It fits scale mixture of skew-normal linear mixed models using either an expectation–maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence. Details can be found in Schumacher, Lachos and Matos (2021) <doi:10.1002/sim.8870>.
Version: | 1.1.2 |
Depends: | R (≥ 4.3), optimParallel |
Imports: | dplyr, ggplot2, methods, stats, future, ggrepel, haven, mvtnorm, nlme, purrr, furrr, matrixcalc, moments, numDeriv, relliptical, MomTrunc, TruncatedNormal |
Published: | 2024-12-15 |
DOI: | 10.32614/CRAN.package.skewlmm |
Author: | Fernanda L. Schumacher
|
Maintainer: | Fernanda L. Schumacher <fernandalschumacher at gmail.com> |
BugReports: | https://github.com/fernandalschumacher/skewlmm/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/fernandalschumacher/skewlmm |
NeedsCompilation: | no |
Materials: | README NEWS |
In views: | MixedModels, Robust |
CRAN checks: | skewlmm results |
Reference manual: | skewlmm.pdf |
Package source: | skewlmm_1.1.2.tar.gz |
Windows binaries: | r-devel: skewlmm_1.1.2.zip, r-release: skewlmm_1.1.2.zip, r-oldrel: skewlmm_1.1.2.zip |
macOS binaries: | r-devel (arm64): skewlmm_1.1.2.tgz, r-release (arm64): skewlmm_1.1.2.tgz, r-oldrel (arm64): skewlmm_1.1.2.tgz, r-devel (x86_64): skewlmm_1.1.2.tgz, r-release (x86_64): skewlmm_1.1.2.tgz, r-oldrel (x86_64): skewlmm_1.1.2.tgz |
Old sources: | skewlmm archive |
Please use the canonical form https://CRAN.R-project.org/package=skewlmm to link to this page.