Package 'scITD'

September 8, 2023

Title Single-Cell Interpretable Tensor Decomposition

Version 1.0.4 Date 2023-09-06

Maintainer Jonathan Mitchel < jonathan.mitchel3@gmail.com>

Description Single-cell Interpretable Tensor Decomposition (scITD) employs the Tucker tensor decomposition to extract multicell-type gene expression patterns that vary across donors/individuals. This tool is geared for use with single-cell RNA-sequencing datasets consisting of many source donors. The method has a wide range of potential applications, including the study of inter-individual variation at the population-level, patient sub-grouping/stratification, and the analysis of sample-level batch effects. Each "multicellular process" that is extracted consists of (A) a multi cell type gene loadings matrix and (B) a corresponding donor scores vector indicating the level at which the corresponding loadings matrix is expressed in each donor. Additional methods are implemented to aid in selecting an appropriate number of factors and to evaluate stability of the decomposition. Additional tools are provided for downstream analysis, including integration of gene set enrichment analysis and ligand-receptor analysis. Tucker, L.R. (1966) <doi:10.1007/BF02289464>. Unkel, S., Hannachi, A., Trendafilov, N. T., & Jolliffe, I. T. (2011) <doi:10.1007/s13253-011-0055-9>. Zhou, G., & Cichocki, A. (2012) < doi:10.2478/v10175-012-0051-4>.

License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 4.0.0), Matrix

biocViews

Imports rTensor, ica, fgsea, circlize, reshape2, parallel, ComplexHeatmap, ggplot2, mgcv, utils, Rcpp, RColorBrewer, dplyr, edgeR, sva, stats, Rmisc, ggpubr, msigdbr, sccore, NMF

Suggests methods, knitr, rmarkdown, testthat, coda.base, grid, simplifyEnrichment, WGCNA, cowplot, matrixStats, stringr, zoo, rlang, AnnotationDbi, GO.db, conos, pagoda2, betareg, slam, tm

RoxygenNote 7.2.3

LinkingTo Rcpp, RcppArmadillo, RcppProgress
NeedsCompilation yes
Author Jonathan Mitchel [cre, aut],
Evan Biederstedt [aut],
Peter Kharchenko [aut]

Repository CRAN

Date/Publication 2023-09-08 16:00:02 UTC

R topics documented:

apply_combat
calculate_fiber_fstats
check_rec_pres
clean_data
colMeanVars
compare_decompositions
compute_associations
compute_donor_props
compute_LR_interact
convert_gn
count_word
determine_ranks_tucker
form_tensor
get_all_lds_factor_plots
get_callouts_annot
get_ctype_exp_var
get_ctype_prop_associations
get_ctype_subc_prop_associations
get_ctype_vargenes
get_donor_meta
get_factor_exp_var
get_fstats_pvals
get_gene_modules
get_gene_set_vectors
get_indv_subtype_associations
get_intersecting_pathways
get_leading_edge_genes
get_lm_pvals
get_max_correlations
get_meta_associations
get_min_sig_genes
get_module_enr
get_normalized_variance
get_num_batch_ranks
get_one_factor
get_one_factor_gene_pvals

get_pseudobulk	. 30
get_real_fstats	
get_reconstruct_errors_svd	. 31
get_significance_vectors	. 32
get_subclusters	. 33
get_subclust_de_hmaps	. 33
get_subclust_enr_dotplot	. 34
get_subclust_enr_fig	. 35
get_subclust_enr_hmap	. 35
get_subclust_umap	. 36
get_subtype_prop_associations	. 37
get_sums	. 38
ht_clusters	. 38
identify_sex_metadata	. 40
initialize_params	
instantiate_scMinimal	. 41
is_GO_id	. 42
make_new_container	. 42
merge_small_clusts	
nmf_unfolded	. 44
normalize_counts	. 45
normalize_pseudobulk	
norm_var_helper	
parse_data_by_ctypes	. 46
pca_unfolded	. 47
plotDEheatmap_conos	
plot_donor_matrix	. 50
plot_donor_props	. 51
plot_donor_sig_genes	. 52
plot_dscore_enr	
plot_gsea_hmap	. 53
plot_gsea_hmap_w_similarity	. 54
plot_gsea_sub	
plot_loadings_annot	. 55
plot_mod_and_lig	. 57
plot_multi_module_enr	. 58
plot_rec_errors_bar_svd	. 59
plot_rec_errors_line_svd	. 59
plot_scores_by_meta	. 60
plot_select_sets	. 60
plot_stability_results	. 61
plot_subclust_associations	. 62
prep_LR_interact	. 62
project_new_data	. 63
reduce_dimensions	. 64
reduce_to_vargenes	. 64
render_multi_plots	. 65
reshape_loadings	

apply_combat

apply	y_combat	Apply (this sho					•						•	
Index														81
	vargenes_anova		 • •	 	 •	 	•	 	•	 •	 •	 •		/5
	update_params													
	tucker_ica_helper .													
	test_container													
	subset_scMinimal .													
	stop_wrap													
	stack_tensor													
	shuffle_fibers													
	seurat_to_scMinima													
	scale_variance													
	scale_fontsize													
	sample_fibers													
	run_tucker_ica													
	run_stability_analys													
	run_jackstraw													
	run_hypergeometric													
	run_gsea_one_facto													
	run_fgsea													

Description

Apply ComBat batch correction to pseudobulk matrices. Generally, this should be done through calling the form_tensor() wrapper function.

Usage

```
apply_combat(container, batch_var)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

batch_var character A batch variable from metadata to remove

Value

The project container with the batc corrected pseudobulked matrices.

calculate_fiber_fstats 5

```
calculate_fiber_fstats
```

Calculate F-Statistics for the association between donor scores for each factor donor values of shuffled gene_ctype fibers

Description

Calculate F-Statistics for the association between donor scores for each factor donor values of shuffled gene_ctype fibers

Usage

```
calculate_fiber_fstats(tensor_data, tucker_results, s_fibers)
```

Arguments

tensor_data	list The tensor data including donor, gene, and cell type labels as well as the tensor array itself
tucker_results	list The results from Tucker decomposition. Includes a scores matrix as the first element and the loadings tensor unfolded as the second element.
s_fibers	list Gene and cell type indices for the randomly selected fibers

Value

A numeric vector of F-statistics for associations between all shuffled fibers and donor scores.

check_rec_pres

Helper function to check whether receptor is present in target cell type

Description

Helper function to check whether receptor is present in target cell type

```
check_rec_pres(
  container,
  lig_ct_exp,
  rec_elements,
  target_ct,
  percentile_exp_rec
)
```

6 clean_data

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
lig_ct_exp	numeric Scaled expression for a ligand in the source cell type
rec_elements	character One or more components of a receptor complex
target_ct	character The name of the target cell type
percentile_exp	_rec
	numeric The percentile of ligand expression above which all donors need to have
	at least 5 cells expressing the receptor.

Value

A logical indicating whether receptor is present or not.

clean_data	Clean data to remove genes only expressed in a few cells and donors with very few cells. Generally, this should be done through calling the
	form_tensor() wrapper function.

Description

Clean data to remove genes only expressed in a few cells and donors with very few cells. Generally, this should be done through calling the form_tensor() wrapper function.

Usage

```
clean_data(container, donor_min_cells = 5)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
donor_min_cells	S
	numeric Minimum threshold for number of cells per donor (default=5)

Value

The project container with cleaned counts matrices in each container\$scMinimal_ctype\$<ctype>\$count_data.

colMeanVars 7

Calculates column mean and variance. https://github.com/kharchenkolab/pagoda2/	1 3 1 0

Description

Calculates column mean and variance. Adapted from pagoda2. https://github.com/kharchenkolab/pagoda2/blob/main/src/mis

Usage

```
colMeanVars(sY, rowSel, ncores = 1L)
```

Arguments

sy sparse matrix Gene by cell matrix of counts

rowSel numeric The selected rows (genes)

ncores numeric The number of cores

Value

data.frame with columns of mean, variance, and number of observeatios for each gene across samples

Examples

```
library(Matrix)
donor_by_gene <- rbind(c(9,2,1,5), c(3,3,1,2))
donor_by_gene <- Matrix(donor_by_gene, sparse = TRUE)
result <- colMeanVars(donor_by_gene, rowSel = NULL, ncores=1)</pre>
```

```
compare_decompositions
```

Plot a pairwise comparison of factors from two separate decompositions

Description

Plot a pairwise comparison of factors from two separate decompositions

Usage

```
compare_decompositions(
  tucker_res1,
  tucker_res2,
  decomp_names,
  meta_anno1 = NULL,
  meta_anno2 = NULL,
  use_text = TRUE
)
```

Arguments

tucker_res1	list The container\$tucker_res from first decomposition
tucker_res2	list The container\$tucker_res from first decomposition
decomp_names	character Names of the two decompositions that will go on the axes of the heatmap
meta_anno1	matrix The result of calling get_meta_associations() corresponding to the first decomposition, which is stored in container\$meta_associations (default=NULL)
meta_anno2	matrix The result of calling get_meta_associations() corresponding to the second decomposition, which is stored in container\$meta_associations (default=NULL)
use_text	logical If TRUE, then displays correlation coefficients in cells (default=TRUE)

Value

No return value, as the resulting plots are drawn.

Examples

```
test_container <- run_tucker_ica(test_container, ranks=c(2,4),
tucker_type='regular', rotation_type='hybrid')
tucker_res1 <- test_container$tucker_results
test_container <- run_tucker_ica(test_container, ranks=c(2,4),
tucker_type='regular', rotation_type='ica_dsc')
tucker_res2 <- test_container$tucker_results
compare_decompositions(tucker_res1, tucker_res2, c('hybrid_method', 'ica_method'))</pre>
```

Description

Compute associations between donor proportions and factor scores

```
compute_associations(donor_balances, donor_scores, stat_type)
```

compute_donor_props 9

Arguments

donor_balances matrx The balances computed from donor cell type proportions donor_scores data.frame The donor scores matrix from tucker results

stat_type character Either "fstat" to get F-Statistics, "adj_rsq" to get adjusted R-squared

values, or "adj_pval" to get adjusted pvalues.

Value

A numeric vector of association statistics (one for each factor)

compute_donor_props Get donor proportions of each cell type or subtype

Description

Get donor proportions of each cell type or subtype

Usage

```
compute_donor_props(clusts, metadata)
```

Arguments

clusts integer Cluster assignments for each cell with names as cell barcodes

metadata data.frame The \$metadata field for the given scMinimal

Value

A data.frame of cluster proportions for each donor.

compute_LR_interact Compute and plot the LR interactions for one factor

Description

Compute and plot the LR interactions for one factor

```
compute_LR_interact(
  container,
  lr_pairs,
  sig_thresh = 0.05,
  percentile_exp_rec = 0.75,
  add_ld_fact_sig = TRUE,
  ncores = container$experiment_params$ncores
)
```

10 convert_gn

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

1r_pairs data.frame Data of ligand-receptor pairs. First column should be ligands and

second column should be one or more receptors separated by an underscore such as receptor1_receptor2 in the case that multiple receptors are required for

signaling.

sig_thresh numeric The p-value significance threshold to use for module- factor associa-

tions and ligand-factor associations (default=0.05)

percentile_exp_rec

numeric The percentile above which the top donors expressing the ligand all

must be expressing the receptor (default=0.75)

add_ld_fact_sig

logical Set to TRUE to append a heatmap showing significance of associations

between each ligand hit and each factor (default=TRUE)

ncores numeric The number of cores to use (default=container\$experiment_params\$ncores)

Value

The LR analysis results heatmap as ComplexHeatmap object. Adjusted p-values for all results are placed in container\$lr_res.

