Package ‘recipes’

February 18, 2024
Title Preprocessing and Feature Engineering Steps for Modeling
Version 1.0.10

Description A recipe prepares your data for modeling. We provide an
extensible framework for pipeable sequences of feature engineering
steps provides preprocessing tools to be applied to data. Statistical
parameters for the steps can be estimated from an initial data set and
then applied to other data sets. The resulting processed output can
then be used as inputs for statistical or machine learning models.

License MIT + file LICENSE

URL https://github.com/tidymodels/recipes,
https://recipes.tidymodels.org/

BugReports https://github.com/tidymodels/recipes/issues
Depends dplyr (>=1.1.0), R (>=3.6)

Imports cli, clock (>=0.6.1), ellipsis, generics (>= 0.1.2), glue,
gower, hardhat (>= 1.3.0), ipred (>= 0.9-12), lifecycle (>=
1.0.3), lubridate (>= 1.8.0), magrittr, Matrix, purrr (>=
1.0.0), rlang (>= 1.1.0), stats, tibble, tidyr (>= 1.0.0),
tidyselect (>= 1.2.0), timeDate, utils, vctrs (>= 0.5.0), withr

Suggests covr, ddalpha, dials (>= 1.2.0), ggplot2, igraph, kernlab,
knitr, modeldata (>= 0.1.1), parsnip (>= 1.2.0), RANN,
RcppRoll, rmarkdown, rpart, rsample, RSpectra, splines2,
testthat (>= 3.0.0), workflows, xml2

VignetteBuilder knitr

RdMacros lifecycle

Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no


https://github.com/tidymodels/recipes
https://recipes.tidymodels.org/
https://github.com/tidymodels/recipes/issues

2 R topics documented:

Author Max Kuhn [aut, cre],
Hadley Wickham [aut],
Emil Hvitfeldt [aut],
Posit Software, PBC [cph, fnd]

Maintainer Max Kuhn <max@posit.co>
Repository CRAN
Date/Publication 2024-02-18 18:00:02 UTC

R topics documented:

get_data_types . ... . . oL e e e 4
add_step . . . . . e e 6
bake . . . . . e e 7
case-weight-helpers . . . . . . .. ..o 9
case_weights . . . . . ... L 10
check class . . . . . . s e 11
check_cols . . . . . . . e 13
check_missing. . . . . . . . ... 15
check new_values . . . . . . . . . e 16
check_range . . . . . . . .. 18
detect_Step . . . . . . e e e e e 20
developer_functions . . . . . . . . ... 21
discretize . . . . . . .. e e e 24
formularecipe . . . . . . .. L 25
fully_trained . . . . . . . . . 26
has_role . . . . . . o e 27
JUICE © o o o e 29
namesO . . . .. L e e 30
PIED - o o o e e e e e e 31
PIEPPET .« o o o o e e e e e e e e e 33
PrINLICCIPE . . . o . o i e e e e e e 34
TECIPE « v o o o e e e e e e e e e e 34
recipes_eval_select . . . . .. ... 40
recipes_extension_check . . . . . . . . . ... L 42
TOIES . . . o e 43
selections . . . . . .. .. 46
SEP_AITANGZE . . . . . . . . . e e e e 49
step_bin2factor . . . . . ... 51
step_BoxCox . . . . . 53
Step_bS . . e 55
SIEP_CENLET . . .« . v it e e e e e e e e e e e e e e e e e 57
step_classdist . . . ... L. 59
step_classdist_shrunken . . . . . . ... ..o o 62
SEEP_COIT . o o o o i e e e e e e e e e e e 65
SEP_COUNE . . . . . . vttt e e 68
SEEP_CUL . . . o o e e e e e e e e e e 70

step_date . ... 72



R topics documented: 3

step_depth . . . . . L e 74
step_discretize . . . . . . . L. e e e e e e e 77
Sep_dUMIMY . . . . . o o o e e e e e e e 79
step_dummy_extract . . . . . . ... e 82
step_dummy_multi_choice . . . . . . .. ... L 85
step_factor2string . . . . . . ... L. 88
step_filter . . . . . Lo 90
step_filter_missing . . . . . . ... e e e e 92
step_geodist . . . ... L 94
step_harmonic . . . . . . ... 96
step_holiday . . . . . ... 100
step_hyperbolic . . . . . . .. e 102
SEEP_ICA . . . . . e e e e e e e e e e 104
step_impute_bag . . . . ... 107
step_impute_knn . ... oL oL e e 110
step_impute_linear . . . . . . ... L. e e 113
step_impute_lower . . . . . . .. 116
SEP_IMPULE_MEAN . . . . . v v v v e e e e e e e e e e e e e e e e e e e 118
step_impute_median . . . ... L e e e e e 121
step_impute_mode . . . . ... L 123
step_impute_roll . . . ... 125
step_indicate_na . . . .. ..o e e e e e e e e e e 128
SEP_INteZer . . . . . . ... e e 130
Step_interact . . . . . . ... . e 132
SEEP_INLEICEPL . . . . v o i e e e e e e e e e e e e e e e e e e e 134
SEEP_INVETSE . . v v v v v vt e e e e e e e e e e e e e e e e e 136
step_invlogit. . . . . L. L. 137
SEP_ISOmMAp . . . . ... e e 139
step_kpea . .. . e e e 142
step_kpca_poly . . . . ... 145
step_kpca_rbf . . . .. 148
step_lag . ... e e 151
step_lincomb . . . ... Lo 153
step_log . . .. 155
step_logit . ... 157
SEP_MULALE . . . . o v o e e e e e e e e e e e e e e e e e e 159
Step_mutate_at . . . . . . L. e e e e e e e e e e e e e e e e 161
SEP_NAOMIL . . . . . . . . e 163
step_nnmf . ... L L e e e e e e e e 165
step_nnmf_SParse . . . .. ..o e e e e e e e e e e 168
step_normalize . . . . ... .. 170
step_novel . ..o L e e e 172
] 7] 0 175
step_num2factor . . . ... .. 177
SEP_NZV . o v o e e e e e e e e e e 179
step_ordinalscore . . . . ... L. e e e 182
step_other . . . . . . .. e 184

SEEP_PCA .« o ot e e e e e e e e e e e e e e 187



4 .get_data_types
step_percentile . . . . . . L. L e e e 190
Step_pls . . .. e 192
SEP_POLY . . . e e e e 195
step_poly_bernstein . . . . . . ... 198
step_profile . . . .. L 200
SEEP_TANEE .« o o o o e e e e e e e e e e e e e e e e 203
SEP_TAtio . . . . . L e e e e e e e 205
SEEP_TEZEX + v v v o e e e e e e e e e e e e e e e e e e e e e e e 207
step_relevel . . .. L e 209
Step_rell. . . . . e e e e e 211
SEP_IENAME . . .« . v v v v e e e e e e e e e e e e e e e e e e 214
SEP_TENAME_At . . . . . o v v it e e e e e e e e e e e e e e e e e e 215
SEEP_ITIL . . v v o i e e e e e e e e e e e 217
step_sample . . . ... L e 219
step_scale . . ... e e e e e 221
step_select . . . .. e 223
step_shuffle . . . . . . . L 225
step_slice . . . . . 227
step_spatialsign . . . . . . L. oL e e e 229
step_spline_b . . . ... 231
StEP_SPLINE_CONVEX . . . . . v v v v it v et e e e e e e e e e e 234
Step_spline_MmoNnotone . . . . . . . . ... .o e e 236
step_spline_natural . . . . . . ... L e 239
step_spline_nonnegative . . . . . . . . . .. i e e e e e e e e e e e 241
SEEP_SAIL .+« o v e e e e e e e e e e e e 244
step_string@2factor . . . . . .. L. e e e 245
SEP_LIME . . . . . e e 248
Step_unknown . . . ... L e e e e e 250
step_unorder . . oL ... e e 252
Step_WINAOW . . . . L e e e e e e e 253
step_YeoJohnson . . . . . . . ... e e e 256
SEP_ZV . . L e e e e 259
SUMMATY.TECIPE .« . v v v v v e e e e e e e e e e e e e e e e e e e e e e 261
tidy.step_BoxCox . . . . . . . . 262
update.Step . . . .. L e e e e e 269
update_role_requirements . . . . . . ... ..o e e 270

