scAnnotate: An Automated Cell Type Annotation Tool for Single-Cell RNA-Sequencing Data

An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.

Version: 0.1.1
Depends: R (≥ 4.0.0)
Imports: glmnet, stats, MTPS, Seurat (≥ 4.0.5), harmony
Suggests: knitr, testthat (≥ 3.0.0), rmarkdown
Published: 2022-11-24
Author: Xiangling Ji [aut], Danielle Tsao [aut], Kailun Bai [ctb], Min Tsao [aut], Li Xing [aut], Xuekui Zhang [aut, cre]
Maintainer: Xuekui Zhang <xuekui at>
License: GPL-3
NeedsCompilation: no
Materials: NEWS
CRAN checks: scAnnotate results


Reference manual: scAnnotate.pdf
Vignettes: introduction


Package source: scAnnotate_0.1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): scAnnotate_0.1.1.tgz, r-oldrel (arm64): scAnnotate_0.1.1.tgz, r-release (x86_64): scAnnotate_0.1.1.tgz, r-oldrel (x86_64): scAnnotate_0.1.1.tgz
Old sources: scAnnotate archive


Please use the canonical form to link to this page.