Description

Convert gene identifiers to gene symbols

Usage

```
convert_gn(container, genes)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

genes character Vector of the gene identifiers to be converted to gene symbols

Value

A character vector of gene symbols.

count_word 11

count_word

count_word. From older version of simplifyEnrichment package.

Description

count_word. From older version of simplifyEnrichment package.

Usage

```
count_word(term, exclude_words = NULL)
```

Arguments

term A vector of description texts.

exclude_words The words that should be excluded.

Value

A data frame with words and frequencies.

```
determine_ranks_tucker
```

Run rank determination by svd on the tensor unfolded along each mode

Description

Run rank determination by svd on the tensor unfolded along each mode

```
determine_ranks_tucker(
  container,
  max_ranks_test,
  shuffle_level = "cells",
  shuffle_within = NULL,
  num_iter = 100,
  batch_var = NULL,
  norm_method = "trim",
  scale_factor = 10000,
  scale_var = TRUE,
  var_scale_power = 0.5,
  seed = container$experiment_params$rand_seed
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
max_ranks_test	numeric Vector of length 2 specifying the maximum number of donor and gene ranks to test
shuffle_level	character Either "cells" to shuffle cell-donor linkages or "tensor" to shuffle values within the tensor (default="cells")
shuffle_within	character A metadata variable to shuffle cell-donor linkages within (default=NULL)
num_iter	numeric Number of null iterations (default=100)
batch_var	character A batch variable from metadata to remove. No batch correction applied if NULL. (default=NULL)
norm_method	character The normalization method to use on the pseudobulked count data. Set to 'regular' to do standard normalization of dividing by library size. Set to 'trim' to use edgeR trim-mean normalization, whereby counts are divided by library size times a normalization factor. (default='trim')
scale_factor	numeric The number that gets multiplied by fractional counts during normalization of the pseudobulked data (default=10000)
scale_var	logical TRUE to scale the gene expression variance across donors for each cell type. If FALSE then all genes are scaled to unit variance across donors for each cell type. (default=TRUE)
var_scale_power	
	numeric Exponent of normalized variance that is used for variance scaling. Variance for each gene is initially set to unit variance across donors (for a given cell type). Variance for each gene is then scaled by multiplying the unit scaled values by each gene's normalized variance (where the effect of the mean-variance dependence is taken into account) to the exponent specified here. If NULL, uses var_scale_power from container\$experiment_params. (default=.5)
seed	$numeric\ Seed\ passed\ to\ set.seed()\ (default=container\$experiment_params\$rand_seed)$

Value

The project container with a cowplot figure of rank determination plots in container\$plots\$rank_determination_plot.

Examples

```
test_container <- determine_ranks_tucker(test_container, max_ranks_test=c(3,5),
shuffle_level='tensor', num_iter=4, norm_method='trim', scale_factor=10000,
scale_var=TRUE, var_scale_power=.5)</pre>
```

13 form_tensor

form_tensor	Form the pseudobulk tensor as preparation for running the tensor de-
	composition.

Description

Form the pseudobulk tensor as preparation for running the tensor decomposition.

Usage

```
form_tensor(
  container,
  donor_min_cells = 5,
  norm_method = "trim",
  scale_factor = 10000,
  vargenes_method = "norm_var",
  vargenes_thresh = 500,
  batch_var = NULL,
  scale_var = TRUE,
  var_scale_power = 0.5,
  custom_genes = NULL,
  verbose = TRUE
)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses

donor_min_cells

numeric Minimum threshold for number of cells per donor (default=5)

norm_method

character The normalization method to use on the pseudobulked count data. Set to 'regular' to do standard normalization of dividing by library size. Set to 'trim' to use edgeR trim-mean normalization, whereby counts are divided by library size times a normalization factor. (default='trim')

scale_factor

numeric The number that gets multiplied by fractional counts during normalization of the pseudobulked data (default=10000)

vargenes_method

character The method by which to select highly variable genes from each cell type. Set to 'anova' to select genes by anova. Set to 'norm_var' to select the top genes by normalized variance or 'norm_var_pvals' to select genes by significance of their overdispersion (default='norm_var')

vargenes_thresh

numeric The threshold to use in variable gene selection. For 'anova' and 'norm_var_pvals' this should be a p-value threshold. For 'norm_var' this should be the number of most variably expressed genes to select from each cell type (default=500)

batch_var character A batch variable from metadata to remove (default=NULL)

scale_var logical TRUE to scale the gene expression variance across donors for each cell

type. If FALSE then all genes are scaled to unit variance across donors for each

cell type. (default=TRUE)

var_scale_power

numeric Exponent of normalized variance that is used for variance scaling. Variance for each gene is initially set to unit variance across donors (for a given cell type). Variance for each gene is then scaled by multiplying the unit scaled values by each gene's normalized variance (where the effect of the mean-variance dependence is taken into account) to the exponent specified here. If NULL, uses

var_scale_power from container\$experiment_params. (default=.5)

custom_genes character A vector of genes to include in the tensor. Overrides the default gene

selection if not NULL. (default=NULL)

verbose logical Set to TRUE to print out progress (default=TRUE)

Value

The project container with a list of tensor data added in the container\$tensor_data slot.

Examples

```
test_container <- form_tensor(test_container, donor_min_cells=0,
norm_method='trim', scale_factor=10000, vargenes_method='norm_var', vargenes_thresh=500,
scale_var = TRUE, var_scale_power = 1.5)</pre>
```

```
get_all_lds_factor_plots
```

Generate loadings heatmaps for all factors

Description

Generate loadings heatmaps for all factors

```
get_all_lds_factor_plots(
  container,
  use_sig_only = FALSE,
  nonsig_to_zero = FALSE,
  annot = "none",
  pathways_list = NULL,
  sim_de_donor_group = NULL,
  sig_thresh = 0.05,
  display_genes = FALSE,
  gene_callouts = FALSE,
  callout_n_gene_per_ctype = 5,
```

```
callout_ctypes = NULL,
show_var_explained = TRUE,
reset_other_factor_plots = TRUE
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

use_sig_only logical If TRUE, includes only significant genes from jackstraw in the heatmap.

If FALSE, includes all the variable genes. (default = FALSE)

nonsig_to_zero logical If TRUE, makes the loadings of all nonsignificant genes 0 (default=FALSE)

annot character If set to "pathways" then creates an adjacent heatmap showing which genes are in which pathways. If set to "sig_genes" then creates an adjacent heatmap showing which genes were significant from jackstraw. If set to "none"

no adjacent heatmap is plotted. (default="none")

pathways_list list A list of sets of pathways for each factor. List index should be the number

corresponding to the factor. (default=NULL)

sim_de_donor_group

numeric To plot the ground truth significant genes from a simulation next to the heatmap, put the number of the donor group that corresponds to the factor being plotted. Here it should be a vector corresponding to the factors. (default=NULL)

15

sig_thresh numeric Pvalue significance threshold to use. If use sig only is TRUE the

threshold is used as a cutoff for genes to include. If annot is "sig_genes" this value is used in the gene significance colormap as a minimum threshold. (de-

fault=0.05)

display_genes logical If TRUE, displays the names of gene names (default=FALSE)

gene_callouts logical If TRUE, then adds gene callout annotations to the heatmap (default=FALSE)

callout_n_gene_per_ctype

numeric To use if gene_callouts is TRUE. Sets the number of largest magnitude

significant genes from each cell type to include in gene callouts. (default=5) callout_ctypes list To use if gene callouts is TRUE. Specifies which cell types to get gene

callouts for. Each entry of the list should be a character vector of ctypes for the respective factor. If NULL, then gets gene callouts for largest magnitude

significant genes for all cell types. (default=NULL)

show_var_explained

logical If TRUE then shows an anottation with the explained variance for each cell type (default=TRUE)

reset_other_factor_plots

logical If TRUE then removes any existing loadings plots (default=TRUE)

Value

The project container with the list of all loadings heatmap plots placed in container \$plots\$all_lds_plots.

16 get_callouts_annot

Examples

```
test_container <- get_all_lds_factor_plots(test_container)</pre>
```

get_callouts_annot

Get gene callout annotations for a loadings heatmap

Description

Get gene callout annotations for a loadings heatmap

Usage

```
get_callouts_annot(
  container,
  tmp_casted_num,
  factor_select,
  sig_thresh,
  top_n_per_ctype = 5,
  ctypes = NULL
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

tmp_casted_num matrix The gene by cell type loadings matrix

sig_thresh numeric Pvalue cutoff for significant genes

top_n_per_ctype

numeric The number of significant, largest magnitude genes from each cell type

to generate callouts for (default=5)

ctypes character The cell types for which to get the top genes to make callouts for. If

NULL then uses all cell types. (default=NULL)

Value

A HeatmapAnnotation object for the gene callouts.

get_ctype_exp_var 17

get_ctype_exp_var	Get explained variance of the reconstructed data using one cell type from one factor

Description

Get explained variance of the reconstructed data using one cell type from one factor

Usage

```
get_ctype_exp_var(container, factor_use, ctype)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_use numeric The factor to get variance explained for ctype character The cell type to get variance explained for

Value

The explained variance numeric value for one cell type of one factor.

```
get_ctype_prop_associations
```

Compute and plot associations between donor factor scores and donor proportions of major cell types

Description

Compute and plot associations between donor factor scores and donor proportions of major cell types

Usage

```
get_ctype_prop_associations(container, stat_type, n_col = 2)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
stat_type	character Either "fstat" to get F-Statistics, "adj_rsq" to get adjusted R-squared values, or "adj_pval" to get adjusted pvalues.
n_col	numeric The number of columns to organize the plots into (default=2)

Value

The project container with a cowplot figure of results plots in container\$plots\$ctype_prop_factor_associations.

```
get_ctype_subc_prop_associations
```

Compute and plot associations between donor factor scores and donor proportions of cell subtypes

Description

Compute and plot associations between donor factor scores and donor proportions of cell subtypes

Usage

```
get_ctype_subc_prop_associations(
  container,
  ctype,
  res,
  n_col = 2,
  alt_name = NULL
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
ctype	character The cell type to get results for
res	numeric The clustering resolution to retrieve
n_col	numeric The number of columns to organize the plots into (default=2)
alt_name	character Alternate name for the cell type used in clustering (default=NULL)

Value

The project container with a cowplot figure of results plots in container plots ctype_prop_factor_associations.

get_ctype_vargenes 19

get_ctype_vargenes	Partition main gene by cell matrix into per cell type matrices with significantly variable genes only. Generally, this should be done through calling the form_tensor() wrapper function.

Description

Partition main gene by cell matrix into per cell type matrices with significantly variable genes only. Generally, this should be done through calling the form_tensor() wrapper function.

Usage

```
get_ctype_vargenes(
  container,
  method,
  thresh,
  ncores = container$experiment_params$ncores,
  seed = container$experiment_params$rand_seed
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
method	character The method used to select significantly variable genes across donors within a cell type. Can be either "anova" to use basic anova with cells grouped by donor or "norm_var" to get the top overdispersed genes by normalized variance. Set to "norm_var_pvals" to use normalized variance p-values as calculated in pagoda2.
thresh	numeric A pvalue threshold to use for gene significance when method is set to "anova" or "empir". For the method "norm_var" thresh is the number of top overdispersed genes from each cell type to include.
ncores	numeric The number of cores to use (default=container\$experiment_params\$ncores)
seed	$numeric\ Seed\ passed\ to\ set.seed()\ (default=container\$experiment_params\$rand_seed)$

Value

The project container with pseudobulk matrices limted to the selected most variable genes.

20 get_factor_exp_var

get_donor_meta

Get metadata matrix of dimensions donors by variables (not per cell)

Description

Get metadata matrix of dimensions donors by variables (not per cell)

Usage

```
get_donor_meta(container, additional_meta = NULL, only_analyzed = TRUE)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

additional_meta

character A vector of other variables to include (default=NULL)

only_analyzed logical Set to TRUE to only include donors that were included in the formed

tensor, otherwise set to FALSE (default=TRUE)

Value

The project container with metadata per donor (not per cell) in container\$donor_metadata.