Index 272

.get_data_types Get types for use in recipes

Description

The .get_data_types() generic is used internally to supply types to columns used in recipes.
These functions underlie the work that the user sees in selections.



.get_data_types

Usage

.get_data_types(x)

## Default S3 method:
.get_data_types(x)

## S3 method for class 'character'
.get_data_types(x)

## S3 method for class 'ordered'
.get_data_types(x)

## S3 method for class 'factor'
.get_data_types(x)

## S3 method for class 'integer'
.get_data_types(x)

## S3 method for class 'numeric'
.get_data_types(x)

## S3 method for class 'double'
.get_data_types(x)

## S3 method for class 'Surv'
.get_data_types(x)

## S3 method for class 'logical'
.get_data_types(x)

## S3 method for class 'Date'’
.get_data_types(x)

## S3 method for class 'POSIXct'
.get_data_types(x)

## S3 method for class 'list'
.get_data_types(x)

## S3 method for class 'textrecipes_tokenlist'
.get_data_types(x)

## S3 method for class 'hardhat_case_weights'
.get_data_types(x)

Arguments

X An object



6 add_step

Details

This function acts as an extended recipes-specific version of class(). By ignoring differences in
similar types ("double" and "numeric") and allowing each element to have multiple types ("factor"
returns "factor", "unordered", and "nominal", and "character" returns "string", "unordered", and
"nominal") we are able to create more natural selectors such as all_nominal(), all_string()
and all_integer().

The following list shows the data types for different classes, as defined by recipes. If an object has
a class not supported by .get_data_types(), it will get data type "other".

* character: string, unordered, and nominal

¢ ordered: ordered, and nominal

e factor: factor, unordered, and nominal

* integer: integer, and numeric

e numeric: double, and numeric

¢ double: double, and numeric

e Surv: surv

* logical: logical

* Date: date

* POSIXct: datetime

o list: list

* textrecipes_tokenlist: tokenlist

* hardhat_case_weights: case_weights

See Also

developer_functions

Examples

data(Sacramento, package = "modeldata”)
lapply(Sacramento, .get_data_types)

add_step Add a New Operation to the Current Recipe

Description

add_step adds a step to the last location in the recipe. add_check does the same for checks.



bake

Usage

add_step(rec, object)

add_check(rec, object)

Arguments

rec

object

Value

A recipe().
A step or check object.

A updated recipe() with the new operation in the last slot.

See Also

developer_functions

bake

Apply a trained preprocessing recipe

Description

For a recipe with at least one preprocessing operation that has been trained by prep(), apply the
computations to new data.

Usage

bake(object,

)

## S3 method for class 'recipe'

bake(object,

Arguments

object

new_data

composition

new_data, ..., composition = "tibble")

A trained object such as a recipe() with at least one preprocessing operation.

One or more selector functions to choose which variables will be returned by
the function. See selections() for more details. If no selectors are given, the
default is to use everything().

A data frame or tibble for whom the preprocessing will be applied. If NULL is
given to new_data, the pre-processed training data will be returned (assuming
that prep(retain = TRUE) was used).

Either "tibble", "matrix", "data.frame", or "dgCMatrix" for the format of the
processed data set. Note that all computations during the baking process are
done in a non-sparse format. Also, note that this argument should be called
after any selectors and the selectors should only resolve to numeric columns
(otherwise an error is thrown).



8 bake

Details

bake () takes a trained recipe and applies its operations to a data set to create a design matrix.
If you are using a recipe as a preprocessor for modeling, we highly recommend that you use a
workflow() instead of manually applying a recipe (see the example in recipe()).

If the data set is not too large, time can be saved by using the retain = TRUE option of prep().
This stores the processed version of the training set. With this option set, bake (object, new_data
= NULL) will return it for free.

Also, any steps with skip = TRUE will not be applied to the data when bake() is invoked with a
data set in new_data. bake(object, new_data = NULL) will always have all of the steps applied.

Value

A tibble, matrix, or sparse matrix that may have different columns than the original columns in
new_data.

See Also

recipe(), prep()

Examples

data(ames, package = "modeldata")
ames <- mutate(ames, Sale_Price = logl@(Sale_Price))

ames_rec <-
recipe(Sale_Price ~ ., data = ames[-(1:6), 1) %>%
step_other(Neighborhood, threshold = 0.05) %>%
step_dummy(all_nominal()) %>%
step_interact(~ starts_with("Central_Air"):Year_Built) %>%
step_ns(Longitude, Latitude, deg_free = 2) %>%
step_zv(all_predictors()) %>%
prep()

# return the training set (already embedded in ames_rec)
bake (ames_rec, new_data = NULL)

# apply processing to other data:
bake (ames_rec, new_data = head(ames))

# only return selected variables:
bake (ames_rec, new_data = head(ames), all_numeric_predictors())
bake (ames_rec, new_data = head(ames), starts_with(c("Longitude”, "Latitude")))



case-weight-helpers 9

case-weight-helpers Helpers for steps with case weights

Description

These functions can be used to do basic calculations with or without case weights.

Usage

get_case_weights(info, .data, call = rlang::caller_env())
averages(x, wts = NULL, na_rm = TRUE)

medians(x, wts = NULL)

variances(x, wts = NULL, na_rm = TRUE)

correlations(x, wts = NULL, use = "everything”, method = "pearson”)
covariances(x, wts = NULL, use = "everything”, method = "pearson")
pca_wts(x, wts = NULL)

are_weights_used(wts, unsupervised = FALSE)

Arguments

info A data frame from the info argument within steps

.data The training data

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.

X A numeric vector or a data frame

wts A vector of case weights

na_rm A logical value indicating whether NA values should be removed during compu-
tations.

use Used by correlations() or covariances() to pass argument to cor() or
cov()

method Used by correlations() or covariances() to pass argument to cor() or
cov()

unsupervised  Can the step handle unsupervised weights



10 case_weights

Details
get_case_weights() is designed for developers of recipe steps, to return a column with the role
of "case weight" as a vector.
For the other functions, rows with missing case weights are removed from calculations.

For averages() and variances(), missing values in the data (not the case weights) only affect the
calculations for those rows. For correlations(), the correlation matrix computation first removes
rows with any missing values (equal to the "complete.obs" strategy in stats: :cor()).

are_weights_used() is designed for developers of recipe steps and is used inside print method to
determine how printing should be done.

