Package 'saccadr'

September 6, 2023

Type Package

Title Extract Saccades via an Ensemble of Methods Approach

Version 0.1.3

Date 2023-09-06
Description A modular and extendable approach to extract (micro)saccades from gaze samples via an ensemble of methods.
Although there is an agreement about a general definition of a saccade, the more specific details are harder to agree upon.
Therefore, there are numerous algorithms that extract saccades based on various heuristics, which differ in the assumptions about velocity,
acceleration, etc. The package uses three methods (Eng-
bert and Kliegl (2003) doi:10.1016/S0042-6989(03)00084-1,
Otero-Millan et al. (2014)doi:10.1167/14.2.18, and Nys-
tröm and Holmqvist (2010) doi:10.3758/BRM.42.1.188)
to label individual samples and then applies a majority vote approach to identify saccades. The package includes three
methods but can be extended via custom functions. It also uses a modular approach to compute velocity and
acceleration from noisy samples. Finally, you can obtain methods votes per gaze sample instead of saccades.

License GPL (>= 3)
URL https://github.com/alexander-pastukhov/saccadr/, https://alexander-pastukhov.github.io/saccadr/

BugReports https://github.com/alexander-pastukhov/saccadr/issues/
Imports magrittr, Rcpp (>=1.0.8)
LinkingTo Rcpp
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
VignetteBuilder knitr
Depends R (>= 4.1.0), dplyr, rlang, cluster, signal, tidyr
Suggests rmarkdown, knitr, ggplot2, spelling, testthat (>= 3.0.0)
Language en-US
Config/testthat/edition 3
NeedsCompilation yes
Author Alexander Pastukhov [aut, cre]
(https://orcid.org/0000-0002-8738-8591)
Maintainer Alexander Pastukhov pastukhov.alexander@gmail.com
Repository CRAN
Date/Publication 2023-09-06 15:30:02 UTC
R topics documented:
compute_velocity_ek 2
diff_ek 3
diff_nh 4
extract_saccades 5
method_ek 8
method_nh 10
method_om 11
monocular_ten_trials 12
option_or_default 12
sd_via_median_estimator 13
single_trial 14
single_trial_binocular 14
Index 15
compute_velocity_ek Compute velocity via Engbert \& Kliegl (2003) algorithm.

Description

Compute velocity via Engbert \& Kliegl (2003) algorithm. See formula \#1 in the manuscript.

Usage

compute_velocity_ek(x, trial, time_window_in_samples, delta_t)

Arguments

x	Vector of coordinates
trial	Vector with trial labels, so that velocity is computed only within trials.
time_window_in_samples	
	Width of window for velocity computation in samples.
delta_t	Duration of a single frame (1/sampling rate $).$

Value

Velocity vector

diff_ek \quad| Differentiate x and y and compute change amplitude via an algorithm |
| :--- |
| proposed by Engbert \& Kliegl (2003) |

Description

Differentiate x and y and compute change amplitude via an algorithm proposed by Engbert \& Kliegl (2003)

Usage

diff_ek(x, y, trial, sample_rate, options = NULL)

Arguments

$\mathrm{x} \quad$ vector with x coordinates in degrees of visual angle
$\mathrm{y} \quad$ vector with y coordinates in degrees of visual angle
trial vector with trial index
sample_rate sample rate in Hz
options List with method specific options, see Details.

Details

Method options, please refer to Engbert \& Kliegl (2003) for details on parameters and the rationale for default values.

- ek_velocity_time_window Time window for velocity computation in milliseconds. Defaults to 20 ms .

Value

data.frame with columns x, y, and amp

See Also

compute_velocity_ek

Examples

```
diff_ek(rnorm(1000), rnorm(1000), rep(1, 1000), 250, list("ek_velocity_time_window" = 20))
```

```
diff_nh Differentiate x and y and compute change amplitude via
an algorithm proposed by Nyström and Holmqvist (2010)
Rhrefhttps://doi.org/10.3758/BRM.42.1.188doi:10.3758/
BRM.42.1.188
```


Description

Differentiate x and y and compute change amplitude via an algorithm proposed by Nyström and Holmqvist (2010) doi:10.3758/BRM.42.1.188. Note that both components and the amplitude are smoothed independently via a Savitzky-Golay filter, so the components may not (probably won't) add up to the amplitude. Note that filtering is sensitive to the presence of NA.