Examples

```
test_container <- get_donor_meta(test_container, additional_meta='lanes')</pre>
```

get_factor_exp_var

Get the explained variance of the reconstructed data using one factor

Description

Get the explained variance of the reconstructed data using one factor

Usage

```
get_factor_exp_var(container, factor_use)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_use numeric The factor to investigate

Value

The explained variance numeric value for one factor.

get_fstats_pvals 21

get_fstats_pvals	Calculate adjusted p-values for gene_celltype fiber-donor score associations
	ciations

Description

Calculate adjusted p-values for gene_celltype fiber-donor score associations

Usage

```
get_fstats_pvals(fstats_real, fstats_shuffled)
```

Arguments

```
fstats_real numeric A vector of F-Statistics for gene-cell type-factor combinations fstats_shuffled numeric A vector of null F-Statistics
```

Value

A vector of adjusted p-values for associations of the unshuffled fibers with factor donor scores.

get_gene_modules	Compute WGCNA gene modules for each cell type	

Description

Compute WGCNA gene modules for each cell type

Usage

```
get_gene_modules(container, sft_thresh)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
sft_thresh	numeric A vector indicating the soft threshold to use for each cell type. Length should be the same as container\$experiment_params\$ctypes_use

Value

The project container with WGCNA gene co-expression modules added. The module eigengenes for each cell type are in container\$module_eigengenes, and the module genes for each cell type are in container\$module_genes.

get_gene_set_vectors Get logical vectors indicating which genes are in which pathways

Description

Get logical vectors indicating which genes are in which pathways

Usage

```
get_gene_set_vectors(container, gene_sets, tmp_casted_num)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

gene_sets character Vector of gene sets to extract genes for tmp_casted_num matrix The gene by cell type loadings matrix

Value

A list of the logical vectors for each pathway.

```
get_indv_subtype_associations
```

Compute subtype proportion-factor association p-values for all subclusters of a given major cell type

Description

Compute subtype proportion-factor association p-values for all subclusters of a given major cell type

Usage

```
get_indv_subtype_associations(container, donor_props, factor_select)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

donor_props matrix Donor proportions of subtypes factor_select numeric The factor to get associations for

Value

A vector of association statistics each cell subtype against a selected factor.

```
get_intersecting_pathways
```

Extract the intersection of gene sets which are enriched in two or more cell types for a factor

Description

Extract the intersection of gene sets which are enriched in two or more cell types for a factor

Usage

```
get_intersecting_pathways(
  container,
  factor_select,
  these_ctypes_only,
  up_down,
  thresh = 0.05
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select numeric The factor to investigate

these_ctypes_only

character A vector of cell types for which to get gene sets that are enriched in

all of these and not in any other cell types

up_down character Set to "up" to get the gene sets for the positive loading genes. Set to

"down" to get the gene sets for the negative loadings genes.

thresh numeric Pvalue significance threshold for selecting enriched sets (default=0.05)

Value

A vector of the intersection of pathways that are significantly enriched in two or more cell types for a factor.

```
get_leading_edge_genes
```

Get the leading edge genes from GSEA results

Description

Get the leading edge genes from GSEA results

24 get_lm_pvals

Usage

```
get_leading_edge_genes(container, factor_select, gsets, num_genes_per = 5)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select numeric The factor to get results for

gsets character A vector of gene set names to get leading edge genes for.

num_genes_per numeric The maximum number of leading edge genes to get for each gene set

(default=5)

Value

A named character vector of gene sets, with leading edge genes as the names.

get_lm_pvals

Compute gene-factor associations using univariate linear models

Description

Compute gene-factor associations using univariate linear models

Usage

```
get_lm_pvals(container, n.cores = container$experiment_params$ncores)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

n.cores Number of cores to use (default = container\$experiment_params\$ncores)

Value

The project container with a vector of adjusted p-values for the gene-factor associations in container\$gene_score_associations.

Examples

```
test_container <- get_lm_pvals(test_container, n.cores=1)</pre>
```

get_max_correlations 25

<pre>get_max_correlations</pre>	Computes the max correlation between each factor of the decomposition done using the whole dataset to each factor computed using the subsampled/bootstrapped dataset

Description

Computes the max correlation between each factor of the decomposition done using the whole dataset to each factor computed using the subsampled/bootstrapped dataset

Usage

```
get_max_correlations(res_full, res_sub, res_use)
```

Arguments

res_full	matrix Either the donor scores or loadings matrix from the original decomposition
res_sub	matrix Either the donor scores or loadings matrix from the new decomposition
res_use	character Can either be 'loadings' or 'dscores' and should correspond with the data matrix used

Value

a vector of the max correlations for each original factor

get_meta_associations Get metadata associations with factor donor scores

Description

Get metadata associations with factor donor scores

Usage

```
get_meta_associations(container, vars_test, stat_use = "rsq")
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
vars_test	character The names of meta variables to get associations for
stat_use	character Set to either 'rsq' to get r-squared values or 'pval' to get adjusted pvalues (default='rsq)

26 get_min_sig_genes

Value

The project container with a matrix of metadata associations with each factor in container\$meta associations.

Examples

```
test_container <- get_meta_associations(test_container, vars_test='lanes', stat_use='pval')</pre>
```

get_min_sig_genes Evaluate the minimum number for significant genes in any factor for a given number of factors extracted by the decomposition

Description

Evaluate the minimum number for significant genes in any factor for a given number of factors extracted by the decomposition

Usage

```
get_min_sig_genes(
  container,
  donor_rank_range,
  gene_ranks,
  use_lm = TRUE,
  tucker_type = "regular",
  rotation_type = "hybrid",
  n_fibers = 100,
  n_iter = 500,
  n.cores = container$experiment_params$ncores,
  thresh = 0.05
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses. Should have

donor_rank_range

numeric Range of possible number of donor factors to use.

gene_ranks numeric The number of gene ranks to use in the decomposition

use_lm logical Set to true to use get_lm_pvals otherwise uses jackstraw (default=TRUE)

tucker_type character Set to 'regular' to run regular tucker or to 'sparse' to run tucker with

sparsity constraints (default='regular')

rotation_type character Set to 'hybrid' to perform hybrid rotation on resulting donor factor ma-

trix and loadings. Otherwise set to 'ica_lds' to perform ica rotation on loadings

or ica_dsc to perform ica on donor scores. (default='hybrid')

get module enr	27
zet module em	21

n_fibers	numeric The number of fibers the randomly shuffle in each jackstraw iteration (default=100)
n_iter	numeric The number of jackstraw shuffling iterations to complete (default=500)
n.cores	Number of cores to use in get_lm_pvals() (default = container\$experiment_params\$ncores)
thresh	numeric Pvalue threshold for significant genes in calculating the number of significant genes identified per factor. (default=0.05)

Value

The project container with a plot of the minimum significant genes for each decomposition with varying number of donor factors located in container\$plots\$min_sig_genes.

Examples

```
test_container <- get_min_sig_genes(test_container, donor_rank_range=c(2:4),
gene_ranks=4, tucker_type='regular', rotation_type='hybrid', n.cores=1)</pre>
```

get_module_enr	Identify gene sets that are enriched within specified gene co-regulatory modules. Uses a hypergeometric test for over-representation. Used in plot_multi_module_enr().
----------------	--

Description

Identify gene sets that are enriched within specified gene co-regulatory modules. Uses a hypergeometric test for over-representation. Used in plot_multi_module_enr().

Usage

```
get_module_enr(container, ctype, mod_select, db_use = "GO", adjust_pval = TRUE)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
ctype	character The name of cell type for the cell type module to test
<pre>mod_select</pre>	numeric The module number for the cell type module to test
db_use	character The database of gene sets to use. Database options include "GO", "Reactome", "KEGG", "BioCarta", "Hallmark", "TF", and "immuno". More than one database can be used. (default="GO")
adjust_pval	logical Set to TRUE to apply FDR correction (default=TRUE)

Value

A vector of p-values for the tested gene sets.

28 get_num_batch_ranks

```
get_normalized_variance
```

Get normalized variance for each gene, taking into account meanvariance trend

Description

Get normalized variance for each gene, taking into account mean-variance trend

Usage

```
get_normalized_variance(container)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses

Value

The project container with vectors of normalized variances values in scMinimal objects for each cell type. Generally, this should be done through calling the form_tensor() wrapper function.

get_num_batch_ranks

Plot factor-batch associations for increasing number of donor factors

Description

Plot factor-batch associations for increasing number of donor factors

```
get_num_batch_ranks(
  container,
  donor_ranks_test,
  gene_ranks,
  batch_var,
  thresh = 0.5,
  tucker_type = "regular",
  rotation_type = "hybrid"
)
```

get_one_factor 29

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

donor_ranks_test

numeric The number of donor rank values to test

gene_ranks numeric The number of gene ranks to use throughout

batch_var character The name of the batch meta variable

thresh numeric The threshold r-squared cutoff for considering a factor to be a batch

factor. Can be a vector of multiple values to get plots at varying thresholds.

(default=0.5)

tucker_type character Set to 'regular' to run regular tucker or to 'sparse' to run tucker with

sparsity constraints (default='regular')

rotation_type character Set to 'hybrid' to optimize loadings via our hybrid method (see pa-

per for details). Set to 'ica_dsc' to perform ICA rotation on resulting donor factor matrix. Set to 'ica_lds' to optimize loadings by the ICA rotation. (de-

fault='hybrid')

Value

A ggpubr figure of ggplot objects showing batch-factor associations and placed in container\$plots\$num_batch_factors slot

Examples

```
test_container <- get_num_batch_ranks(test_container, donor_ranks_test=c(2:4),
gene_ranks=10, batch_var='lanes', thresh=0.5, tucker_type='regular', rotation_type='hybrid')</pre>
```

get_one_factor

Get the donor scores and loadings matrix for a single-factor

Description

Get the donor scores and loadings matrix for a single-factor

Usage

```
get_one_factor(container, factor_select)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

 30 get_pseudobulk

Value

A list with the first element as the donor scores and the second element as the corresponding loadings matrix for one factor.

Examples

```
f1_res <- get_one_factor(test_container, factor_select=1)</pre>
```

```
get_one_factor_gene_pvals
```

Get significant genes for a factor

Description

Get significant genes for a factor

Usage

```
get_one_factor_gene_pvals(container, factor_select)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select

numeric The number corresponding to the factor to extract

Value

A gene by cell type matrix of gene significance p-values for a factor

get	nseudobulk	

Collapse data from cell-level to donor-level via summing counts. Generally, this should be done through calling the form_tensor() wrapper function.

Description

Collapse data from cell-level to donor-level via summing counts. Generally, this should be done through calling the form_tensor() wrapper function.

