Geographical Pattern Causality (GPC) infers causal relations from spatial cross-sectional data by reconstructing a symbolic approximation of the underlying spatial dynamical system.
Let \(x(s)\) and \(y(s)\) denote two spatial cross-sections over spatial units \(s \in \mathcal{S}\).
(1) Spatial Embedding
For each spatial unit \(s_i\), GPC constructs an embedding vector
\[ \mathbf{E}_{x(s_i)} = \big( x(s_{i}^{(1)}), x(s_{i}^{(2)}), \dots, x(s_{i}^{(E\tau)}) \big), \]
where \(s_{i}^{(k)}\) denotes the \(k\)-th spatially lagged value of the spatial unit \(s_i\), determined by embedding dimension \(E\) and lag \(\tau\). This yields two reconstructed state spaces \(\mathcal{M}_x, \mathcal{M}_y \subset \mathbb{R}^E\).
(2) Symbolic Pattern Extraction
Local geometric transitions in each manifold are mapped to symbols
\[ \sigma_x(s_i),; \sigma_y(s_i) \in \mathcal{A}, \]
encoding increasing, decreasing, or non-changing modes. These symbolic trajectories summarize local pattern evolution.
(3) Cross-Pattern Mapping
Causality from \(x \to y\) is assessed by predicting:
\[ \hat{\sigma}_y(s_i) = F\big( \sigma_x(s_j): s_j \in \mathcal{N}_k(s_i) \big), \]
where \(\mathcal{N}_k\) denotes the set of \(k\) nearest neighbors in \(\mathcal{M}_x\). The agreement structure between \(\hat{\sigma}_y(s_i)\) and \(\sigma_y(s_i)\) determines the causal mode:
(4) Causal Strength
The global causal strength is the normalized consistency of symbol matches:
\[ C_{x \to y} = \frac{1}{|\mathcal{S}|} \sum_{s_i \in \mathcal{S}} \mathbb{I}\big[ \hat{\sigma}_y(s_i) \bowtie \sigma_y(s_i) \big], \]
where \(\bowtie\) encodes positive, negative, or dark matching rules.
Load the spEDM package and its columbus spatial analysis
data:
library(spEDM)
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
columbus
## Simple feature collection with 49 features and 6 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 5.874907 ymin: 10.78863 xmax: 11.28742 ymax: 14.74245
## Projected CRS: Undefined Cartesian SRS with unknown unit
## # A tibble: 49 × 7
## hoval inc crime open plumb discbd geom
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <POLYGON>
## 1 80.5 19.5 15.7 2.85 0.217 5.03 ((8.624129 14.23698, 8.5597 14.74245, …
## 2 44.6 21.2 18.8 5.30 0.321 4.27 ((8.25279 14.23694, 8.282758 14.22994,…
## 3 26.4 16.0 30.6 4.53 0.374 3.89 ((8.653305 14.00809, 8.81814 14.00205,…
## 4 33.2 4.48 32.4 0.394 1.19 3.7 ((8.459499 13.82035, 8.473408 13.83227…
## 5 23.2 11.3 50.7 0.406 0.625 2.83 ((8.685274 13.63952, 8.677577 13.72221…
## 6 28.8 16.0 26.1 0.563 0.254 3.78 ((9.401384 13.5504, 9.434411 13.69427,…
## 7 75 8.44 0.178 0 2.40 2.74 ((8.037741 13.60752, 8.062716 13.60452…
## 8 37.1 11.3 38.4 3.48 2.74 2.89 ((8.247527 13.58651, 8.2795 13.5965, 8…
## 9 52.6 17.6 30.5 0.527 0.891 3.17 ((9.333297 13.27242, 9.671007 13.27361…
## 10 96.4 13.6 34.0 1.55 0.558 4.33 ((10.08251 13.03377, 10.0925 13.05275,…
## # ℹ 39 more rowsThe false nearest neighbours (FNN) method helps identify the appropriate minimal embedding dimension for reconstructing the state space of a time series or spatial cross-sectional data.
spEDM::fnn(columbus, "crime", E = 1:10, eps = stats::sd(columbus$crime))
## E:1 E:2 E:3 E:4 E:5 E:6 E:7
## 0.59183673 0.04081633 0.04081633 0.10204082 0.00000000 0.00000000 0.00000000
## E:8
## 0.00000000The false nearest neighbours (FNN) ratio decreased to approximately 0.001 when the embedding dimension E reached 7, and remained relatively stable thereafter. Therefore, we adopted \(E = 7\) as the minimal embedding dimension for subsequent parameter search.
