidytlg::gentlg, 155

tt_to_flextable_j, 152

tt_to_tbldf, 154

tt_to_tlgrtf, 155

	analyze_values
	a_eair100_j
	a_freq_combos_j
	a_freq_j
	a_freq_resp_var_j
	a_freq_subcol_j
	a_maxlev
	a_proportion_ci_factor
	a_proportion_ci_logical
	a_relative_risk
	a_summarize_ancova_j
	a_summarize_aval_chg_diff_j
	a_summarize_ex_j
	a_two_tier
	bspt_pruner
	build_formula
	check_wrap_nobreak
	cmhrms
	cmp_cfun
	cmp_post_fun
	column_stats
	cond_rm_facets
	count and fraction related formatting functions
	count_pruner
	coxph_hr
	create_colspan_map
	create_colspan_var
	c_proportion_logical
	do_exclude_split
	event_free
	export_as_docx_j
	export_graph_as_docx
	find_missing_chg_after_avisit
	fit_ancova
	fit_mmrm_j
	get_mmrm_lsmeans
	get_ref_info
	get_titles_from_file
	get_visit_levels
	h_get_trtvar_refpath
	h_odds_ratio
	inches_to_spaces
	insert_blank_line
	jjcsformat_xx
	jjcs_num_formats
	jj_complex_scorefun
	keep_non_null_rows
	listing_column_widths
	make_combo_splitfun
	make_rbmi_cluster
	odds_ratio
	par_lapply
	prop_diff
	prop_diff_test
	prop_post_fun
	prop_ratio_cmh
	prop_table_afun
	rbmi_analyse
	rbmi_ancova
	rbmi_ancova_single
	rbmi_mmrm
	rbmi_mmrm_single_info
	rbmi_pool
	real_add_overall_facet
	remove_col_count
	remove_rows
	resp01_acfun
	resp01_a_comp_stat_factor
	resp01_a_comp_stat_logical
	resp01_counts_cfun
	resp01_split_fun_fct
	response_by_var
	rm_levels
	rm_other_facets_fact
	safe_prune_table
	set_titles
	summarize_coxreg_multivar
	summarize_lsmeans_wide
	summarize_mmrm
	summarize_row_counts
	s_ancova_j
	s_proportion_factor
	s_proportion_logical
	tabulate_lsmeans
	tabulate_rbmi
	theme_docx_default_j
	tt_to_flextable_j
	tt_to_tbldf
	tt_to_tlgrtf
	Index