```
get_pseudobulk(container, shuffle = FALSE, shuffle_within = NULL)
```

get_real_fstats 31

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

shuffle logical Set to TRUE to shuffle cell-donor linkages (default=FALSE)

shuffle_within character A metadata variable to shuffle cell-donor linkages within (default=NULL)

Value

The project container with pseudobulked count matrices in container\$scMinimal_ctype\$<ctype>\$pseudobulk slots for each cell type.

get_real_fstats

Get F-Statistics for the real (non-shuffled) gene_ctype fibers

Description

Get F-Statistics for the real (non-shuffled) gene_ctype fibers

Usage

```
get_real_fstats(container, ncores)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ncores numeric The number of cores to use

Value

A vector F-statistics for each gene_celltype-factor association of the unshuffled data.

```
get_reconstruct_errors_svd
```

Calculate reconstruction errors using svd approach

Description

Calculate reconstruction errors using svd approach

```
get_reconstruct_errors_svd(tnsr, max_ranks_test, shuffle_tensor)
```

Arguments

tnsr array A 3-dimensional array with dimensions of donors, genes, and cell types in

that order

max_ranks_test numeric Vector of length 3 with maximum number of ranks to test for donor,

gene, and cell type modes in that order

shuffle_tensor logical Set to TRUE to shuffle values within the tensor

Value

A list of reconstruction errors for each mode of the tensor.

get_significance_vectors

Get vectors indicating which genes are significant in which cell types

for a factor of interest

Description

Get vectors indicating which genes are significant in which cell types for a factor of interest

Usage

```
get_significance_vectors(container, factor_select, ctypes)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ctypes character The cell types used in all the analysis ordered as they appear in the

loadings matrix

Value

A list of the adjusted p-values for expression of each gene in each cell type in association with a factor of interest.

get_subclusters 33

get_subclusters

Perform leiden subclustering to get cell subtypes

Description

Perform leiden subclustering to get cell subtypes

Usage

```
get_subclusters(
  container,
  ctype,
  resolution,
  min_cells_group = 50,
  small_clust_action = "merge"
)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ctype

character The cell type to do subclustering for

resolution

numeric The leiden resolution to use

min_cells_group

numeric The minimum allowable cluster size (default=50)

small_clust_action

character Either 'remove' to remove subclusters or 'merge' to merge clusters below min_cells_group threshold to the nearest cluster above the size threshold

(default='merge')

Value

A vector of cell subclusters.

```
get_subclust_de_hmaps Get list of cell subtype differential expression heatmaps
```

Description

Get list of cell subtype differential expression heatmaps

```
get_subclust_de_hmaps(container, all_ctypes, all_res)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

all_ctypes character A vector of the cell types to include

all_res numeric A vector of resolutions matching the all_ctypes parameter

Value

A list of cell subcluster DE marker gene heatmaps as grob objects.

```
get_subclust_enr_dotplot
```

Get scatter plot for association of a cell subtype proportion with scores for a factor

Description

Get scatter plot for association of a cell subtype proportion with scores for a factor

Usage

```
get_subclust_enr_dotplot(
  container,
  ctype,
  res,
  subtype,
  factor_use,
  ctype_cur = ctype
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ctype character The cell type to plot

res numeric The subcluster resolution to use

subtype numeric The number corresponding with the subtype of the major cell type to

plot

factor_use numeric The factor to plot

ctype_cur character The name of the major cell type used in the main analysis

Value

A ggplot object of each donor's cell subcluster proportions against donor scores for a selected factor.

get_subclust_enr_fig 35

<pre>get_subclust_enr_fig</pre>	Get a figure showing cell subtype proportion associations with each factor. Combines this plot with subtype UMAPs and differential expression heatmaps. Note that this function runs better if the number of
	cores in the conos object in container\$embedding has n.cores set to a relatively small value < 10.

Description

Get a figure showing cell subtype proportion associations with each factor. Combines this plot with subtype UMAPs and differential expression heatmaps. Note that this function runs better if the number of cores in the conos object in container\$embedding has n.cores set to a relatively small value < 10.

Usage

```
get_subclust_enr_fig(container, all_ctypes, all_res)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
all_ctypes	character A vector of the cell types to include
all_res	numeric A vector of resolutions matching the all_ctypes parameter

Value

A cowplot figure placed in the slot container\$plots\$subc_fig.

```
\begin{tabular}{ll} {\it get\_subclust\_enr\_hmap} & {\it Get heatmap of subtype proportion associations for each cell-type/subtype and each factor} \\ \end{tabular}
```

Description

Get heatmap of subtype proportion associations for each celltype/subtype and each factor

```
get_subclust_enr_hmap(container, all_ctypes, all_res, all_factors)
```

36 get_subclust_umap

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
all_ctypes	character A vector of the cell types to include
all_res	numeric A vector of resolutions matching the all_ctypes parameter
all_factors	numerc A vector of the factors to compute associations for

Value

A ComplexHeatmap object in container\$plots\$subc_enr_hmap showing the univariate associations between cell subcluster proportions and each factor.

get_subclust_umap	Get a figure to display subclusterings at multiple resolutions	
<pre>get_subclust_umap</pre>	Get a figure to display subclusterings at multiple resolutions	

Description

Get a figure to display subclusterings at multiple resolutions

Usage

```
get_subclust_umap(container, all_ctypes, all_res, n_col = 3)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
all_ctypes	character A vector of the cell types to include
all_res	numeric A vector of resolutions matching the all_ctypes parameter
n_col	numeric The number of columns to organize the figure into (default=3)

Value

The project container with a cowplot figure of all UMAP plots in container\$plots\$subc_umap_fig and the individual umap plots in container\$plots\$subc_umaps

```
get_subtype_prop_associations
```

Compute and plot associations between factor scores and cell subtype composition for various clustering resolution parameters

Description

Compute and plot associations between factor scores and cell subtype composition for various clustering resolution parameters

Usage

```
get_subtype_prop_associations(
  container,
  max_res,
  stat_type,
  integration_var = NULL,
  min_cells_group = 50,
  use_existing_subc = FALSE,
  alt_ct_names = NULL,
  n_col = 2
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses	
max_res	numeric The maximum clustering resolution to use. Minimum is 0.5.	
stat_type	character Either "fstat" to get F-Statistics, "adj_rsq" to get adjusted R-squared values, or "adj_pval" to get adjusted pvalues.	
integration_va	r	
	character The meta data variable to use for creating the joint embedding with	
	Conos if not already provided in container\$embedding (default=NULL)	
min_cells_group		
	numeric The minimum allowable size for cell subpopulations (default=50)	
use_existing_s	ubc	
	logical Set to TRUE to use existing subcluster annotations (default=FALSE)	
alt_ct_names	character Cell type names used in clustering if different from those used in the main analysis. Should match the order of container\$experiment_params\$ctypes_use. (default=NULL)	
n_col	numeric The number of columns to organize the plots into (default=2)	

Value

The project container with a cowplot figure of cell subtype proportion-factor association results plots in container\$plots\$subtype_prop_factor_associations.

38 ht_clusters

get_sums	Calculates fac		factor-stratified	sums	for
	each	column.	Adapted	from	pagoda2.
	https://g	ithub.com/k	harchenkolab/pagoda2/blo	b/main/src	/misc2.cpp

Description

Calculates factor-stratified sums for each column. Adapted from pagoda2. https://github.com/kharchenkolab/pagoda2/blob/m

Usage

```
get_sums(sY, rowSel)
```

Arguments

sy sparse matrix Gene by cell matrix of counts rowSel factor The donor that each cell is from

Value

matrix of summed counts per gene per sample

```
ht_clusters

Visualize the similarity matrix and the cluster-
ing.

Adapted from simplifyEnrichment package.

https://github.com/jokergoo/simplifyEnrichment/blob/master/R/ht_clusters.R
```

Description

Visualize the similarity matrix and the clustering. Adapted from simplifyEnrichment package. https://github.com/jokergoo/simplifyEnrichment/blob/master/R/ht_clusters.R

```
ht_clusters(
  mat,
  cl,
  dend = NULL,
  col = c("white", "red"),
  draw_word_cloud = is_GO_id(rownames(mat)[1]) || !is.null(term),
  term = NULL,
  min_term = 5,
  order_by_size = FALSE,
  exclude_words = character(0),
  max_words = 10,
```

ht_clusters 39

```
word_cloud_grob_param = list(),
fontsize_range = c(4, 16),
column_title = NULL,
ht_list = NULL,
use_raster = TRUE,
...
)
```

Arguments

mat A similarity matrix.

cl Cluster labels inferred from the similarity matrix, e.g. from 'cluster_terms' or

'binary_cut'.

dend Used internally.

col A vector of colors that map from 0 to the 95^hth percentile of the similarity

values.

draw_word_cloud

Whether to draw the word clouds.

term The full name or the description of the corresponding GO IDs.

min_term Minimal number of functional terms in a cluster. All the clusters with size less

than "min_term" are all merged into one separated cluster in the heatmap.

order_by_size Whether to reorder clusters by their sizes. The cluster that is merged from small

clusters (size < "min_term") is always put to the bottom of the heatmap.

exclude_words Words that are excluded in the word cloud.

max_words Maximal number of words visualized in the word cloud.

word_cloud_grob_param

A list of graphic parameters passed to 'word_cloud_grob'.

fontsize_range The range of the font size. The value should be a numeric vector with length

two. The minimal font size is mapped to word frequency value of 1 and the maximal font size is mapped to the maximal word frequency. The font size

interlopation is linear.

column_title Column title for the heatmap.

ht_list A list of additional heatmaps added to the left of the similarity heatmap.

use_raster Whether to write the heatmap as a raster image.

... other parameters

Value

A list containing a 'ComplexHeatmap::HeatmapList-class' object and GO term ordering.

40 initialize_params

identify_sex_metadata Extract metadata for sex information if not provided already

Description

Extract metadata for sex information if not provided already

Usage

```
identify_sex_metadata(container, y_gene = "RPS4Y1", x_gene = "XIST")
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

y_gene character Gene name to use for identifying male donors (default='RPS4Y1')
x_gene character Gene name to use for identifying female donors (default='XIST')

Value

The project container with sex metadata added to the metadata.

initialize_params

Initialize parameters to be used throughout scITD in various functions

Description

Initialize parameters to be used throughout scITD in various functions

Usage

```
initialize_params(ctypes_use, ncores = 4, rand_seed = 10)
```

Arguments

ctypes_use character Names of the cell types to use for the analysis (default=NULL)

ncores numeric Number of cores to use (default=4) rand_seed numeric Random seed to use (default=10)

Value

A list of the experiment parameters to use.

Examples

```
param_list <- initialize_params(ctypes_use = c("CD4+ T", "CD8+ T"),
ncores = 1, rand_seed = 10)</pre>
```

instantiate_scMinimal 41

instantiate_scMinimal Create an scMinimal object. Generally, this should be done through calling the make_new_container() wrapper function.

Description

Create an scMinimal object. Generally, this should be done through calling the make_new_container() wrapper function.

Usage

```
instantiate_scMinimal(
  count_data,
  meta_data,
  metadata_cols = NULL,
  metadata_col_nm = NULL
)
```

Arguments

count_data sparseMatrix Matrix of raw counts with genes as rows and cells as columns

meta_data data.frame Metadata with cells as rows and variables as columns. Number of rows in metadata should equal number of columns in count matrix.

metadata_cols character The names of the metadata columns to use (default=NULL)

metadata_col_nm

character New names for the selected metadata columns if wish to change their names. If NULL, then the preexisting column names are used. (default=NULL)

Value

An scMinimal object holding counts and metadata for a project.

Examples

```
scMinimal <- instantiate_scMinimal(count_data=test_container$scMinimal_full$count_data,
meta_data=test_container$scMinimal_full$metadata)</pre>
```

42 make_new_container

is_GO_id

Check if a character is a go ID

Description

Check if a character is a go ID

Usage

```
is_G0_id(x)
```

Arguments

Х

A character

Value

A logical

make_new_container

Create a container to store all data and results for the project. You must provide a params list as generated by initialize_params(). You also need to provide either a Seurat object or both a count_data matrix and a meta_data matrix.