See Also

developer_functions

case_weights Using case weights with recipes

Description

Case weights are positive numeric values that may influence how much each data point has during
the preprocessing. There are a variety of situations where case weights can be used.

Details

tidymodels packages differentiate how different types of case weights should be used during the
entire data analysis process, including preprocessing data, model fitting, performance calculations,
etc.

The tidymodels packages require users to convert their numeric vectors to a vector class that reflects
how these should be used. For example, there are some situations where the weights should not
affect operations such as centering and scaling or other preprocessing operations.

The types of weights allowed in tidymodels are:

* Frequency weights via hardhat: : frequency_weights()

* Importance weights via hardhat: : importance_weights()

More types can be added by request.

For recipes, we distinguish between supervised and unsupervised steps. Supervised steps use the
outcome in the calculations, this type of steps will use frequency and importance weights. Unsu-
pervised steps don’t use the outcome and will only use frequency weights.

There are 3 main principles about how case weights are used within recipes. First, the data set that
is passed to the recipe () function should already have a case weights column in it. This column can

be created beforehand using hardhat: : frequency_weights() or hardhat: : importance_weights().

Second, There can only be 1 case weights column in a recipe at any given time. Third, You
can not modify the case weights column with most of the steps or using the update_role() and
add_role() functions.



check class 11

These principles ensure that you experience minimal surprises when using case weights, as the
steps automatically apply case weighted operations when supported. The printing method will
additionally show which steps where weighted and which steps ignored the weights because they
were of an incompatible type.

See Also

frequency_weights(), importance_weights()

check_class Check variable class

Description

check_class creates a specification of a recipe check that will check if a variable is of a designated
class.

Usage

check_class(
recipe,
role = NA,
trained = FALSE,
class_nm = NULL,
allow_additional = FALSE,
skip = FALSE,
class_list = NULL,
id = rand_id("class")

)
Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.
One or more selector functions to choose variables for this check. See selections()
for more details.

role Not used by this check since no new variables are created.

trained A logical for whether the selectors in . . . have been resolved by prep().

class_nm A character vector that will be used in inherits to check the class. If NULL the

classes will be learned in prep. Can contain more than one class.

allow_additional
If TRUE a variable is allowed to have additional classes to the one(s) that are
checked.



12 check_class

skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

class_list A named list of column classes. This is NULL until computed by prep().
id A character string that is unique to this check to identify it.
Details

This function can check the classes of the variables in two ways. When the class argument is
provided it will check if all the variables specified are of the given class. If this argument is NULL,
the check will learn the classes of each of the specified variables in prep. Both ways will break
bake if the variables are not of the requested class. If a variable has multiple classes in prep, all the
classes are checked. Please note that in prep the argument strings_as_factors defaults to TRUE.
If the train set contains character variables the check will be break bake when strings_as_factors
is TRUE.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) and
value (the type) is returned.

Case weights

The underlying operation does not allow for case weights.

See Also

Other checks: check_cols(), check_missing(), check_new_values(), check_range()

Examples

library(dplyr)
data(Sacramento, package = "modeldata”)

# Learn the classes on the train set

train <- Sacramento[1:500, ]

test <- Sacramento[501:nrow(Sacramento), 1]

recipe(train, sqft ~ .) %>%
check_class(everything()) %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)

# Manual specification



check cols 13

recipe(train, sqft ~ .) %>%

check_class(sqft, class_nm = "integer") %>%
check_class(city, zip, type, class_nm = "factor”) %>%
check_class(latitude, longitude, class_nm = "numeric") %>%
prep(train, strings_as_factors = FALSE) %>%

bake(test)

By default only the classes that are specified
are allowed.
x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
x_df$time %>% class()
## Not run:
recipe(x_df) %>%
check_class(time, class_nm = "POSIXt") %>%
prep(x_df) %>%
bake_(x_df)

#
#

## End(Not run)

# Use allow_additional = TRUE if you are fine with it

recipe(x_df) %>%
check_class(time, class_nm = "POSIXt"”, allow_additional = TRUE) %>%
prep(x_df) %>%
bake (x_df)

check_cols Check if all columns are present

Description

check_cols creates a specification of a recipe step that will check if all the columns of the training
frame are present in the new data.

Usage

check_cols(
recipe,
role = NA,
trained = FALSE,
skip = FALSE,
id = rand_id("cols")

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.



14 check cols

One or more selector functions to choose variables for this check. See selections()
for more details.

role Not used by this check since no new variables are created.
trained A logical for whether the selectors in . . . have been resolved by prep().
skip A logical. Should the check be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this check to identify it.

Details

This check will break the bake function if any of the specified columns is not present in the data. If
the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) and
value (the type) is returned.

See Also

Other checks: check_class(), check_missing(), check_new_values(), check_range()

Examples
data(biomass, package = "modeldata”)
biomass_rec <- recipe(HHV ~ ., data = biomass) %>%

step_rm(sample, dataset) %>%
check_cols(contains("gen")) %>%
step_center(all_numeric_predictors())

## Not run:

bake(biomass_rec, biomass[, c("carbon”, "HHV")1)

## End(Not run)



check_missing 15

check_missing Check for missing values

Description

check_missing creates a specification of a recipe operation that will check if variables contain
missing values.

Usage

check_missing(
recipe,
role = NA,
trained = FALSE,
columns = NULL,

skip = FALSE,
id = rand_id("missing")
)
Arguments
recipe A recipe object. The check will be added to the sequence of operations for this
recipe.
One or more selector functions to choose variables for this check. See selections()
for more details.
role Not used by this check since no new variables are created.
trained A logical for whether the selectors in . . . have been resolved by prep().
columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.
skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.
id A character string that is unique to this check to identify it.
Details

This check will break the bake function if any of the checked columns does contain NA values. If
the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.



16 check _new_values

tidy() results

When you tidy() this check, a tibble with column terms (the selectors or variables selected) is
returned.

See Also

Other checks: check_class(), check_cols(), check_new_values(), check_range()

Examples

data(credit_data, package = "modeldata”)
is.na(credit_data) %>% colSums()

# If the test passes, ‘new_data‘ is returned unaltered
recipe(credit_data) %>%

check_missing(Age, Expenses) %>%

prep() %>%

bake(credit_data)

# If your training set doesn't pass, prep() will stop with an error
## Not run:
recipe(credit_data) %>%

check_missing(Income) %>%

prep()

## End(Not run)
# If “new_data‘ contain missing values, the check will stop ‘bake()*

train_data <- credit_data %>% dplyr::filter(Income > 150)
test_data <- credit_data %>% dplyr::filter(Income <= 150 | is.na(Income))

rp <- recipe(train_data) %>%
check_missing(Income) %>%
prep()

bake(rp, train_data)
## Not run:
bake(rp, test_data)

## End(Not run)

check_new_values Check for new values

Description

check_new_values creates a specification of a recipe operation that will check if variables contain
new values.



check new_values

17

Usage
check_new_values(
recipe,
role = NA,

trained = FALSE,
columns = NULL,
ignore_NA = TRUE,
values = NULL,

skip = FALSE,

id = rand_id("new_values")

Arguments

recipe

role
trained

columns

ignore_NA

values

skip

id

Details

A recipe object. The check will be added to the sequence of operations for this
recipe.

One or more selector functions to choose variables for this check. See selections()
for more details.

Not used by this check since no new variables are created.
A logical for whether the selectors in . . . have been resolved by prep().