Usage

```
diff_nh(x, y, trial, sample_rate, options = NULL)
```


Arguments

x
$\mathrm{y} \quad$ vector with y coordinates in degrees of visual angle
trial vector with trial index
sample_rate sample rate in Hz
options List with method specific options, see Details.

Details

Method options, please refer to Nyström and Holmqvist (2010) for details on parameters and the rationale for default values.

- nh_sg_filter_order Order of Savitzky-Golay filter. Defaults to 2.

Value

data.frame with columns x, y, and amp

See Also

filter_via_savitzky_golay

Examples

```
diff_nh(rnorm(1000), rnorm(1000), rep(1, 1000), 250, list("nh_sg_filter_order" = 2))
```


Description

Extract saccades from samples using votes from selected methods. Each method votes whether a given sample belongs to a saccade. Next, saccades are identified via a majority vote using the vote_threshold parameter, as well as a minimum duration and minimal temporal separation criteria. Please note that units of the gaze samples must be in degrees of visual angle. The units are important as some methods use specific (e.g., physiologically plausible) velocity and acceleration thresholds.
By default, ensemble includes methods proposed by Engbert \& Kliegl (2003) ("ek"), Otero-Millan et al. ("om"), and Nyström \& Holmqvist (2010) ("nh"), see Implemented Methods vignette. However, it can be extended via custom methods, see Using Custom Methods vignette.

By default, the function returns a table with identified saccades but can return a matrix with methods' votes per sample instead (return_votes = TRUE).

Usage

extract_saccades(
x ,
y,
sample_rate,
trial = NULL,
methods = list(method_ek, method_om, method_nh),
velocity_function = saccadr: : diff_ek,
options = NULL,
binocular = "merge",
vote_threshold = ifelse(length(methods) $==1,1$, (length(methods) -1$)$),
minimal_duration_ms = 12,
minimal_separation_ms $=12$,
return_votes = FALSE
)

Arguments

x
y
sample_rate

Horizontal coordinate, either a vector for monocular data or a two-column matrix for binocular data.
Vertical coordinate, either a vector for monocular data or a two-column matrix for binocular data.

Sampling rate in Hz. It is assumed to be common for the entire time series. If the time series contains chunks (trials) that were recorded using different acquisition rate (e.g., SR Research Eyelink allows to set different acquisition rate for each recording / trial), you would need to split the time series and analyze them separately.

```
trial Optional vector with trial ID. If omitted, all samples are assumed to belong
    to a single trial. Velocity, acceleration, and saccades themselves are computed
    respecting trial borders.
methods A list with saccade detection methods, can include external functions that im-
        plement sample classification (see Using Custom Methods vignette). Package
        methods include Engbert & Kliegl (2003) (method_ek), Otero-Millan et al.
        (2014) (method_om), Nyström and Holmqvist (2010) (method_nh). Defaults to
        the list of all internally implemented methods: list(method_ek, method_om,
        method_nh).
velocity_function
    A handle to a function to compute velocity and acceleration. Defaults to a
    method suggested by Engbert & Kliegl (2003) diff_ek. The package also im-
    plements the method proposed by Nyström and Holmqvist (2010) diff_nh. See
        vignette "Velocity computation" for details and information on how to imple-
        ment a custom method.
options A named list with options for saccade detection (see method_ek, method_om,
        method_nh) and velocity (diff_ek, diff_nh) computation. See documentation
        on specific method for details.
binocular Specifies how a binocular data is treated. Options are "cyclopean" (binocular
        data is converted to an average cyclopean image before saccades are extracted),
        "monocular" (saccades are extracted independently for each eye), "merge" (de-
        fault, sample votes are obtained from both eyes and for all methods and then av-
        eraged. This way only binocular saccades, i.e., eye movements with a sufficient
        temporal overlap between eyes, are detected.).
vote_threshold Value between 1 and N (where N is number of used methods) defining a vote
    threshold for a saccade. By default, all but one method threshold =N-1 must
        agree for a sample to be considered for a saccade. Threshold of 1 is applied if a
        single method is used.
minimal_duration_ms
Minimal duration of a saccade in milliseconds. Shorter candidate saccades are discarded,
minimal_separation_ms
Minimal time separation between saccades in milliseconds. Saccades that are separated by a shorter interval of "not a saccade" votes, will be merged including that period.
return_votes Logical. Whether function should return extracted microsaccades (FALSE, default) or votes per sample (TRUE).
```