Description

Create a container to store all data and results for the project. You must provide a params list as generated by initialize_params(). You also need to provide either a Seurat object or both a count_data matrix and a meta_data matrix.

```
make_new_container(
  params,
  count_data = NULL,
  meta_data = NULL,
  seurat_obj = NULL,
  scMinimal = NULL,
  gn_convert = NULL,
  metadata_cols = NULL,
  metadata_col_nm = NULL,
  label_donor_sex = FALSE
)
```

merge_small_clusts 43

Arguments

params	list A list of the experiment params to use as generated by initialize_params()
count_data	dgCMatrix Matrix of raw counts with genes as rows and cells as columns (default=NULL)
meta_data	data.frame Metadata with cells as rows and variables as columns. Number of rows in metadata should equal number of columns in count matrix (default=NULL)
seurat_obj	Seurat object that has been cleaned and includes the normalized, log-transformed counts. The meta.data should include a column with the header 'sex' and values of 'M' or 'F' if available. The metadata should also have a column with the header 'ctypes' with the corresponding names of the cell types as well as a column with header 'donors' that contains identifiers for each donor. (default=NULL)
scMinimal	environment A sub-container for the project typically consisting of gene expression data in its raw and processed forms as well as metadata (default=NULL)
gn_convert	data.frame Gene identifier -> gene name conversions table. Gene identifiers used in counts matrices should appear in the first column and the corresponding gene symbols should appear in the second column. Can remain NULL if the identifiers are already gene symbols. (default=NULL)
metadata_cols	character The names of the metadata columns to use (default=NULL)
metadata_col_n	m
	character New names for the selected metadata columns if wish to change their names. If NULL, then the preexisting column names are used. (default=NULL)
label_donor_se	X
	logical Set to TRUE to label donor sex in the meta data by using expressing of sex-associated genes (default=FALSE)

Value

A project container of class environment that stores sub-containers for each cell type as well as results and plots from all analyses.

Description

Merge small subclusters into larger ones

```
merge_small_clusts(con, clusts, min_cells_group)
```

44 nmf_unfolded

Arguments

con conos Object for the dataset with umap projection and groups as cell types

clusts character The initially assigned subclusters by leiden clustering

min_cells_group

numeric The minimum allowable cluster size

Value

The subcluster labels with small clusters below the size threshold merged into the nearest larger cluster.

Description

Computes non-negative matrix factorization on the tensor unfolded along the donor dimension

Usage

```
nmf_unfolded(container, ranks)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ranks numeric The number of factors to extract. Unlike with the Tucker decomposi-

tion, this should be a single number.

Value

The project container with results of the decomposition in container\$tucker_results. The results object is a list with the donor scores matrix in the first element and the unfolded loadings matrix in the second element.

Examples

```
test_container <- nmf_unfolded(test_container, 2)</pre>
```

normalize_counts 45

nammaliza saunta	Holmon from ation to manual	ali- a and las turneform sount data
normalize_counts	пегрет јинсион го потт	alize and log-transform count data

Description

Helper function to normalize and log-transform count data

Usage

```
normalize_counts(count_data, scale_factor = 10000)
```

Arguments

count_data matrix or sparse matrix Gene by cell matrix of counts

numeric The number that gets multiplied by fractional counts during normalizascale_factor

tion of the pseudobulked data (default=10000)

Value

The normalized, log-transformed matrix.

normalize_pseudobulk	Normalize the pseudobulked counts matrices. Generally, this should
	be done through calling the form_tensor() wrapper function.

Description

Normalize the pseudobulked counts matrices. Generally, this should be done through calling the form_tensor() wrapper function.

Usage

```
normalize_pseudobulk(container, method = "trim", scale_factor = 10000)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
method	character The normalization method to use on the pseudobulked count data. Set to 'regular' to do standard normalization of dividing by library size. Set to 'trim' to use edgeR trim-mean normalization, whereby counts are divided by library size times a normalization factor. (default='trim')
scale_factor	numeric The number that gets multiplied by fractional counts during normaliza-

tion of the pseudobulked data (default=10000)

Value

The project container with normalized pseudobulk matrices in container\$scMinimal_ctype\$<ctype>\$pseudobulk slots

norm_var_helper	Calculates gene. https://github. Generally, th	is should	chenkolab/p	adapted agoda2/blob	from /main/R/Pa	pagoda2. agoda2.R
	wrapper funct				J	

Description

Calculates the normalized variance for each gene. This is adapted from pagoda2. https://github.com/kharchenkolab/pagoda2/Generally, this should be done through calling the form_tensor() wrapper function.

Usage

```
norm_var_helper(scMinimal)
```

Arguments

scMinimal

environment A sub-container for the project typically consisting of gene expression data in its raw and processed forms as well as metadata

Value

A list with the first element containing a vector of the normalized variance for each gene and the second element containing log-transformed adjusted p-values for the overdispersion of each gene.

Description

Parse main counts matrix into per-celltype-matrices. Generally, this should be done through calling the form_tensor() wrapper function.

```
parse_data_by_ctypes(container)
```

pca_unfolded 47

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

Value

The project container with separate scMinimal objects per cell type in the container\$scMinimal_ctype slot

pca_unfolded	Computes singular-value decomposition on the tensor unfolded along
	the donor dimension

Description

Computes singular-value decomposition on the tensor unfolded along the donor dimension

Usage

```
pca_unfolded(container, ranks)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ranks numeric The number of factors to extract. Unlike with the Tucker decomposi-

tion, this should be a single number.

Value

The project container with results of the decomposition in container\$tucker_results. The results object is a list with the donor scores matrix in the first element and the unfolded loadings matrix in the second element.

Examples

```
test_container <- pca_unfolded(test_container, 2)</pre>
```

```
plotDEheatmap_conos Plot a heatmap of differential genes.

Code is adapted from Conos package.

https://github.com/kharchenkolab/conos/blob/master/R/plot.R
```

Description

Plot a heatmap of differential genes. Code is adapted from Conos package. https://github.com/kharchenkolab/conos/blob/mas

Usage

```
plotDEheatmap_conos(
  con,
  groups,
  container,
  de = NULL,
  min.auc = NULL,
  min.specificity = NULL,
 min.precision = NULL,
  n.genes.per.cluster = 10,
  additional.genes = NULL,
  exclude.genes = NULL,
  labeled.gene.subset = NULL,
  expression.quantile = 0.99,
 pal = (grDevices::colorRampPalette(c("dodgerblue1", "grey95", "indianred1")))(1024),
  ordering = "-AUC",
  column.metadata = NULL,
  show.gene.clusters = TRUE,
  remove.duplicates = TRUE,
  column.metadata.colors = NULL,
  show.cluster.legend = TRUE,
  show_heatmap_legend = FALSE,
  border = TRUE,
  return.details = FALSE,
  row.label.font.size = 10,
  order.clusters = FALSE,
  split = FALSE,
  split.gap = 0,
  cell.order = NULL,
  averaging.window = 0,
)
```

Arguments

con conos (or p2) object

plotDEheatmap_conos 49

groups in which the DE genes were determined (so that the cells can be ordered

correctly)

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

de differential expression result (list of data frames)

min.auc optional minimum AUC threshold

min.specificity

optional minimum specificity threshold

min.precision optional minimum precision threshold

n.genes.per.cluster

number of genes to show for each cluster

additional.genes

optional additional genes to include (the genes will be assigned to the closest

cluster)

exclude.genes an optional list of genes to exclude from the heatmap

labeled.gene.subset

a subset of gene names to show (instead of all genes). Can be a vector of gene

names, or a number of top genes (in each cluster) to show the names for.

expression.quantile

expression quantile to show (0.98 by default)

pal palette to use for the main heatmap

ordering order by which the top DE genes (to be shown) are determined (default "-AUC")

column.metadata

additional column metadata, passed either as a data.frame with rows named as

cells, or as a list of named cell factors.

show.gene.clusters

whether to show gene cluster color codes

remove.duplicates

remove duplicated genes (leaving them in just one of the clusters)

column.metadata.colors

a list of color specifications for additional column metadata, specified according to the HeatmapMetadata format. Use "clusters" slot to specify cluster colors.

show.cluster.legend

whether to show the cluster legend

show_heatmap_legend

whether to show the expression heatmap legend

border show borders around the heatmap and annotations

return.details if TRUE will return a list containing the heatmap (ha), but also raw matrix (x),

expression list (expl) and other info to produce the heatmap on your own.

row.label.font.size

font size for the row labels

order.clusters whether to re-order the clusters according to the similarity of the expression

patterns (of the genes being shown)

50 plot_donor_matrix

split logical If TRUE splits the heatmap by cell type (default=FALSE)

split.gap numeric The distance to put in the gaps between split parts of the heatmap if split=TRUE (default=0)

cell.order explicitly supply cell order averaging.window optional window averaging between neighboring cells within each group (turned off by default) - useful when very large number of cells shown (requires zoo package)

extra parameters are passed to pheatmap

Value

ComplexHeatmap::Heatmap object (see return.details param for other output)

plot_donor_matrix

Plot matrix of donor scores extracted from Tucker decomposition

Description

Plot matrix of donor scores extracted from Tucker decomposition

Usage

```
plot_donor_matrix(
   container,
   meta_vars = NULL,
   cluster_by_meta = NULL,
   show_donor_ids = FALSE,
   add_meta_associations = NULL,
   show_var_explained = TRUE,
   donors_sel = NULL,
   h_w = NULL
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

meta_vars character Names of metadata variables to plot alongside the donor scores. Can

include more than one variable. (default=NULL)

cluster_by_meta

character One metadata variable to cluster the heatmap by. If NULL, donor

clustering is done using donor scores. (default=NULL)

show_donor_ids logical Set to TRUE to show donor id as row name on the heamap (default=FALSE)

plot_donor_props 51

```
add_meta_associations
```

character Adds meta data associations with each factor as top annotation. These should be generated first with plot_meta_associations(). Set to 'pval' if used 'pval' in plot_meta_associations(), otherwise set to 'rsq'. If NULL, no annotation is added. (default=NULL)

show_var_explained

logical Set to TRUE to display the explained variance for each factor (default=TRUE)

donors_sel character A vector of a subset of donors to include in the plot (default=NULL)

h_w numeric Vector specifying height and width (defualt=NULL)

Value

The project container with a heatmap plot of donor scores in container plots \$donor_matrix.