A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

A logical that indicates if we should consider missing values as value or not.
Defaults to TRUE.

A named list with the allowed values. This is NULL until computed by prep.recipe().

A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

A character string that is unique to this check to identify it.

This check will break the bake function if any of the checked columns does contain values it did
not contain when prep was called on the recipe. If the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) is

returned.



18 check_range

Case weights

The underlying operation does not allow for case weights.

See Also

Other checks: check_class(), check_cols(), check_missing(), check_range()

Examples

data(credit_data, package = "modeldata")

# If the test passes, ‘new_data‘ is returned unaltered
recipe(credit_data) %>%
check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)
# If ‘new_data‘ contains values not in ‘x°
# the [bake()] function will break.
## Not run:
recipe(credit_data %>% dplyr::filter(Home != "rent")) %>%
check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)

at the [prep()] function,

## End(Not run)

# By default missing values are ignored, so this passes.
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
check_new_values(Home) %>%
prep() %>%
bake(credit_data)

# Use ‘ignore_NA = FALSE" if you consider missing values as a value,
# that should not occur when not observed in the train set.
## Not run:
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
check_new_values(Home, ignore_NA = FALSE) %>%
prep() %>%
bake(credit_data)

## End(Not run)

check_range Check range consistency




check_range 19

Description

check_range creates a specification of a recipe check that will check if the range of a numeric
variable changed in the new data.

Usage

check_range(
recipe,
role = NA,
skip = FALSE,
trained = FALSE,
slack_prop = 0.05,

warn = FALSE,
lower = NULL,
upper = NULL,
id = rand_id("range_check_")
)
Arguments
recipe A recipe object. The check will be added to the sequence of operations for this
recipe.
One or more selector functions to choose variables for this check. See selections()
for more details.
role Not used by this check since no new variables are created.
skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.
trained A logical for whether the selectors in . . . have been resolved by prep().
slack_prop The allowed slack as a proportion of the range of the variable in the train set.
warn If TRUE the check will throw a warning instead of an error when failing.
lower A named numeric vector of minimum values in the train set. This is NULL until
computed by prep().
upper A named numeric vector of maximum values in the train set. This is NULL until
computed by prep().
id A character string that is unique to this check to identify it.
Details

The amount of slack that is allowed is determined by the slack_prop. This is a numeric of length
one or two. If of length one, the same proportion will be used at both ends of the train set range.
If of length two, its first value is used to compute the allowed slack at the lower end, the second to
compute the allowed slack at the upper end.



20

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) and

value (the means) is returned.

See Also

Other checks: check_class(), check_cols(), check_missing(), check_new_values()

Examples

slack_df <- data_frame(x = 0:100)
slack_new_data <- data_frame(x = -10:110)

# this will fail the check both ends
## Not run:
recipe(slack_df) %>%

check_range(x) %>%

prep() %>%

bake(slack_new_data)

## End(Not run)

# this will fail the check only at the upper end
## Not run:
recipe(slack_df) %>%
check_range(x, slack_prop = c(0.1, 0.05)) %>%
prep() %>%
bake(slack_new_data)

## End(Not run)

# give a warning instead of an error
## Not run:
recipe(slack_df) %>%
check_range(x, warn = TRUE) %>%
prep() %>%
bake(slack_new_data)

## End(Not run)

detect_step

Detect if a particular step or check is used in a recipe

Description

Detect if a particular step or check is used in a recipe



developer_functions 21

Usage

detect_step(recipe, name)

Arguments
recipe A recipe to check.
name Character name of a step or check, omitted the prefix. That is, to check if
step_intercept is present, use name = intercept.
Value

Logical indicating if recipes contains given step.

See Also

developer_functions

Examples

rec <- recipe(Species ~ ., data = iris) %>%
step_intercept()

detect_step(rec, "intercept”)

developer_functions Developer functions for creating recipes steps

Description

This page provides a comprehensive list of the exported functions for creating recipes steps and
guidance on how to use them.

Creating steps

add_step() and add_check() are required when creating a new step. The output of add_step()
should be the return value of all steps and should have the following format:

step_example <- function(recipe,

0

role = NA,

trained = FALSE,
skip = FALSE,
id = rand_id("example”)) {
add_step(
recipe,

step_example_new(
terms = enquos(...),



22

developer_functions

role = role,
trained = trained,
skip = skip,
id = id
)
)
3

rand_id() should be used in the arguments of step_example() to specify the argument, as we see
in the above example.

recipes_pkg_check() should be used in step_example () functions together with required_pkgs ()
to alert users that certain other packages are required. The standard way of using this function is
the following format:

recipes_pkg_check(required_pkgs.step_example())

step() and check() are used within the step_*_new() function that you use in your new step. It
will be used in the following way:

step_example_new <- function(terms, role, trained, skip, id) {
step(
subclass = "example”,
terms = terms,
role = role,
trained = trained,
skip = skip,
id = id
)
3

recipes_eval_select() is used within prep.step_x() functions, and are used to turn the terms
object into a character vector of the selected variables.

It will most likely be used like so:
col_names <- recipes_eval_select(x$terms, training, info)

check_type() can be used within prep.step_*() functions to check that the variables passed in
are the right types. We recommend that you use the types argument as it offers higher flexibility
and it matches the types defined by .get_data_types(). When using types we find it better to
be explicit, e.g. writing types = c("double”, "integer"”) instead of types = "numeric”, as it
produces cleaner error messages.

It should be used like so:
check_type(training[, col_names], types = c("double”, "integer"))

check_new_data() should be used within bake.step_x(). This function is used to make check
that the required columns are present in the data. It should be one of the first lines inside the
function.

It should be used like so:



developer_functions 23

check_new_data(names(object$columns), object, new_data)

check_name () should be used in bake.step_x() functions for steps that add new columns to the
data set. The function throws an error if the column names already exist in the data set. It should be
called before adding the new columns to the data set.

get_keep_original_cols() and remove_original_cols() are used within steps with the keep_original_cols
argument. get_keep_original_cols() is used in prep.step_x() functions for steps that were

created before the keep_original_cols argument was added, and acts as a way to throw a warning

that the user should regenerate the recipe. remove_original_cols() should be used in bake.step_*()

functions to remove the original columns. It is worth noting that remove_original_cols() can

remove multiple columns at once and when possible should be put outside for loops.

new_data <- remove_original_cols(new_data, object, names_of_original_cols)

recipes_remove_cols() should be used in prep.step_*() functions, and is used to remove
columns from the data set, either by using the object$removals field or by using the col_names
argument.

get_case_weights() and are_weights_used() are functions that help you extract case weights
and help determine if they are used or not within the step. They will typically be used within the
prep.step_x() functions if the step in question supports case weights.

print_step() is used inside print.step_*() functions. This function is replacing the internally
deprecated printer () function.

sel2char() is mostly used within tidy.step_x*() functions to turn selections into character vec-
tors.

names@() creates a series of num names with a common prefix. The names are numbered with
leading zeros (e.g. prefix@1-prefix10 instead of prefix1-prefix10). This is useful for many
types of steps that produce new columns.

Interacting with recipe objects

detect_step() returns a logical indicator to determine if a given step or check is included in a
recipe.

fully_trained() returns a logical indicator if the recipe is fully trained. The function is_trained()
can be used to check in any individual steps are trained or not.