Details

Variables that describe saccade

- Trial Trial index.
- Eye "Monocular" for monocular inputs. "Cyclopean" for binocular data that was averaged before applying algorithms. "Binocular" for binocular data with votes averaged after applying algorithms. "Left" or "Right" for binocular data when eyes are processed independently.
- OnsetSample Index of the first sample.
- OffsetSample Index of the last sample.
- Onset Onset time relative to the trial start in milliseconds.
- Offset Offset time relative to the trial start in milliseconds.
- Duration Duration in milliseconds.
- DisplacementX Horizontal displacement measured from the first to the last sample.
- DisplacementY Vertical displacement measured from the first to the last sample.
- Displacement Displacement magnitude measured from the first to the last sample.
- DisplacementPhi Displacement direction measured from the first to the last sample.
- AmplitudeX Horizontal displacement measured from the leftmost to the rightmost sample.
- AmplitudeY Vertical displacement measured from the lowest to the uppermost sample.
- Amplitude Displacement magnitude measured from the most extreme samples.
- AmplitudePhi Displacement direction measured from the most extreme samples.
- VelocityPeak Peak velocity.
- VelocityAvg Average velocity.
- AccelerationPeak Peak acceleration.
- AccelerationAvg Average acceleration.
- AccelerationStart Peak acceleration before peak velocity was reached.
- AccelerationStop Peak acceleration after peak velocity was reached.

Value

A data. frame with saccade properties (see details), if return_votes $=$ FALSE. Alternatively, it returns votes per sample (return_votes = TRUE). For a monocular processing (monocular input, cyclopean or merged binocular data) it is a matrix with nrow (x) rows and length(methods) columns with $0 / 1$ votes for each sample and method. For binocular processing, function returns a two element list with the similar matrices but per eye.

See Also

method_ek, method_om, method_nh, diff_ek, diff_nh

Examples

```
# Single trial
data(single_trial)
saccades <- extract_saccades(single_trial$x, single_trial$y, 500)
# Multiple trials
data(monocular_ten_trials)
saccades <- extract_saccades(monocular_ten_trials$x,
                                    monocular_ten_trials$y,
                                    500,
                                    trial = monocular_ten_trials$trial)
```

