library(tidyverse)
library(Seurat)
library(SingleR)
library(plotly)
library(tidyHeatmap)
library(ggalluvial)
library(ggplot2)
library(tidyseurat)
options(future.globals.maxSize = 50068 * 1024^2)
friendly_cols <- dittoSeq::dittoColors()
custom_theme <-
list(
scale_fill_manual(values = friendly_cols),
scale_color_manual(values = friendly_cols),
theme_bw() +
theme(
panel.border = element_blank(),
axis.line = element_line(),
panel.grid.major = element_line(size = 0.2),
panel.grid.minor = element_line(size = 0.1),
text = element_text(size = 9),
legend.position = "bottom",
strip.background = element_blank(),
axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
)
)
PBMC_clean_scaled_UMAP_cluster_cell_type <- readRDS("dev/PBMC_clean_scaled_UMAP_cluster_cell_type.rds")
p1 =
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
pivot_longer(
c(mito.fraction, S.Score, G2M.Score),
names_to="property",
values_to="Value"
) %>%
mutate(property = factor(property, levels = c("mito.fraction", "G2M.Score", "S.Score"))) %>%
ggplot(aes(sample, Value)) +
geom_boxplot(outlier.size = 0.5 ) +
facet_wrap(~property, scales = "free_y" ) +
custom_theme +
theme(aspect.ratio=1)
p2 =
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
sample_n(20000) %>%
ggplot(aes(UMAP_1, UMAP_2, color=seurat_clusters)) +
geom_point(size=0.05, alpha=0.2) +
custom_theme +
theme(aspect.ratio=1)
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
sample_n(20000) %>%
plot_ly(
x = ~`UMAP_1`,
y = ~`UMAP_2`,
z = ~`UMAP_3`,
color = ~seurat_clusters,
colors = friendly_cols[1:24],sizes = 50, size = 1
)
markers = readRDS("dev/PBMC_marker_df.rds")
p3 =
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
arrange(first.labels) %>%
mutate(seurat_clusters = fct_inorder(seurat_clusters)) %>%
join_features(features=c("CD3D", "HLA-DRB1")) %>%
ggplot(aes(y=seurat_clusters , x=.abundance_SCT, fill=first.labels)) +
geom_density_ridges(bandwidth = 0.2) +
facet_wrap(~ .feature, nrow = 2) +
coord_flip() +
custom_theme
p4 =
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
sample_n(2000) %>%
DoHeatmap(
features = markers$gene,
group.colors = friendly_cols
)
p5 =
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
sample_n(1000) %>%
join_features(features=markers$gene) %>%
mutate(seurat_clusters = as.integer(seurat_clusters)) %>%
filter(seurat_clusters<10) %>%
group_by(seurat_clusters) %>%
heatmap(
.row = .feature,
.column = .cell,
.value = .abundance_SCT,
palette_grouping = list(rep("black",9)),
palette_value = circlize::colorRamp2(c(-1.5, 0, 1.5), c("purple", "black", "yellow")),
row_gap = unit(0.1, "mm"), column_gap = unit(0.1, "mm")
) %>%
add_tile(sample, palette = friendly_cols[1:7]) %>%
add_point(PC_1)
p6 =
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
unite("cluster_cell_type", c(first.labels, seurat_clusters), remove=FALSE) %>%
pivot_longer(
c(seurat_clusters, first.labels_single),
names_to = "classification", values_to = "value"
) %>%
ggplot(aes(x = classification, stratum = value, alluvium = cell,
fill = first.labels, label = value)) +
scale_x_discrete(expand = c(1, 1)) +
geom_flow() +
geom_stratum(alpha = .5) +
geom_text_repel(stat = "stratum", size = 3,
nudge_x = 0.05,
direction = "y",
angle = 0,
vjust = 0,
segment.size = 0.2
) +
scale_fill_manual(values = friendly_cols) +
coord_flip() +
theme_bw() +
theme(
panel.border = element_blank(),
axis.line = element_line(),
panel.grid.major = element_line(size = 0.2),
panel.grid.minor = element_line(size = 0.1),
text = element_text(size = 9),
legend.position = "bottom",
strip.background = element_blank(),
axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
)