.get_data_types() is an S3 method that is used for selections. This method can be extended to
work with column types not supported by recipes.

recipes_extension_check() is recommended to be used by package authors to make sure that all
steps have prep.step_*(), bake.step_*(), print.step_x(), tidy.step_x(), and required_pkgs.step_*()
methods. It should be used as a test, preferably like this:

test_that("recipes_extension_check”, {
expect_snapshot(
recipes: :recipes_extension_check(
pkg = "pkgname”
)
)
b))



24 discretize

discretize Discretize Numeric Variables

Description

discretize() converts a numeric vector into a factor with bins having approximately the same
number of data points (based on a training set).

Usage

discretize(x, ...)

## Default S3 method:
discretize(x, ...)

## S3 method for class 'numeric'

discretize(
X,
cuts = 4,
labels = NULL,
prefix = "bin",
keep_na = TRUE,
infs = TRUE,

min_unique = 10,
)

## S3 method for class 'discretize'
predict(object, new_data, ...)

Arguments

X A numeric vector
Options to pass to stats: :quantile() that should not include x or probs.
cuts An integer defining how many cuts to make of the data.

labels A character vector defining the factor levels that will be in the new factor (from
smallest to largest). This should have length cuts+1 and should not include a
level for missing (see keep_na below).

prefix A single parameter value to be used as a prefix for the factor levels (e.g. bin1,
bin2, ...). If the string is not a valid R name, it is coerced to one. If prefix =
NULL then the factor levels will be labelled according to the output of cut ().

keep_na A logical for whether a factor level should be created to identify missing val-
ues in x. If keep_na is set to TRUE then na.rm = TRUE is used when calling
stats::quantile().

infs A logical indicating whether the smallest and largest cut point should be infinite.



formula.recipe 25

min_unique An integer defining a sample size line of dignity for the binning. If (the number
of unique values)/ (cuts+1) is less than min_unique, no discretization takes
place.
object An object of class discretize.
new_data A new numeric object to be binned.
Details

discretize estimates the cut points from x using percentiles. For example, if cuts = 3, the function
estimates the quartiles of x and uses these as the cut points. If cuts = 2, the bins are defined as being
above or below the median of x.

The predict method can then be used to turn numeric vectors into factor vectors.
If keep_na = TRUE, a suffix of "_missing" is used as a factor level (see the examples below).

If inf's = FALSE and a new value is greater than the largest value of x, a missing value will result.

Value

discretize returns an object of class discretize and predict.discretize returns a factor vec-

tor.
Examples
data(biomass, package = "modeldata”)
biomass_tr <- biomass[biomass$dataset == "Training"”, 1]
biomass_te <- biomass[biomass$dataset == "Testing”, ]

median(biomass_tr$carbon)

discretize(biomass_tr$carbon, cuts = 2)

discretize(biomass_tr$carbon, cuts = 2, infs = FALSE)
discretize(biomass_tr$carbon, cuts = 2, infs = FALSE, keep_na = FALSE)
discretize(biomass_tr$carbon, cuts = 2, prefix = "maybe a bad idea to bin")

carbon_binned <- discretize(biomass_tr$carbon)
table(predict(carbon_binned, biomass_tr$carbon))

carbon_no_infs <- discretize(biomass_tr$carbon, infs = FALSE)
predict(carbon_no_infs, c(50, 100))

formula.recipe Create a formula from a prepared recipe

Description

In case a model formula is required, the formula method can be used on a recipe to show what
predictors and outcome(s) could be used.



26 fully_trained

Usage
## S3 method for class 'recipe’
formula(x, ...)
Arguments
X A recipe object that has been prepared.

Note currently used.

Value
A formula.
Examples
formula(recipe(Species + Sepal.Length ~ ., data = iris) %>% prep())
iris_rec <- recipe(Species ~ ., data = iris) %>%
step_center(all_numeric()) %>%
prep()

formula(iris_rec)

fully_trained Check to see if a recipe is trained/prepared

Description

Check to see if a recipe is trained/prepared

Usage
fully_trained(x)

Arguments

X A recipe

Value
A logical which is true if all of the recipe steps have been run through prep. If no steps have been
added to the recipe, TRUE is returned only if the recipe has been prepped.

See Also

developer_functions



has_role 27

Examples

rec <- recipe(Species ~ ., data = iris) %>%
step_center(all_numeric())

rec %>% fully_trained()
rec %>%

prep(training = iris) %>%
fully_trained()

has_role Role Selection

Description
has_role(),all_predictors(), and all_outcomes() can be used to select variables in a formula
that have certain roles.

In most cases, the right approach for users will be use to use the predictor-specific selectors such as
all_numeric_predictors() and all_nominal_predictors(). In general you should be careful
about using -all_outcomes() if a *_predictors() selector would do what you want.

Similarly, has_type(), all_numeric(),all_integer(),all_double(), all_nominal(), all_ordered(),
all_unordered(), all_factor(), all_string(), all_date() and all_datetime() are used to
select columns based on their data type.

all_factor() captures ordered and unordered factors, all_string() captures characters, all_unordered()
captures unordered factors and characters, all_ordered() captures ordered factors, all_nominal()
captures characters, unordered and ordered factors.

all_integer() captures integers, all_double() captures doubles, all_numeric() captures all
kinds of numeric.

all_date() captures Date() variables, all_datetime() captures POSIXct() variables.
See selections for more details.
current_info() is an internal function.

All of these functions have have limited utility outside of column selection in step functions.

Usage
has_role(match = "predictor")
has_type(match = "numeric”)

all_outcomes()
all_predictors()

all_date()



28 has_role

all_date_predictors()
all_datetime()
all_datetime_predictors()
all_double()
all_double_predictors()
all_factor()
all_factor_predictors()
all_integer()
all_integer_predictors()
all_logical()
all_logical_predictors()
all_nominal()
all_nominal_predictors()
all_numeric()
all_numeric_predictors()
all_ordered()
all_ordered_predictors()
all_string()
all_string_predictors()
all_unordered()
all_unordered_predictors()

current_info()

Arguments

match A single character string for the query. Exact matching is used (i.e. regular
expressions won’t work).



Jjuice 29

Value

Selector functions return an integer vector.

current_info() returns an environment with objects vars and data.

Examples

data(biomass, package = "modeldata”)

rec <- recipe(biomass) %>%
update_role(
carbon, hydrogen, oxygen, nitrogen, sulfur,

new_role = "predictor”
) %%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable"”) %>%
update_role(dataset, new_role = "splitting indicator”)

recipe_info <- summary(rec)
recipe_info

# Centering on all predictors except carbon
rec %>%
step_center(all_predictors(), -carbon) %>%
prep(training = biomass) %>%
bake(new_data = NULL)

juice Extract transformed training set

Description

[Superseded]

As of recipes version 0.1.14, juice() is superseded in favor of bake(object, new_data =
NULL).

As steps are estimated by prep, these operations are applied to the training set. Rather than running
bake () to duplicate this processing, this function will return variables from the processed training
set.

Usage

juice(object, ..., composition = "tibble")



30 namesQ

Arguments

object A recipe object that has been prepared with the option retain = TRUE.

One or more selector functions to choose which variables will be returned by
the function. See selections() for more details. If no selectors are given, the
default is to use everything().

composition Either "tibble", "matrix", "data.frame", or "dgCMatrix" for the format of the
processed data set. Note that all computations during the baking process are
done in a non-sparse format. Also, note that this argument should be called
after any selectors and the selectors should only resolve to numeric columns
(otherwise an error is thrown).