 \# binocular saccades
    ```
    data("single_trial_binocular")
    saccades_b <- saccadr::extract_saccades(single_trial_binocular[, c('xL', 'xR')],
    single_trial_binocular[, c('yL', 'yR')],
    sample_rate = 1000)
    # cyclopean saccades from binocular data
saccades_c <- saccadr::extract_saccades(single_trial_binocular[, c('xL', 'xR')],
    single_trial_binocular[, c('yL', 'yR')],
    sample_rate = 1000,
    binocular = "cyclopean")
    # monocular saccades from binocular data
saccades_m <- saccadr::extract_saccades(single_trial_binocular[, c('xL', 'xR')],
            single_trial_binocular[, c('yL', 'yR')],
            sample_rate = 1000,
            binocular = "monocular")
# Using a single method
saccades <- extract_saccades(single_trial$x, single_trial$y, 500, methods = method_om)
# Using two methods
saccades <- extract_saccades(single_trial$x,
    single_trial$y,
    500,
    methods = list(method_ek, method_om))
# Alternative velocity computation method
saccades <- extract_saccades(single_trial$x, single_trial$y, 500, velocity_function = diff_nh)
# A strict unanimous decision threshold
saccades <- extract_saccades(single_trial$x, single_trial$y, 500, vote_threshold = 3)
# A slacker criterion that at least one of the three methods must label sample as a saccade
saccades <- extract_saccades(single_trial$x, single_trial$y, 500, vote_threshold = 1)
# Only longish saccades are extracted
saccades <- extract_saccades(single_trial$x, single_trial$y, 500, minimal_duration_ms = 20)
```

method_ek Extract saccades using an algorithm proposed by Engbert and Kliegl
(2003) Rhrefhttps://doi.org/10.1016/S0042-6989\%2803\%2900084-
1doi:10.1016/S00426989(03)000841

Description

Extract saccades using an algorithm proposed by Engbert and Kliegl (2003) doi:10.1016/S00426989(03)000841

Usage

method_ek(x, y, vel, acc, sample_rate, trial, options)
method_ek

Arguments

x
Gaze x coordinate, _arbitrary units_ as threshold velocity is computed in units of standard deviation.
y
Gaze x coordinate, _arbitrary units_ as threshold velocity is computed in units of standard deviation.
vel Velocity data.frame with columns x, y, amp.
acc Acceleration data.frame with columns x, y, amp.
sample_rate
Sample rate in Hz.
trial Trial id, so that trial borders are respected when computing velocity and saccades.
options Named list with method options. See details for further information.

Details

Method options, please refer to Engbert and Kliegl (2003) for details on parameters and the rationale for default values.

- ek_velocity_threshold Velocity threshold for saccade detection in standard deviations. Defaults to 6 .
- ek_sd_fun Function used to compute standard deviation for velocities. Defaults to sd_via_median_estimator, as per formula \#2 in Engbert and Kliegl (2003). Can be replaced with mad, sd, etc.
- ek_minimal_duration_ms Minimal duration of a saccade in milliseconds. Defaults to 12.
- ek_minimal_separation_ms A minimal required time gap between saccades. Defaults to 12 .

Value

logical vector marking samples that belong to saccades

See Also

extract_saccades

Examples

\# Do not run this function directly, use extract_saccades() instead

Description

Extract saccades using an algorithm proposed by Nyström and Holmqvist (2010) doi:10.3758/ BRM.42.1.188.

Usage

method_nh(x, y, vel, acc, sample_rate, trial, options)

Arguments

x Gaze x coordinate, _arbitrary units_ as threshold velocity is computed in units of standard deviation.
y Gaze y coordinate, _arbitrary units_ as threshold velocity is computed in units of standard deviation.
vel Velocity data. frame with columns x, y, amp.
acc Acceleration data.frame with columns $x, y, a m p$.
sample_rate Sample rate in Hz .
trial Trial id, so that trial borders are respected when computing velocity and saccades.
options Named list with method options. See details for further information.

Details

Method options, please refer to Nyström and Holmqvist (2010) for details on parameters and the rationale for default values.

- nh_sg_filter_order Order of Savitzky-Golay filter. Defaults to 2.
- nh_max_velocity Maximal physiologically plausible velocity in $\%$. Defaults to 1000.
- nh_max_acceleration Maximal physiologically plausible acceleration in $\% \mathrm{~s}^{2}$. Defaults to 100000.
- nh_initial_velocity_threshold Initial velocity threshold in $\%$ s. Defaults to 100.

Value

logical vector marking samples that belong to saccades
See Also
extract_saccades

Examples

\# Do not run this function directly, use extract_saccades() instead