Then, search optimal parameters:
# determine the type of causality using correlation
stats::cor.test(columbus$hoval,columbus$crime)
##
## Pearson's product-moment correlation
##
## data: columbus$hoval and columbus$crime
## t = -4.8117, df = 47, p-value = 1.585e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7366777 -0.3497978
## sample estimates:
## cor
## -0.5744867
# since the correlation is -0.574, negative causality is selected as the metric to maximize in the optimal parameter search
spEDM::pc(columbus, "hoval", "crime", E = 5:6, k = 7:10, tau = 1, maximize = "negative")
## The suggested E,k,tau for variable crime is 6, 9 and 1Run geographical pattern causality analysis
spEDM::gpc(columbus, "hoval", "crime", E = 6, k = 9)
## type strength direction
## 1 positive NaN hoval -> crime
## 2 negative 0.1340069 hoval -> crime
## 3 dark 0.1043991 hoval -> crime
## 4 positive NaN crime -> hoval
## 5 negative 0.6251773 crime -> hoval
## 6 dark 0.1468990 crime -> hovalConvergence diagnostics
crime_convergence = spEDM::gpc(columbus, "hoval", "crime",
libsizes = seq(5, 45, by = 5),
E = 6, k = 9, progressbar = FALSE)
crime_convergence
## libsizes type strength direction
## 1 10 positive 0.00000000 hoval -> crime
## 2 15 positive 0.00000000 hoval -> crime
## 3 20 positive 0.00000000 hoval -> crime
## 4 25 positive 0.00000000 hoval -> crime
## 5 30 positive 0.00000000 hoval -> crime
## 6 35 positive 0.00000000 hoval -> crime
## 7 40 positive 0.00000000 hoval -> crime
## 8 45 positive 0.00000000 hoval -> crime
## 9 10 negative 0.00000000 hoval -> crime
## 10 15 negative 0.10275505 hoval -> crime
## 11 20 negative 0.10662265 hoval -> crime
## 12 25 negative 0.11589173 hoval -> crime
## 13 30 negative 0.13260719 hoval -> crime
## 14 35 negative 0.12811574 hoval -> crime
## 15 40 negative 0.13875013 hoval -> crime
## 16 45 negative 0.13400692 hoval -> crime
## 17 10 dark 0.01608876 hoval -> crime
## 18 15 dark 0.01861307 hoval -> crime
## 19 20 dark 0.02173713 hoval -> crime
## 20 25 dark 0.01813809 hoval -> crime
## 21 30 dark 0.04362907 hoval -> crime
## 22 35 dark 0.04623515 hoval -> crime
## 23 40 dark 0.06830303 hoval -> crime
## 24 45 dark 0.09094789 hoval -> crime
## 25 10 positive 0.00000000 crime -> hoval
## 26 15 positive 0.00000000 crime -> hoval
## 27 20 positive 0.00000000 crime -> hoval
## 28 25 positive 0.00000000 crime -> hoval
## 29 30 positive 0.00000000 crime -> hoval
## 30 35 positive 0.00000000 crime -> hoval
## 31 40 positive 0.00000000 crime -> hoval
## 32 45 positive 0.00000000 crime -> hoval
## 33 10 negative 0.00000000 crime -> hoval
## 34 15 negative 0.00000000 crime -> hoval
## 35 20 negative 0.00000000 crime -> hoval
## 36 25 negative 0.00000000 crime -> hoval
## 37 30 negative 0.00000000 crime -> hoval
## 38 35 negative 0.10376552 crime -> hoval
## 39 40 negative 0.30424357 crime -> hoval
## 40 45 negative 0.62517731 crime -> hoval
## 41 10 dark 0.07618520 crime -> hoval
## 42 15 dark 0.08637332 crime -> hoval
## 43 20 dark 0.09795915 crime -> hoval
## 44 25 dark 0.10459567 crime -> hoval
## 45 30 dark 0.11259679 crime -> hoval
## 46 35 dark 0.11467853 crime -> hoval
## 47 40 dark 0.13381611 crime -> hoval
## 48 45 dark 0.14525108 crime -> hoval
plot(crime_convergence, ylimits = c(-0.01,1),
xlimits = c(9,46), xbreaks = seq(10, 45, 10))Load the spEDM package and its farmland NPP data:
library(spEDM)
npp = terra::rast(system.file("case/npp.tif", package = "spEDM"))
# To save the computation time, we will aggregate the data by 3 times
npp = terra::aggregate(npp, fact = 3, na.rm = TRUE)
npp
## class : SpatRaster
## size : 135, 161, 5 (nrow, ncol, nlyr)
## resolution : 30000, 30000 (x, y)
## extent : -2625763, 2204237, 1867078, 5917078 (xmin, xmax, ymin, ymax)
## coord. ref. : CGCS2000_Albers
## source(s) : memory
## names : npp, pre, tem, elev, hfp
## min values : 187.50, 390.3351, -47.8194, -110.1494, 0.04434316
## max values : 15381.89, 23734.5330, 262.8576, 5217.6431, 42.68803711
# Check the validated cell number
nnamat = terra::as.matrix(npp[[1]], wide = TRUE)
nnaindice = which(!is.na(nnamat), arr.ind = TRUE)
dim(nnaindice)
## [1] 6920 2Determining minimal embedding dimension:
spEDM::fnn(npp, "npp", E = 1:15,
eps = stats::sd(terra::values(npp[["npp"]]),na.rm = TRUE))
## E:1 E:2 E:3 E:4 E:5 E:6
## 0.9813070569 0.5309427415 0.1322254335 0.0167630058 0.0017341040 0.0000000000
## E:7 E:8 E:9 E:10 E:11 E:12
## 0.0001445087 0.0000000000 0.0000000000 0.0000000000 0.0002890173 0.0000000000
## E:13 E:14
## 0.0001445087 0.0001445087At \(E = 6\), the false nearest neighbor ratio stabilizes approximately at 0.0001 and remains constant thereafter. Therefore, \(E = 6\) is selected as minimal embedding dimension for the subsequent GPC analysis.