Details

juice() will return the results of a recipe where all steps have been applied to the data, irrespective
of the value of the step’s skip argument.

juice() can only be used if a recipe was prepped with retain = TRUE. This is equivalent to
bake (object, new_data = NULL) which is the preferred way to extract the transformation of the
training data set.

See Also

recipe() prep() bake()

names@ Naming Tools

Description

names@ creates a series of num names with a common prefix. The names are numbered with leading
zeros (e.g. prefix@1-prefix10 instead of prefix1-prefix10). dummy_names can be used for
renaming unordered and ordered dummy variables (in step_dummy()).

Usage
names@(num, prefix = "x")
dummy_names(var, 1lvl, ordinal = FALSE, sep = "_")
dummy_extract_names(var, lvl, ordinal = FALSE, sep = "_")
Arguments
num A single integer for how many elements are created.
prefix A character string that will start each name.

var A single string for the original factor name.



prep 31

1vl A character vectors of the factor levels (in order). When used with step_dummy (),
1v1 would be the suffixes that result after model.matrix is called (see the ex-
ample below).

ordinal A logical; was the original factor ordered?
sep A single character value for the separator between the names and levels.
Details

When using dummy_names (), factor levels that are not valid variable names (e.g. "some text with
spaces") will be changed to valid names by base: :make.names(); see example below. This func-
tion will also change the names of ordinal dummy variables. Instead of values such as ".L", ".Q",
or "*4", ordinal dummy variables are given simple integer suffixes such as "_1", "_2", etc.

Value

names® returns a character string of length num and dummy_names generates a character vector the
same length as 1v1.

See Also

developer_functions

Examples

names@(9, "a")
names@(10, "a")

example <- data.frame(

x = ordered(letters[1:5]),

y = factor(LETTERS[1:51),

z = factor(paste(LETTERS[1:5], 1:5))
)

dummy_names("y", levels(example$y)[-1])
dummy_names("z", levels(example$z)[-1])

after_mm <- colnames(model.matrix(~x, data = example))[-1]
after_mm

levels(example$x)

dummy_names ("x", substring(after_mm, 2), ordinal = TRUE)

prep Estimate a preprocessing recipe

Description

For a recipe with at least one preprocessing operation, estimate the required parameters from a
training set that can be later applied to other data sets.



32 prep

Usage
prep(x, ...)

## S3 method for class 'recipe
prep(

X,

training = NULL,

fresh = FALSE,

verbose = FALSE,

retain = TRUE,

log_changes = FALSE,

strings_as_factors = TRUE,

)
Arguments

X an object
further arguments passed to or from other methods (not currently used).

training A data frame or tibble that will be used to estimate parameters for preprocessing.

fresh A logical indicating whether already trained operation should be re-trained. If
TRUE, you should pass in a data set to the argument training.

verbose A logical that controls whether progress is reported as operations are executed.

retain A logical: should the preprocessed training set be saved into the template slot
of the recipe after training? This is a good idea if you want to add more steps
later but want to avoid re-training the existing steps. Also, it is advisable to
use retain = TRUE if any steps use the option skip = FALSE. Note that this can
make the final recipe size large. When verbose = TRUE, a message is written
with the approximate object size in memory but may be an underestimate since
it does not take environments into account.

log_changes A logical for printing a summary for each step regarding which (if any) columns

were added or removed during training.

strings_as_factors
A logical: should character columns be converted to factors? This affects the
preprocessed training set (when retain = TRUE) as well as the results of bake . recipe.

Details

Given a data set, this function estimates the required quantities and statistics needed by any op-
erations. prep() returns an updated recipe with the estimates. If you are using a recipe as a
preprocessor for modeling, we highly recommend that you use a workflow() instead of manually
estimating a recipe (see the example in recipe()).

Note that missing data is handled in the steps; there is no global na. rm option at the recipe level or
in prep().

Also, if a recipe has been trained using prep() and then steps are added, prep() will only update
the new operations. If fresh = TRUE, all of the operations will be (re)estimated.



prepper 33

As the steps are executed, the training set is updated. For example, if the first step is to center the
data and the second is to scale the data, the step for scaling is given the centered data.

Value

A recipe whose step objects have been updated with the required quantities (e.g. parameter esti-
mates, model objects, etc). Also, the term_info object is likely to be modified as the operations
are executed.

Examples
data(ames, package = "modeldata”)
library(dplyr)

ames <- mutate(ames, Sale_Price = logl@(Sale_Price))

ames_rec <-

recipe(
Sale_Price ~ Longitude + Latitude + Neighborhood + Year_Built + Central_Air,
data = ames

) %>%

step_other(Neighborhood, threshold = 0.05) %>%

step_dummy(all_nominal()) %>%

step_interact(~ starts_with("Central_Air"):Year_Built) %>%

step_ns(Longitude, Latitude, deg_free = 5)

prep(ames_rec, verbose = TRUE)

prep(ames_rec, log_changes = TRUE)

prepper Wrapper function for preparing recipes within resampling

Description

When working with the rsample package, a simple recipe must be prepared using the prep function
first. When using recipes with rsample it is helpful to have a function that can prepare a recipe
across a series of split objects that are produced in this package. prepper is a wrapper function
around prep that can be used to do this. See the vignette on "Recipes and rsample" for an example.

Usage

prepper(split_obj, recipe, ...)



34 recipe
Arguments

split_obj An rplit object

recipe An untrained recipe object.

Arguments to pass to prep such as verbose or retain.

Details

prepper () sets the underlying prep() argument fresh to TRUE.

print.recipe Print a Recipe

Description

Print a Recipe
Usage

## S3 method for class 'recipe’

print(x, form_width = 30, ...)
Arguments

X A recipe object

form_width The number of characters used to print the variables or terms in a formula

further arguments passed to or from other methods (not currently used).

Value

The original object (invisibly)

recipe Create a recipe for preprocessing data

Description

A recipe is a description of the steps to be applied to a data set in order to prepare it for data analysis.



recipe 35
Usage
recipe(x, ...)

## Default S3 method:
recipe(x, ...)

## S3 method for class 'data.frame'
recipe(x, formula = NULL, ..., vars = NULL, roles = NULL)

## S3 method for class 'formula'
recipe(formula, data, ...)

## S3 method for class 'matrix'

recipe(x, ...)
Arguments
x, data A data frame or tibble of the femplate data set (see below).
Further arguments passed to or from other methods (not currently used).
formula A model formula. No in-line functions should be used here (e.g. log(x), x:y,
etc.) and minus signs are not allowed. These types of transformations should be
enacted using step functions in this package. Dots are allowed as are sim-
ple multivariate outcome terms (i.e. no need for cbind; see Examples). A
model formula may not be the best choice for high-dimensional data with many
columns, because of problems with memory.
vars A character string of column names corresponding to variables that will be used
in any context (see below)
roles A character string (the same length of vars) that describes a single role that
the variable will take. This value could be anything but common roles are
"outcome"”, "predictor”, "case_weight", or "ID"
Details

Defining recipes:

Variables in recipes can have any type of role, including outcome, predictor, observation ID, case
weights, stratification variables, etc.

recipe objects can be created in several ways. If an analysis only contains outcomes and pre-
dictors, the simplest way to create one is to use a formula (e.g. y ~ x1 + x2) that does not contain
inline functions such as log(x3) (see the first example below).