Examples

```
test_container <- plot_donor_matrix(test_container, show_donor_ids = TRUE)</pre>
```

plot_donor_props

Plot donor celltype/subtype proportions against each factor

Description

Plot donor celltype/subtype proportions against each factor

Usage

```
plot_donor_props(
  donor_props,
  donor_scores,
  significance,
  ctype_mapping = NULL,
  stat_type = "adj_pval",
  n_col = 2
)
```

Arguments

donor_props	data.frame Donor proportions as output from compute_donor_props()
donor_scores	data.frame Donor scores from tucker results
significance	numeric F-Statistics as output from compute_associations()
ctype_mapping	$character\ The\ cell\ types\ corresponding\ with\ columns\ of\ donor_props\ (default=NULL)$
stat_type	character Either "fstat" to get F-Statistics, "adj_rsq" to get adjusted R-squared values, or "adj_pval" to get adjusted pvalues (default='adj_pval')
n_col	numeric The number of columns to organize the plots into (default=2)

52 plot_donor_sig_genes

Value

A cowplot figure of ggplot objects for proportions of each cell type against donor factor scores for each factor.

```
plot_donor_sig_genes Generate a gene by donor heatmap showing scaled expression of top loading genes for a given factor
```

Description

Generate a gene by donor heatmap showing scaled expression of top loading genes for a given factor

Usage

```
plot_donor_sig_genes(
   container,
   factor_select,
   top_n_per_ctype,
   ctypes_use = NULL,
   show_donor_labels = FALSE,
   additional_meta = NULL,
   add_genes = NULL
)
```

Arguments

```
container
                  environment Project container that stores sub-containers for each cell type as
                  well as results and plots from all analyses
factor_select
                  numeric The factor to query
top_n_per_ctype
                  numeric Vector of the number of top genes from each cell type to plot
                  character The cell types for which to get the top genes to make callouts for. If
ctypes_use
                  NULL then uses all cell types. (default=NULL)
show_donor_labels
                  logical Set to TRUE to display donor labels (default=FALSE)
additional_meta
                  character Another meta variable to plot (default=NULL)
add_genes
                  character Additional genes to plot for all ctypes (default=NULL)
```

Value

The project container with a heatmap plot in the slot container\$plots\$donor_sig_genes\$<Factor#>. This heatmap shows scaled expression of top loading genes in each cell type for a selected factor.

plot_dscore_enr 53

Examples

```
test_container <- plot_donor_sig_genes(test_container, factor_select=1,
top_n_per_ctype=2)</pre>
```

plot_dscore_enr

Compute enrichment of donor metadata categorical variables at high/low factor scores

Description

Compute enrichment of donor metadata categorical variables at high/low factor scores

Usage

```
plot_dscore_enr(container, factor_use, meta_var)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_use

numeric The factor to test

meta_var

character The name of the metadata variable to test

Value

A cowplot figure of enrichment plots.

Examples

```
fig <- plot_dscore_enr(test_container, factor_use=1, meta_var='lanes')</pre>
```

plot_gsea_hmap

Plot enriched gene sets from all cell types in a heatmap

Description

Plot enriched gene sets from all cell types in a heatmap

```
plot_gsea_hmap(container, factor_select, thresh)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select numeric The factor to plot

thresh numeric Pvalue threshold to use for including gene sets in the heatmap

Value

A stacked heatmap object from ComplexHeatmap.

```
plot_gsea_hmap_w_similarity
```

Plot already computed enriched gene sets to show semantic similarity between sets

Description

Plot already computed enriched gene sets to show semantic similarity between sets

Usage

```
plot_gsea_hmap_w_similarity(
  container,
  factor_select,
  direc,
  thresh,
  exclude_words = character(0)
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select numeric The factor to plot

direc character Set to either 'up' or 'down' to use the appropriate sets

thresh numeric Pvalue threshold to use for including gene sets in the heatmap

exclude_words character Vector of words to exclude from word cloud (default=character(0))

Value

No value is returned. A heatmap showing enriched gene sets clustered by semantic similarity is drawn.

plot_gsea_sub 55

plot_gsea_sub	Look at enriched gene sets from a cluster of semantically
	similar gene sets. Uses the results from previous run of
	plot_gsea_hmap_w_similarity()

Description

Look at enriched gene sets from a cluster of semantically similar gene sets. Uses the results from previous run of plot_gsea_hmap_w_similarity()

Usage

```
plot_gsea_sub(container, clust_select, thresh = 0.05)
```

Arguments

container environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses

clust_select numeric The cluster to plot gene sets from. On the previous semantic similarity

plot, cluster numbering starts from the top as 1.

thresh numeric Color threshold to use for showing significance (default=0.05)

Value

A heatmap plot from ComplexHeatmap showing one semantic similarity cluster of enriched gene sets with adjusted p-values for each cell type.

Description

Plot the gene by celltype loadings for a factor

```
plot_loadings_annot(
  container,
  factor_select,
  use_sig_only = FALSE,
  nonsig_to_zero = FALSE,
  annot = "none",
  pathways = NULL,
  sim_de_donor_group = NULL,
  sig_thresh = 0.05,
```

56 plot_loadings_annot

```
display_genes = FALSE,
  gene_callouts = FALSE,
  callout_n_gene_per_ctype = 5,
  callout_ctypes = NULL,
  specific_callouts = NULL,
  le_set_callouts = NULL,
  le_set_colormap = NULL,
  le_set_num_per = 5,
  show_le_legend = FALSE,
  show_xlab = TRUE,
  show_var_explained = TRUE,
  clust_method = "median",
  h_w = NULL
  reset_other_factor_plots = FALSE,
 draw_plot = TRUE
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select numeric The factor to plot

use_sig_only logical If TRUE, includes only significant genes from jackstraw in the heatmap.

If FALSE, includes all the variable genes. (default = FALSE)

nonsig_to_zero logical If TRUE, makes the loadings of all nonsignificant genes 0 (default=FALSE)

annot character If set to "pathways" then creates an adjacent heatmap showing which

genes are in which pathways. If set to "sig_genes" then creates an adjacent heatmap showing which genes were significant from jackstraw. If set to "none"

no adjacent heatmap is plotted. (default="none")

pathways character Gene sets to plot if annot is set to "pathways" (default=NULL)

sim_de_donor_group

numeric To plot the ground truth significant genes from a simulation next to the heatmap, put the number of the donor group that corresponds to the factor being

plotted (default=NULL)

sig_thresh numeric Pvalue significance threshold to use. If use_sig_only is TRUE the

threshold is used as a cutoff for genes to include. If annot is "sig_genes" this value is used in the gene significance colormap as a minimum threshold. (de-

fault=0.05)

display_genes logical If TRUE, displays the names of gene names (default=FALSE)

gene_callouts logical If TRUE, then adds gene callout annotations to the heatmap (default=FALSE)

callout_n_gene_per_ctype

numeric To use if gene_callouts is TRUE. Sets the number of largest magnitude significant genes from each cell type to include in gene callouts. (default=5)

callout_ctypes character To use if gene_callouts is TRUE. Specifies which cell types to get gene

callouts for. If NULL, then gets gene callouts for largest magnitude significant

genes for all cell types. (default=NULL)

plot_mod_and_lig 57

specific_callouts

character A vector of gene names to show callouts for (default=NULL)

le_set_callouts

character Pass a vector of gene set names to show leading edge genes for a select

set of gene sets (default=NULL)

le_set_colormap

character A named vector with names as gene sets and values as colors. If NULL, then selects first n colors of Set3 color palette. (default=NULL)

le_set_num_per numeric The number of leading edge genes to show for each gene set (default=5)

show_le_legend logical Set to TRUE to show the color map legend for leading edge genes (de-

fault=FALSE)

show_xlab logical If TRUE, displays the xlabel 'genes' (default=TRUE)

show_var_explained

logical If TRUE then shows an anotation with the explained variance for each

cell type (default=TRUE)

clust_method character The hclust method to use for clustering rows (default='median')

h_w numeric Vector specifying height and width (defualt=NULL)

reset_other_factor_plots

logical Set to TRUE to set all other loadings plots to NULL. Useful if run get_all_lds_factor_plots but then only want to show one or two plots. (de-

fault=FALSE)

draw_plot logical Set to TRUE to show the plot. Plot is stored regardless. (default=TRUE)

Value

The project container with a heatmap of loadings for one factor put in container\$plots\$all_lds_plots. The legend for the heatmap is put in container\$plots\$all_legends. Use draw(<hmap obj>,annotation_legend_list = <hmap legend obj>) to re-render the plot with legend.

Examples

```
test_container <- plot_loadings_annot(test_container, 1, display_genes=FALSE,
show_var_explained = TRUE)
```

Description

Plot trio of associations between ligand expression, module eigengenes, and factor scores

```
plot_mod_and_lig(container, factor_select, mod_ct, mod, lig_ct, lig)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select numeric The factor to use

mod_ct character The name of the cell type for the corresponding module

mod numeric The number of the corresponding module

lig_ct character The name of the cell type where the ligand is expressed

lig character The name of the ligand to use

Value

A cowplot figure of ggplot objects for the three associations scatter plots.

plot_multi_module_enr Generate gene set x ct_module heatmap showing co-expression module gene set enrichment results

Description

Generate gene set x ct_module heatmap showing co-expression module gene set enrichment results

Usage

```
plot_multi_module_enr(
  container,
  ctypes,
  modules,
  sig_thresh = 0.05,
  db_use = "TF",
  max_plt_pval = 0.1,
  h_w = NULL
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ctypes character A vector of cell type names corresponding to the module numbers in

mod_select, specifying the modules to compute enrichment for

modules numeric A vector of module numbers corresponding to the cell types in ctype,

specifying the modules to compute enrichment for

sig_thresh numeric P-value threshold for results to include. Only shows a given gene set if

at least one module has a result lower than the threshold. (default=0.05)

plot_rec_errors_bar_svd 59

db_use character The database of gene sets to use. Database options include "GO",

"Reactome", "KEGG", "BioCarta", "Hallmark", "TF", and "immuno". More

than one database can be used. (default="GO")

max_plt_pval max pvalue shown on plot, but not used to remove rows like sig_thresh (de-

fault=.1)

h_w numeric Vector specifying height and width (defualt=NULL)

Value

A ComplexHeatmap object of enrichment results.

```
plot_rec_errors_bar_svd
```

Plot reconstruction errors as bar plot for svd method

Description

Plot reconstruction errors as bar plot for svd method

Usage

```
plot_rec_errors_bar_svd(real, shuffled, mode_to_show)
```

Arguments

real list The real reconstruction errors

shuffled list The reconstruction errors under null model mode_to_show numeric The mode to plot the results for

Value

A ggplot object showing the difference in reconstruction errors for successive factors.

```
plot_rec_errors_line_svd
```

Plot reconstruction errors as line plot for svd method

Description

Plot reconstruction errors as line plot for svd method

```
plot_rec_errors_line_svd(real, shuffled, mode_to_show)
```

plot_select_sets

Arguments

real list The real reconstruction errors

shuffled list The reconstruction errors under null model mode_to_show numeric The mode to plot the results for

Value

A ggplot object showing relative reconstruction errors.

data groups

Description

Plot dotplots for each factor to compare donor scores between metadata groups

Usage

```
plot_scores_by_meta(container, meta_var)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

meta_var character The meta data variable to compare groups for

Value

The project container with a figure of comparison plots (one for each factor) placed in container\$plots\$indv_meta_scores_asso

Description

Plot enrichment results for hand picked gene sets

plot_stability_results 61

Usage

```
plot_select_sets(
  container,
  factors_all,
  sets_plot,
  color_sets = NULL,
  cl_rows = FALSE,
  h_w = NULL,
  myfontsize = 8
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
factors_all	numeric Vector of one or more factor numbers to get plots for
sets_plot	character Vector of gene set names to show enrichment values for
color_sets	named character Values are colors corresponding to each set, with names as the gene set names (default=NULL)
cl_rows	logical Set to TRUE to cluster gene set results (default=FALSE)
h_w	numeric Vector specifying height and width (defualt=NULL)
myfontsize	numeric Gene set label fontsize (default=8)

Value

A list with a ComplexHeatmap object of select enriched gene sets as the first element and with a legend object as the second element.

```
plot_stability_results
```

Generate a plot for either the donor scores or loadings stability test

Description

Generate a plot for either the donor scores or loadings stability test

Usage

```
plot_stability_results(container, plt_data)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

plt_data character Either 'lds' or 'dsc' and indicates which plot to make

62 prep_LR_interact

Value

the plot

```
plot_subclust_associations
```

Plot association significances for varying clustering resolutions

Description

Plot association significances for varying clustering resolutions

Usage

```
plot_subclust_associations(res, n_col = 2)
```

Arguments

res data.frame Regression statistics for each subcluster analysis

n_col numeric The number of columns to organize the plots into (default=2)

Value

A cowplot of ggplot objects showing statistics for regressions of proportions of each cell subtype (at varying clustering resolutions) against each factor.

prep_LR_interact

Prepare data for LR analysis and get soft thresholds to use for gene modules

Description

Prepare data for LR analysis and get soft thresholds to use for gene modules