Then, search optimal parameters:
stats::cor.test(~ pre + npp,
data = terra::values(npp[[c("pre","npp")]],
datafame = TRUE, na.rm = TRUE))
##
## Pearson's product-moment correlation
##
## data: pre and npp
## t = 108.74, df = 6912, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7855441 0.8029426
## sample estimates:
## cor
## 0.7944062
g1 = spEDM::pc(npp, "npp", "pre", E = 6:10, k = 12, tau = 1:5, maximize = "positive")
g1
## The suggested E,k,tau for variable pre is 8, 12 and 5Run geographical pattern causality analysis
spEDM::gpc(npp, "pre", "npp", E = 8, k = 12, tau = 5)
## type strength direction
## 1 positive 0.5348284 pre -> npp
## 2 negative NaN pre -> npp
## 3 dark 0.4184010 pre -> npp
## 4 positive 0.4346310 npp -> pre
## 5 negative 0.0000000 npp -> pre
## 6 dark 0.3810809 npp -> preConvergence diagnostics
npp_convergence = spEDM::gpc(npp, "pre", "npp",
libsizes = matrix(rep(seq(10,80,10),2),ncol = 2),
E = 8, k = 12, tau = 5, progressbar = FALSE)
npp_convergence
## libsizes type strength direction
## 1 100 positive 0.12538196 pre -> npp
## 2 400 positive 0.18018497 pre -> npp
## 3 900 positive 0.24754501 pre -> npp
## 4 1600 positive 0.30981312 pre -> npp
## 5 2500 positive 0.37799443 pre -> npp
## 6 3600 positive 0.43029973 pre -> npp
## 7 4900 positive 0.46526482 pre -> npp
## 8 6400 positive 0.50607359 pre -> npp
## 9 100 negative 0.00000000 pre -> npp
## 10 400 negative 0.00000000 pre -> npp
## 11 900 negative 0.00000000 pre -> npp
## 12 1600 negative 0.00000000 pre -> npp
## 13 2500 negative 0.00000000 pre -> npp
## 14 3600 negative 0.00000000 pre -> npp
## 15 4900 negative 0.00000000 pre -> npp
## 16 6400 negative 0.00000000 pre -> npp
## 17 100 dark 0.06183032 pre -> npp
## 18 400 dark 0.11232502 pre -> npp
## 19 900 dark 0.17258621 pre -> npp
## 20 1600 dark 0.23518092 pre -> npp
## 21 2500 dark 0.29193486 pre -> npp
## 22 3600 dark 0.33645457 pre -> npp
## 23 4900 dark 0.37582609 pre -> npp
## 24 6400 dark 0.40879652 pre -> npp
## 25 100 positive 0.07934454 npp -> pre
## 26 400 positive 0.11817574 npp -> pre
## 27 900 positive 0.18403265 npp -> pre
## 28 1600 positive 0.26820265 npp -> pre
## 29 2500 positive 0.34026886 npp -> pre
## 30 3600 positive 0.38219004 npp -> pre
## 31 4900 positive 0.41126235 npp -> pre
## 32 6400 positive 0.42254648 npp -> pre
## 33 100 negative 0.00000000 npp -> pre
## 34 400 negative 0.00000000 npp -> pre
## 35 900 negative 0.00000000 npp -> pre
## 36 1600 negative 0.00000000 npp -> pre
## 37 2500 negative 0.00000000 npp -> pre
## 38 3600 negative 0.00000000 npp -> pre
## 39 4900 negative 0.00000000 npp -> pre
## 40 6400 negative 0.00000000 npp -> pre
## 41 100 dark 0.02919551 npp -> pre
## 42 400 dark 0.06567401 npp -> pre
## 43 900 dark 0.11937259 npp -> pre
## 44 1600 dark 0.18083090 npp -> pre
## 45 2500 dark 0.23808200 npp -> pre
## 46 3600 dark 0.28469842 npp -> pre
## 47 4900 dark 0.32666764 npp -> pre
## 48 6400 dark 0.36603708 npp -> pre
plot(npp_convergence, ylimits = c(-0.01,0.65),
xlimits = c(0,6500), xbreaks = seq(100, 6400, 500))