Alternatively, a recipe object can be created by first specifying which variables in a data set
should be used and then sequentially defining their roles (see the last example). This alternative is
an excellent choice when the number of variables is very high, as the formula method is memory-
inefficient with many variables.

There are two different types of operations that can be sequentially added to a recipe.

* Steps can include operations like scaling a variable, creating dummy variables or interactions,
and so on. More computationally complex actions such as dimension reduction or imputation
can also be specified.



36

recipe

* Checks are operations that conduct specific tests of the data. When the test is satisfied, the
data are returned without issue or modification. Otherwise, an error is thrown.

If you have defined a recipe and want to see which steps are included, use the tidy() method on
the recipe object.

Note that the data passed to recipe() need not be the complete data that will be used to train the
steps (by prep()). The recipe only needs to know the names and types of data that will be used.
For large data sets, head() could be used to pass a smaller data set to save time and memory.

Using recipes:

Once a recipe is defined, it needs to be estimated before being applied to data. Most recipe steps
have specific quantities that must be calculated or estimated. For example, step_normalize()
needs to compute the training set’s mean for the selected columns, while step_dummy () needs to
determine the factor levels of selected columns in order to make the appropriate indicator columns.

The two most common application of recipes are modeling and stand-alone preprocessing. How
the recipe is estimated depends on how it is being used.

Modeling:

The best way to use use a recipe for modeling is via the workflows package. This bundles
a model and preprocessor (e.g. a recipe) together and gives the user a fluent way to train the
model/recipe and make predictions.

library(dplyr)

library(workflows)

library(recipes)

library(parsnip)

data(biomass, package = "modeldata”)

# split data
biomass_tr <- biomass %>% filter(dataset == "Training")
biomass_te <- biomass %>% filter(dataset == "Testing")

# With only predictors and outcomes, use a formula:
rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

# Now add preprocessing steps to the recipe:
sp_signed <-
rec %>%
step_normalize(all_numeric_predictors()) %>%
step_spatialsign(all_numeric_predictors())

sp_signed

##

## -- Recipe -—-—-—-—-——-—------m oo
##

## -- Inputs



recipe

37

## Number of variables by role

## outcome: 1
## predictor: 5

##
## -- Operations
## x Centering and scaling for: all_numeric_predictors()

## x Spatial sign on: all_numeric_predictors()
We can create a parsnip model, and then build a workflow with the model and recipe:
linear_mod <- linear_reg()

linear_sp_sign_wflow <-
workflow() %>%
add_model(linear_mod) %>%
add_recipe(sp_signed)

linear_sp_sign_wflow

## == Workflow
## Preprocessor: Recipe
## Model: linear_reg()

##

## —— Preprocessor ————————mm oo
## 2 Recipe Steps

##

## * step_normalize()
## * step_spatialsign()

#it

## -- Model ---------——---—----""--
## Linear Regression Model Specification (regression)

##

## Computational engine: 1m

To estimate the preprocessing steps and then fit the linear model, a single call to fit() is used:
linear_sp_sign_fit <- fit(linear_sp_sign_wflow, data = biomass_tr)

When predicting, there is no need to do anything other than call predict(). This preprocesses
the new data in the same manner as the training set, then gives the data to the linear model
prediction code:

predict(linear_sp_sign_fit, new_data = head(biomass_te))

## # A tibble: 6 x 1

#it .pred
##  <dbl>
# 1 18.1

## 2 17.9



38

recipe

## 3 17.2
## 4 18.8
## 5 19.6
## 6 14.6

Stand-alone use of recipes:
When using a recipe to generate data for a visualization or to troubleshoot any problems with
the recipe, there are functions that can be used to estimate the recipe and apply it to new data
manually
Once a recipe has been defined, the prep() function can be used to estimate quantities required
for the operations using a data set (a.k.a. the training data). prep() returns a recipe.
As an example of using PCA (perhaps to produce a plot):
# Define the recipe
pca_rec <-
rec %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())
Now to estimate the normalization statistics and the PCA loadings:
pca_rec <- prep(pca_rec, training = biomass_tr)

pca_rec

#i#

## -- Recipe -—--—-—-—--—-——----- -
#H#

## -- Inputs

## Number of variables by role

## outcome: 1
## predictor: 5

##

## -- Training information

## Training data contained 456 data points and no incomplete rows.

#i#

## -- Operations

## x Centering and scaling for: carbon and hydrogen, ... | Trained

## x PCA extraction with: carbon, hydrogen, oxygen, ... | Trained

Note that the estimated recipe shows the actual column names captured by the selectors.

You can tidy.recipe() arecipe, either when it is prepped or unprepped, to learn more about
its components.



recipe

Value

39

tidy(pca_rec)
## # A tibble: 2 x 6

##  number operation type trained skip id

#it <int> <chr> <chr> <lgl> <1gl> <chr>

## 1 1 step normalize TRUE FALSE normalize_AeYA4
## 2 2 step pca TRUE FALSE pca_Znlyz

You can also tidy() recipe steps with a number or id argument.
To apply the prepped recipe to a data set, the bake () function is used in the same manner that
predict() would be for models. This applies the estimated steps to any data set.

bake(pca_rec, head(biomass_te))
## # A tibble: 6 x 6

## HHV PC1 PC2 PC3 PC4 PC5
##  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 18.3 0.730 -0.412 -0.495 ©0.333 0.253
# 2 17.6 0.617 1.41 0.118 -0.466 ©0.815
# 3 17.2 0.761 1.10 -0.0550 -0.397 0.747
## 4 18.9 0.0400 0.950 0.158 0.405 -0.143
## 5 20.50.792 -0.732 0.204 0.465 -0.148
## 6 18.5 0.433 -0.127 -0.354 -0.0168 -0.0888

In general, the workflow interface to recipes is recommended for most applications.

An object of class recipe with sub-objects:

var_info A tibble containing information about the original data set columns

term_info A tibble that contains the current set of terms in the data set. This initially

defaults to the same data contained in var_info.

steps A list of step or check objects that define the sequence of preprocessing oper-

ations that will be applied to data. The default value is NULL

template A tibble of the data. This is initialized to be the same as the data given in the

data argument but can be different after the recipe is trained.

Examples

#

formula example with single outcome:

data(biomass, package = "modeldata”)

#

split data

biomass_tr <- biomass[biomass$dataset == "Training"”, 1]
biomass_te <- biomass[biomass$dataset == "Testing”, 1]

#

With only predictors and outcomes, use a formula

rec <- recipe(

HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr



40 recipes_eval_select

)

# Now add preprocessing steps to the recipe
sp_signed <- rec %>%
step_normalize(all_numeric_predictors()) %>%
step_spatialsign(all_numeric_predictors())
sp_signed

# formula multivariate example:
# no need for ‘cbind(carbon, hydrogen)‘ for left-hand side

multi_y <- recipe(carbon + hydrogen ~ oxygen + nitrogen + sulfur,
data = biomass_tr

)

multi_y <- multi_y %>%
step_center(all_numeric_predictors()) %>%
step_scale(all_numeric_predictors())

# example using ‘update_role‘ instead of formula:
# best choice for high-dimensional data

rec <- recipe(biomass_tr) %>%
update_role(carbon, hydrogen, oxygen, nitrogen, sulfur,

new_role = "predictor”
) %%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable"”) %>%
update_role(dataset, new_role = "splitting indicator™)

rec

recipes_eval_select Evaluate a selection with tidyselect semantics specific to recipes

Description

recipes_eval_select() is a recipes specific variant of tidyselect::eval_select() enhanced
with the ability to recognize recipes selectors, such as all_numeric_predictors(). See selections
for more information about the unique recipes selectors.