```
method_om Extract saccades using an algorithm proposed by Otero-Millan et al.
    (2014) Rhrefhttps://doi.org/10.1167/14.2.18doi:10.1167/14.2.18
```


Description

Extract saccades using an algorithm proposed by Otero-Millan et al. (2014) doi:10.1167/14.2.18

Usage

method_om(x, y, vel, acc, sample_rate, trial, options)

Arguments

x Gaze x coordinate, _arbitrary units_ as threshold velocity is computed in units of standard deviation.
y Gaze x coordinate, _arbitrary units_ as threshold velocity is computed in units of standard deviation.
vel Velocity data.frame with columns x, y, amp.
acc Acceleration data.frame with columns x, y, amp.
sample_rate Sample rate in Hz.
trial Trial id, so that trial borders are respected when computing velocity and saccades.
options Named list with method options. See details for further information.

Details

Method options, please refer to Otero-Millan et al. (2014) for details on parameters and the rationale for default values.

- om_minimal_inter_peak_time_ms Minimal inter-peak interval in milliseconds. Defaults to 30.
- om_maximal_peaks_per_second Maximal allowed number of peaks per second. Defaults to 5.
- om_velocity_threshold_deg_per_sec Threshold saccade velocity in \%/s. Defaults to 3 .
- om_pca_variance_threshold Minimal variance explained by retained rotated components. Defaults to 0.05 .

Value

logical vector marking samples that belong to saccades

See Also

extract_saccades

Examples

\# Do not run this function directly, use extract_saccades() instead
monocular_ten_trials A monocular multi-trial recording

Description

A monocular recording, 10 trials, sampling rate 500 Hz .

Usage

monocular_ten_trials

Format

A data frame with 14353 rows and 4 variables:
trial Trial index.
$\mathbf{x} \mathrm{X}$ coordinate in degrees of visual angle.
y Y coordinate in degrees of visual angle.
time Sample time in milliseconds.
option_or_default Extract value for a named list or use default if key is missing

Description

Extract value for a named list or use default if key is missing

Usage

option_or_default(options, key, default)

Arguments

options Named list
key String key
default Default value to be returned, if key is missing.

Value

Value from a list or default value

Examples

```
option_or_default(list("A" = 25), "A", 20)
option_or_default(list("A" = 25), "B", 20)
```

```
sd_via_median_estimator
```

Compute standard deviation via median estimator.

Description

Compute standard deviation via median estimator. Please refer to formula \#2 in Engbert \& Kliegl (2003). Falls back on mean estimator, if computed standard deviation is smaller than .Machine\$double.eps. Raises an error if the results using the mean estimator is still smaller than .Machine\$double.eps.

Usage

sd_via_median_estimator(x, na.rm = FALSE)

Arguments

x
Numeric values
na.rm
Whether to exclude NA values, defaults to FALSE.

Value

float

Examples

sd_via_median_estimator(rnorm(100))

```
    single_trial A single trial monocular samples recorded at 500 Hz
```


Description

A single trial monocular samples recorded at 500 Hz .

Usage

single_trial

Format

A data frame with 1006 rows and 2 variables:
\mathbf{x} X coordinate in degrees of visual angle.
y Y coordinate in degrees of visual angle.
single_trial_binocular
A single trial binocular recording.

Description

A single trial binocular recording sampled at 1000 Hz .

Usage

single_trial_binocular

Format

A data frame with 2000 rows and 6 variables:
trial Trial index.
time_rel Sample time in milliseconds relative to the trial start.
$\mathbf{x L} X$ coordinate for the left eye in degrees of visual angle.
$\mathbf{x R} X$ coordinate for the right eye in degrees of visual angle.
$\mathbf{y L} Y$ coordinate for the left eye in degrees of visual angle.
$\mathbf{y R}$ Y coordinate for the right eye in degrees of visual angle.

Index

```
* datasets
    monocular_ten_trials, 12
    single_trial,14
    single_trial_binocular,14
compute_velocity_ek, 2
diff_ek, 3, 6,7
diff_nh, 4, 6, 7
extract_saccades, 5, 9, 10,12
method_ek, 6, 7, 8
method_nh, 6, 7,10
method_om, 6, 7, 11
monocular_ten_trials, 12
option_or_default,12
sd_via_median_estimator, 9, 13
single_trial,14
single_trial_binocular,14
```