```
prep_LR_interact(
  container,
  lr_pairs,
  norm_method = "trim",
  scale_factor = 10000,
  var_scale_power = 0.5,
  batch_var = NULL
)
```

project_new_data 63

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

lr_pairs data.frame Data of ligand-receptor pairs. First column should be ligands and

second column should be one or more receptors separated by an underscore such as receptor1_receptor2 in the case that multiple receptors are required for

signaling.

norm_method character The normalization method to use on the pseudobulked count data. Set

to 'regular' to do standard normalization of dividing by library size. Set to 'trim' to use edgeR trim-mean normalization, whereby counts are divided by library

size times a normalization factor. (default='trim')

scale_factor numeric The number that gets multiplied by fractional counts during normaliza-

tion of the pseudobulked data (default=10000)

var_scale_power

numeric Exponent of normalized variance that is used for variance scaling. Variance for each gene is initially set to unit variance across donors (for a given cell type). Variance for each gene is then scaled by multiplying the unit scaled values by each gene's normalized variance (where the effect of the mean-variance dependence is taken into account) to the exponent specified here. If NULL, uses

var_scale_power from container\$experiment_params. (default=.5)

batch_var character A batch variable from metadata to remove (default=NULL)

Value

The project container with added container\$scale_pb_extra slot that contains the tensor with additional ligands and receptors. Also has container\$no_scale_pb_extra slot with pseudobulked, normalized data that is not scaled.

project_new_data

Project multicellular patterns to get scores on new data

Description

Project multicellular patterns to get scores on new data

Usage

project_new_data(new_container, old_container)

Arguments

new_container environment A project container with new data to project scores for. The form_tensor()

function should be run.

old_container environment The original project container that has the multicellular gene ex-

pression patterns already extracted. These patterns will be projected onto the

new data.

64 reduce_to_vargenes

Value

The new container environment object with projected scores in new_container\$projected_scores. The factors will be ordered the same as the factors in old_container.

reduce_dimensions Gets a conos object of the data, aligning datasets across a specified variable such as batch or donors. This can be run independently or through get_subtype_prop_associations().

Description

Gets a conos object of the data, aligning datasets across a specified variable such as batch or donors. This can be run independently or through get_subtype_prop_associations().

Usage

```
reduce_dimensions(
  container,
  integration_var,
  ncores = container$experiment_params$ncores
)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

integration_var

character The meta data variable to use for creating the joint embedding with

Conos.

ncores

numeric The number of cores to use (default=container\$experiment_params\$ncores)

Value

The project container with a conos object in container\$embedding.

reduce_to_vargenes

Reduce each cell type's expression matrix to just the significantly variable genes. Generally, this should be done through calling the form_tensor() wrapper function.

Description

Reduce each cell type's expression matrix to just the significantly variable genes. Generally, this should be done through calling the form_tensor() wrapper function.

render_multi_plots 65

Usage

```
reduce_to_vargenes(container)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses

Value

The project container with pseudobulked matrices reduced to only the most variable genes.

render_multi_plots

Create a figure of all loadings plots arranged

Description

Create a figure of all loadings plots arranged

Usage

```
render_multi_plots(container, data_type, max_cols = 3)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
data_type	character Can be either "loadings", "gsea", or "dgenes". This determines which list of heatmaps to organize into the figure.
max_cols	numeric The max number of columns to plot. Can only either be 2 or 3 since these are large plots. (default=3)

Value

The multi-plot figure.

Examples

```
test_container <- get_all_lds_factor_plots(test_container)
fig <- render_multi_plots(test_container, data_type='loadings')</pre>
```

run_fgsea

reshape_loadings

Reshape loadings for a factor from linearized to matrix form

Description

Reshape loadings for a factor from linearized to matrix form

Usage

```
reshape_loadings(ldngs_row, genes, ctypes)
```

Arguments

ldngs_row numeric A vector of loadings values for one factor

genes character The gene identifiers corresponding to each loading

ctypes character The cell type corresponding to each loading

Value

A loadings matrix with dimensions of genes by cell types.

run_fgsea

Run fgsea for one cell type of one factor

Description

Run fgsea for one cell type of one factor

```
run_fgsea(
  container,
  factor_select,
  ctype,
  db_use = "GO",
  signed = TRUE,
  min_gs_size = 15,
  max_gs_size = 500,
  ncores = container$experiment_params$ncores
)
```

run_gsea_one_factor 67

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
factor_select	numeric The factor of interest
ctype	character The cell type of interest
db_use	character The database of gene sets to use. Database options include "GO", "Reactome", "KEGG", "BioCarta", and "Hallmark". More than one database can be used. (default="GO")
signed	logical If TRUE, uses signed gsea. If FALSE, uses unsigned gsea. Currently only works with fgsea method. (default=TRUE)
min_gs_size	numeric Minimum gene set size (default=15)
max_gs_size	numeric Maximum gene set size (default=500)
ncores	numeric The number of cores to use (default=container\$experiment_params\$ncores)

Value

A data frame of the fgsea results for enrichment of gene sets in a given cell type for a given factor. The results contain adjusted p-values, normalized enrichment scores, leading edge genes, and other information output by fgsea.

run_gsea_one_factor Run gsea separately for all cell types of one specified factor and plot results

Description

Run gsea separately for all cell types of one specified factor and plot results

```
run_gsea_one_factor(
  container,
  factor_select,
  method = "fgsea",
  thresh = 0.05,
  db_use = "GO",
  signed = TRUE,
  min_gs_size = 15,
  max_gs_size = 500,
  reset_other_factor_plots = FALSE,
  draw_plot = TRUE,
  ncores = container$experiment_params$ncores
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses	
factor_select	numeric The factor of interest	
method	character The method of gsea to use. Can either be "fgsea", "fgsea_special or "hypergeometric". (default="fgsea")	
thresh	numeric Pvalue significance threshold to use. Will include gene sets in resulting heatmap if pvalue is below this threshold for at least one cell type. (default=0.05)	
db_use	character The database of gene sets to use. Database options include "GO", "Reactome", "KEGG", and "BioCarta". More than one database can be used. (default="GO")	
signed	logical If TRUE, uses signed gsea. If FALSE, uses unsigned gsea. Currently only works with fgsea method (default=TRUE)	
min_gs_size	numeric Minimum gene set size (default=15)	
max_gs_size	numeric Maximum gene set size (default=500)	
reset_other_factor_plots		
	logical Set to TRUE to set all other gsea plots to NULL (default=FALSE)	
draw_plot	logical Set to TRUE to show the plot. Plot is stored regardless. (default=TRUE)	
ncores	numeric The number of cores to use (default=container\$experiment_params\$ncores)	

Value

A stacked heatmap plot of the gsea results in the slot container\$plots\$gsea\$<Factor#>. The heatmaps show adjusted p-values for the enrichment of each gene set in each cell type for the selected factor. The top heatmap shows enriched gene sets among the positive loading genes and the bottom heatmap shows enriched gene sets among the negative loading genes for the factor.

Examples

```
test_container <- run_gsea_one_factor(test_container, factor_select=1,
method="fgsea", thresh=0.05, db_use="Hallmark", signed=TRUE)</pre>
```

```
run_hypergeometric_gsea
```

Compute enriched gene sets among significant genes in a cell type for a factor using hypergeometric test

Description

Compute enriched gene sets among significant genes in a cell type for a factor using hypergeometric test

run_jackstraw 69

Usage

```
run_hypergeometric_gsea(
  container,
  factor_select,
  ctype,
  up_down,
  thresh = 0.05,
  min_gs_size = 15,
  max_gs_size = 500,
  db_use = "GO"
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

factor_select numeric The factor of interest

ctype character The cell type of interest

up_down character Either "up" to compute enrichment among the significant positive

loading genes or "down" to compute enrichment among the significant negative

loading genes.

thresh numeric Pvalue significance threshold. Used as cutoff for calling genes as sig-

nificant to use for enrichment tests. (default=0.05)

min_gs_size numeric Minimum gene set size (default=15)

max_gs_size numeric Maximum gene set size (default=500)

db_use character The database of gene sets to use. Database options include "GO",

"Reactome", "KEGG", and "BioCarta". More than one database can be used.

(default="GO")

Value

A vector of adjusted p-values for enrichment of gene sets in the significant genes of a given cell type in a given factor.

run_jackstraw Run jackstraw to get genes that are significantly associated with donor scores for factors extracted by Tucker decomposition

Description

Run jackstraw to get genes that are significantly associated with donor scores for factors extracted by Tucker decomposition

Usage

```
run_jackstraw(
  container,
  ranks,
  n_fibers = 100,
  n_iter = 500,
  tucker_type = "regular",
  rotation_type = "hybrid",
  seed = container$experiment_params$rand_seed,
  ncores = container$experiment_params$ncores
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
ranks	numeric The number of donor ranks and gene ranks to decompose to using Tucker decomposition
n_fibers	numeric The number of fibers the randomly shuffle in each iteration (default=100)
n_iter	numeric The number of shuffling iterations to complete (default=500)
tucker_type	character Set to 'regular' to run regular tucker or to 'sparse' to run tucker with sparsity constraints (default='regular')
rotation_type	character Set to 'hybrid' to perform hybrid rotation on resulting donor factor matrix and loadings. Otherwise set to 'ica_lds' to perform ica rotation on loadings or ica_dsc to perform ica on donor scores. (default='hybrid')
seed	$numeric\ Seed\ passed\ to\ set.seed()\ (default=container\$experiment_params\$rand_seed)$
ncores	numeric The number of cores to use (default=container\$experiment_params\$ncores)

Value

The project container with a vector of adjusted pvalues in container\$gene_score_associations.

Examples

```
test_container <- run_jackstraw(test_container, ranks=c(2,4), n_fibers=2, n_iter=10,
tucker_type='regular', rotation_type='hybrid', ncores=1)</pre>
```

```
run_stability_analysis
```

Test stability of a decomposition by subsampling or bootstrapping donors. Note that running this function will replace the decomposition in the project container with one resulting from the tucker parameters entered here.

run_stability_analysis 71

Description

Test stability of a decomposition by subsampling or bootstrapping donors. Note that running this function will replace the decomposition in the project container with one resulting from the tucker parameters entered here.

Usage

```
run_stability_analysis(
  container,
  ranks,
  tucker_type = "regular",
  rotation_type = "hybrid",
  subset_type = "subset",
  sub_prop = 0.75,
  n_iterations = 100,
  ncores = container$experiment_params$ncores
)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
ranks	numeric The number of donor, gene, and cell type ranks, respectively, to decompose to using Tucker decomposition.
tucker_type	character The 'regular' type is the only one implemented with sparsity constraints (default='regular')
rotation_type	character Set to 'hybrid' to optimize loadings via our hybrid method (see paper for details). Set to 'ica_dsc' to perform ICA rotation on resulting donor factor matrix. Set to 'ica_lds' to optimize loadings by the ICA rotation. (default='hybrid')
subset_type	character Set to either 'subset' or 'bootstrap' (default='subset')
sub_prop	numeric The proportion of donors to keep when using subset_type='subset' (default=.75)
n_iterations	numeric The number of iterations to perform (default=100)
ncores	numeric The number of cores to use (default=container\$experiment_params\$ncores)

Value

The project container with the donor scores stability plot in container\$plots\$stability_plot_dsc and the loadings stability plot in container\$plots\$stability_plot_lds

Examples

```
test_container <- run_stability_analysis(test_container, ranks=c(2,4),
tucker_type='regular', rotation_type='hybrid', subset_type='subset',
sub_prop=0.75, n_iterations=5, ncores=1)</pre>
```

72 run_tucker_ica

run_tucker_ica

Run the Tucker decomposition and rotate the factors

Description

Run the Tucker decomposition and rotate the factors

Usage

```
run_tucker_ica(
  container,
  ranks,
  tucker_type = "regular",
  rotation_type = "hybrid"
)
```

Arguments

container environment Project container that stores sub-containers for each cell type as

well as results and plots from all analyses

ranks numeric The number of donor factors and gene factors, respectively, to decom-

pose the data into. Since we rearrange the standard output of the Tucker decomposition to be 'donor centric', the number of donor factors will also be the total number of main factors that can be used for downstream analysis. The number

of gene factors will only impact the quality of the decomposition.

tucker_type character The 'regular' type is the only one currently implemented

rotation_type character Set to 'hybrid' to optimize loadings via our hybrid method (see pa-

per for details). Set to 'ica_dsc' to perform ICA rotation on resulting donor factor matrix. Set to 'ica_lds' to optimize loadings by the ICA rotation. (de-

fault='hybrid')

Value

The project container with results of the decomposition in container\$tucker_results. The results object is a list with the donor scores matrix in the first element and the unfolded loadings matrix in the second element.