This is a developer tool that is only useful for creating new recipes steps.

Usage

recipes_eval_select(
quos,
data,
info,



recipes_eval_select

L

allow_rename

41

= FALSE,

check_case_weights = TRUE,
call = caller_env()

)

Arguments

quos

data

info

allow_rename

A list of quosures describing the selection. This is generally the . .. argument
of your step function, captured with rlang::enquos() and stored in the step
object as the terms element.

A data frame to use as the context to evaluate the selection in. This is generally
the training data passed to the prep() method of your step.

A data frame of term information describing each column’s type and role for use
with the recipes selectors. This is generally the info data passed to the prep()
method of your step.

These dots are for future extensions and must be empty.

Should the renaming syntax c(foo = bar) be allowed? This is rarely required,
and is currently only used by step_select(). It is unlikely that your step will
need renaming capabilities.

check_case_weights

call

Value

Should selecting case weights throw an error? Defaults to TRUE. This is rarely
changed and only needed in juice(), bake.recipe(), update_role(), and
add_role().

The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of rlang: :abort() for more information.

A named character vector containing the evaluated selection. The names are always the same as the
values, except when allow_rename = TRUE, in which case the names reflect the new names chosen

by the user.

See Also

developer_functions

Examples

library(rlang)

data(scat, package = "modeldata”)

rec <- recipe(Species ~ ., data = scat)

info <- summary(rec)

info



42 recipes_extension_check

quos <- quos(all_numeric_predictors(), where(is.factor))

recipes_eval_select(quos, scat, info)

recipes_extension_check
Checks that steps have all S3 methods

Description

This is a developer tool intended to help making sure all methods for each step have been created.

Usage

recipes_extension_check(
pkg,
exclude_steps = character(),
exclude_methods = character()

Arguments

pkg Character, name of package containing steps to check

exclude_steps Character, name of steps to exclude. This is mostly used to remove false posi-
tives.

exclude_methods
Character, which methods to exclude testing for. Can take the values "prep",
"bake", "print", "tidy", and "required_pkgs".

Details

It is recommended that the following test in placed in packages that add recipes steps to help keep
everything up to date.

test_that("recipes_extension_check”, {
expect_snapshot(
recipes::recipes_extension_check(
pkg = "pkgname”
)
)
)

Value

cli output



roles 43

See Also

developer_functions

Examples

recipes_extension_check(
pkg = "recipes”

)

recipes_extension_check(
pkg = "recipes”,
exclude_steps = "step_testthat_helper”,
exclude_methods = c("required_pkgs")

)

roles Manually alter roles

Description
update_role() alters an existing role in the recipe or assigns an initial role to variables that do not
yet have a declared role.

add_role() adds an additional role to variables that already have a role in the recipe. It does not
overwrite old roles, as a single variable can have multiple roles.

remove_role() eliminates a single existing role in the recipe.

Usage
add_role(recipe, ..., new_role = "predictor”, new_type = NULL)
update_role(recipe, ..., new_role = "predictor”, old_role = NULL)
remove_role(recipe, ..., old_role)
Arguments
recipe An existing recipe().
One or more selector functions to choose which variables are being assigned a
role. See selections() for more details.
new_role A character string for a single role.
new_type A character string for specific type that the variable should be identified as. If
left as NULL, the type is automatically identified as the first type you see for that
variable in summary(recipe).
old_role A character string for the specific role to update for the variables selected by

.... update_role() accepts a NULL as long as the variables have only a single
role.



44 roles

Details

update_role(), add_role() and remove_role() will be applied on a recipe before any of the
steps or checks, regardless of where they are located in position. This means that roles can only be
changed with these three functions for columns that are already present in the original data supplied
to recipe(). See the role argument in some step functions to update roles for columns created by
steps.

Variables can have any arbitrary role (see the examples) but there are two special standard roles,
"predictor” and "outcome”. These two roles are typically required when fitting a model.

update_role() should be used when a variable doesn’t currently have a role in the recipe, or to
replace an old_role with a new_role. add_role() only adds additional roles to variables that
already have roles and will throw an error when the current role is missing (i.e. NA).

When using add_role(), if a variable is selected that already has the new_role, a warning is
emitted and that variable is skipped so no duplicate roles are added.

Adding or updating roles is a useful way to group certain variables that don’t fall in the standard
"predictor” bucket. You can perform a step on all of the variables that have a custom role with
the selector has_role().

Effects of non-standard roles:

Recipes can label and retain column(s) of your data set that should not be treated as outcomes or
predictors. A unique identifier column or some other ancillary data could be used to troubleshoot
issues during model development but may not be either an outcome or predictor.

For example, the modeldata: :biomass dataset has a column named sample with information
about the specific sample type. We can change that role:

library(recipes)

data(biomass, package = "modeldata”)
biomass_train <- biomass[1:100,]
biomass_test <- biomass[101:200,]

rec <- recipe(HHV ~ ., data = biomass_train) %>%
update_role(sample, new_role = "id variable") %>%
step_center(carbon)

rec <- prep(rec, biomass_train)

This means that sample is no longer treated as a "predictor” (the default role for columns on
the right-hand side of the formula supplied to recipe()) and won’t be used in model fitting or
analysis, but will still be retained in the data set.

If you really aren’t using sample in your recipe, we recommend that you instead remove sample
from your dataset before passing it to recipe(). The reason for this is because recipes assumes
that all non-standard roles are required at bake() time (or predict() time, if you are using a
workflow). Since you didn’t use sample in any steps of the recipe, you might think that you don’t
need to pass it to bake (), but this isn’t true because recipes doesn’t know that you didn’t use it:

biomass_test$sample <- NULL

bake(rec, biomass_test)



roles 45

#> Error in ‘bake()‘:

#> x The following required columns are missing from ‘new_data‘: ‘sample‘.

#> i These columns have one of the following roles, which are required at ‘bake()*
#>  time: ‘id variable®.

#> i If these roles are not required at ‘bake()‘ time, use

#>  ‘update_role_requirements(role = "your_role", bake = FALSE)".

As we mentioned before, the best way to avoid this issue is to not even use a role, just remove the
sample column from biomass before calling recipe(). In general, predictors and non-standard
roles that are supplied to recipe() should be present at both prep() and bake() time.

If you can’t remove sample for some reason, then the second best way to get around this issue is
to tell recipes that the "id variable” role isn’t required at bake () time. You can do that by using
update_role_requirements():

rec <- recipe(HHV ~ ., data = biomass_train) %>%
update_role(sample, new_role = "id variable"”) %>%
update_role_requirements("id variable”, bake = FALSE) %>%
step_center(carbon)

rec <- prep(rec, biomass_train)

# No errors!
biomass_test_baked <- bake(rec, biomass_test)

It should be very rare that you need this feature.

Value

An updated recipe object.

Examples
library(recipes)
data(biomass, package = "modeldata”)

# Using the formul