Examples

```
test_container <- run_tucker_ica(test_container,ranks=c(2,4))</pre>
```

sample_fibers 73

sample_fibers Get a list of tensor fibers to shuffle
--

Description

Get a list of tensor fibers to shuffle

Usage

```
sample_fibers(tensor_data, n_fibers)
```

Arguments

tensor_data list The tensor data including donor, gene, and cell type labels as well as the

tensor array itself

n_fibers numeric The number of fibers to get

Value

A list of gene and cell type indices for the randomly selected fibers

 $scale_fontsize Scale \ font \ size. From \ simplify Enrichment \ package. \\ https://github.com/jokergoo/simplify Enrichment/blob/master/R/ht_clusters.R$

Description

Scale font size. From simplifyEnrichment package. https://github.com/jokergoo/simplifyEnrichment/blob/master/R/ht_cluster/

Usage

```
scale_fontsize(x, rg = c(1, 30), fs = c(4, 16))
```

Arguments

x A numeric vector.

rg The range.

fs Range of the font size.

Value

A numeric vector.

74 seurat_to_scMinimal

scale_variance	Scale variance across donors for each gene within each cell type. Generally, this should be done through calling the form_tensor() wrapper function.

Description

Scale variance across donors for each gene within each cell type. Generally, this should be done through calling the form_tensor() wrapper function.

Usage

```
scale_variance(container, var_scale_power)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses

var_scale_power

numeric Exponent of normalized variance that is used for variance scaling. Variance for each gene is initially set to unit variance across donors (for a given cell type). Variance for each gene is then scaled by multiplying the unit scaled values by each gene's normalized variance (where the effect of the mean-variance dependence is taken into account) to the exponent specified here. If NULL, uses var_scale_power from container\$experiment_params.

Value

The project container with the variance altered for each gene within the pseudobulked matrices for each cell type.

seurat_to_scMinimal

Convert Seurat object to scMinimal object. Generally, this should be done through calling the make_new_container() wrapper function.

Description

Convert Seurat object to scMinimal object. Generally, this should be done through calling the make_new_container() wrapper function.

```
seurat_to_scMinimal(seurat_obj, metadata_cols = NULL, metadata_col_nm = NULL)
```

shuffle_fibers 75

Arguments

seurat_obj Seurat object that has been cleaned and includes the normalized, log-transformed

counts. The meta.data should include a column with the header 'sex' and values of 'M' or 'F' if available. The metadata should also have a column with the header 'ctypes' with the corresponding names of the cell types as well as a

column with header 'donors' that contains identifiers for each donor.

metadata_cols character The names of the metadata columns to use (default=NULL)

metadata_col_nm

character New names for the selected metadata columns if wish to change their names. If NULL, then the preexisting column names are used. (default=NULL)

Value

An scMinimal object holding counts and metadata for a project.

shuffle_fibers

Shuffle elements within the selected fibers

Description

Shuffle elements within the selected fibers

Usage

```
shuffle_fibers(tensor_data, s_fibers)
```

Arguments

tensor_data list The tensor data including donor, gene, and cell type labels as well as the

tensor array itself

s_fibers list Gene and cell type indices for the randomly selected fibers

Value

The tensor_data object with the values for the selected fibers shuffled.

76 stop_wrap

stack_tensor	Create the tensor object by stacking each pseudobulk cell type matrix. Generally, this should be done through calling the form_tensor() wrapper function.

Description

Create the tensor object by stacking each pseudobulk cell type matrix. Generally, this should be done through calling the form_tensor() wrapper function.

Usage

```
stack_tensor(container)
```

Arguments

container

environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses

Value

The project container with the list of tensor data in container\$tensor_data.

stop_wrap	Helper	function	from	simplifyEnrichment	package.
	https://gith	ub.com/joke	rgoo/simpl	lifyEnrichment/blob/mast	er/R/utils.R

Description

 $Helper \ function \ from \ simplify Enrichment \ package. \ https://github.com/jokergoo/simplify Enrichment/blob/master/R/utils.R$

Usage

```
stop_wrap(...)
```

Arguments

... other parameters

Value

No value is returned.

subset_scMinimal 77

subset_scMinimal	Subset an scMinimal object by specified genes, donors, cells, or cell types

Description

Subset an scMinimal object by specified genes, donors, cells, or cell types

Usage

```
subset_scMinimal(
   scMinimal,
   ctypes_use = NULL,
   cells_use = NULL,
   donors_use = NULL,
   genes_use = NULL,
   in_place = TRUE
)
```

Arguments

scMinimal	environment A sub-container for the project typically consisting of gene expression data in its raw and processed forms as well as metadata
ctypes_use	character The cell types to keep (default=NULL)
cells_use	character Cell barcodes for the cells to keep (default=NULL)
donors_use	character The donors to keep (default=NULL)
genes_use	character The genes to keep (default=NULL)
in_place	logical If set to TRUE then replaces the input object with the new subsetted object (default=TRUE)

Value

A subsetted scMinimal object.

Examples

```
cell_names <- colnames(test_container$scMinimal_full$count_data)
cells_sub <- sample(cell_names,40)
scMinimal <- subset_scMinimal(test_container$scMinimal_full,
cells_use=cells_sub)</pre>
```

78 tucker_ica_helper

test_container

Data container for testing tensor formation steps

Description

Data container for testing tensor formation steps

Usage

```
test_container
```

Format

An object of class environment of length 10.

tucker_ica_helper

Helper function for running the decomposition. run_tucker_ica() wrapper function instead.

Use the

Description

Helper function for running the decomposition. Use the run_tucker_ica() wrapper function instead.

Usage

```
tucker_ica_helper(
  tensor_data,
  ranks,
  tucker_type,
  rotation_type,
  projection_container = NULL
)
```

Arguments

tensor_data list The tensor data including donor, gene, and cell type labels as well as the

tensor array itself

ranks numeric The number of donor and gene factors respectively, to decompose to

using Tucker decomposition.

tucker_type character The 'regular' type is the only one currently implemented

rotation_type character Set to 'hybrid' to optimize loadings via our hybrid method (see paper

for details). Set to 'ica_dsc' to perform ICA rotation on resulting donor factor

matrix. Set to 'ica_lds' to optimize loadings by the ICA rotation.

projection_container

environment A project container to store projection data in. Currently only im-

plemented for 'hybrid' and 'ica_dsc' rotations. (default=NULL)

update_params 79

Value

The list of results for tucker decomposition with donor scores matrix in first element and loadings matrix in second element.

update_params	Update any of the experiment-wide parameters	

Description

Update any of the experiment-wide parameters

Usage

```
update_params(container, ctypes_use = NULL, ncores = NULL, rand_seed = NULL)
```

Arguments

container	environment Project container that stores sub-containers for each cell type as well as results and plots from all analyses
ctypes_use	character Names of the cell types to use for the analysis (default=NULL)
ncores	numeric Number of cores to use (default=NULL)
rand_seed	numeric Random seed to use (default=NULL)

Value

The project container with updated experiment parameters in container\$experiment_params.

Examples

```
test_container <- update_params(test_container, ncores=1)</pre>
```

vargenes_anova	Compute significantly variable genes via anova. Generally, this
	should be done through calling the form_tensor() wrapper function.

Description

Compute significantly variable genes via anova. Generally, this should be done through calling the form_tensor() wrapper function.

```
vargenes_anova(scMinimal, ncores)
```

80 vargenes_anova

Arguments

scMinimal environment A sub-container for the project typically consisting of gene expres-

sion data in its raw and processed forms

ncores numeric Number of cores to use

Value

A list of raw p-values for each gene.

Index

* datasets	<pre>get_one_factor, 29</pre>
test_container, 78	<pre>get_one_factor_gene_pvals, 30</pre>
	get_pseudobulk, 30
apply_combat,4	<pre>get_real_fstats, 31</pre>
calculate_fiber_fstats,5	get_reconstruct_errors_svd, 31
check_rec_pres, 5	get_significance_vectors, 32
clean_data, 6	get_subclust_de_hmaps, 33
colMeanVars,7	get_subclust_enr_dotplot, 34
compare_decompositions, 7	get_subclust_enr_fig, 35
compute_associations, 8	get_subclust_enr_hmap, 35
compute_donor_props, 9	get_subclust_umap, 36
compute_LR_interact, 9	get_subclusters, 33
convert_gn, 10	get_subtype_prop_associations, 37
count_word, 11	get_sums, 38
determine_ranks_tucker, 11	ht_clusters, 38
deter milite_r anks_tucker, 11	
form_tensor, 13	identify_sex_metadata, 40
_ ,	initialize_params, 40
get_all_lds_factor_plots, 14	instantiate_scMinimal, 41
get_callouts_annot, 16	is_G0_id,42
get_ctype_exp_var, 17	<pre>make_new_container, 42</pre>
get_ctype_prop_associations, 17	merge_small_clusts, 43
get_ctype_subc_prop_associations, 18	mer ge_smarr_eras to, 15
get_ctype_vargenes, 19	nmf_unfolded, 44
get_donor_meta, 20	norm_var_helper,46
get_factor_exp_var, 20	normalize_counts, 45
get_fstats_pvals, 21	normalize_pseudobulk,45
get_gene_modules,21	
get_gene_set_vectors, 22	parse_data_by_ctypes, 46
get_indv_subtype_associations, 22	pca_unfolded, 47
get_intersecting_pathways, 23	plot_donor_matrix, 50
get_leading_edge_genes, 23	plot_donor_props, 51
get_lm_pvals, 24	plot_donor_sig_genes, 52
get_max_correlations, 25	plot_dscore_enr, 53
get_meta_associations, 25	plot_gsea_hmap, 53
get_min_sig_genes, 26	plot_gsea_hmap_w_similarity, 54
get_module_enr, 27	plot_gsea_sub, 55
get_normalized_variance, 28	plot_loadings_annot, 55
get_num_batch_ranks, 28	plot_mod_and_lig,57

82 INDEX

```
plot_multi_module_enr, 58
plot_rec_errors_bar_svd, 59
plot_rec_errors_line_svd, 59
plot_scores_by_meta, 60
plot_select_sets, 60
plot_stability_results, 61
plot_subclust_associations, 62
plotDEheatmap_conos, 48
prep_LR_interact, 62
project_new_data, 63
reduce_dimensions, 64
reduce_to_vargenes, 64
render_multi_plots, 65
reshape_loadings, 66
run_fgsea, 66
run_gsea_one_factor, 67
run_hypergeometric_gsea, 68
run_jackstraw, 69
run_stability_analysis, 70
run_tucker_ica, 72
sample_fibers, 73
scale_fontsize, 73
scale_variance, 74
seurat_to_scMinimal, 74
shuffle_fibers, 75
stack_tensor, 76
stop_wrap, 76
subset_scMinimal, 77
test_container, 78
tucker_ica_helper, 78
update_params, 79
vargenes_anova, 79
```