add_constants | Augments parameter matrix or vector p with constant parameters (also used in data) |
auto_burn | Runs burn-in for emc. |
chain_n | chain_n() |
check | Convergence checks for an emc object |
check.emc | Convergence checks for an emc object |
compare | Information criteria and marginal likelihoods |
compare_MLL | Calculate a table of model probabilities based for a list of samples objects based on samples of marginal log-likelihood (MLL) added to these objects by run_IS2. Probabilities estimated by a bootstrap ath picks a vector of MLLs, one for each model in the list randomly with replacement nboot times, calculates model probabilities and averages |
compare_subject | Information criteria for each participant |
contr.anova | Anova style contrast matrix |
contr.bayes | Contrast to enforce equal prior variance on each level |
contr.decreasing | Contrast to enforce decreasing estimates |
contr.increasing | Contrast to enforce increasing estimates |
credible | Posterior credible interval tests |
credible.emc | Posterior credible interval tests |
DDM | The Diffusion Decision Model |
DDMt0natural | Diffusion decision model with t0 on the natural scale |
design | Specify a design and model |
ess_summary | Effective sample size |
ess_summary.emc | Effective sample size |
fit | Model estimation in EMC2 |
fit.emc | Model estimation in EMC2 |
forstmann | Forstmann et al.'s data |
gd_summary | Gelman-Rubin statistic |
gd_summary.emc | Gelman-Rubin statistic |
get_BayesFactor | Bayes Factors |
get_data | Get data |
get_data.emc | Get data |
get_pars | Filter/manipulate parameters from emc object |
get_prior_blocked | Prior specification or prior sampling for blocked estimation |
get_prior_diag | Prior specification or prior sampling for diagonal estimation |
get_prior_factor | Prior specification and prior sampling for factor estimation |
get_prior_SEM | Prior specification or prior sampling for SEM estimation. |
get_prior_single | Prior specification or prior sampling for single subject estimation |
get_prior_standard | Prior specification or prior sampling for standard estimation. |
hypothesis | Within-model hypothesis testing |
hypothesis.emc | Within-model hypothesis testing |
IC | Calculate information criteria (DIC, BPIC), effective number of parameters and constituent posterior deviance (D) summaries (meanD = mean of D, Dmean = D for mean of posterior parameters and minD = minimum of D). |
init_chains | Initialize chains |
LBA | The Linear Ballistic Accumulator model |
LNR | The Log-Normal Race Model |
make_data | Simulate data |
make_emc | Make an emc object |
make_factor_diagram | Factor diagram plot |
make_missing | make_missing |
make_random_effects | Make random effects |
mapped_par | Parameter mapping back to the design factors |
merge_chains | Merge samples |
pairs_posterior | Plot within-chain correlations |
parameters | Returns a parameter type from an emc object as a data frame. |
parameters.emc | Returns a parameter type from an emc object as a data frame. |
plot.emc | Plot function for emc objects |
plot_defective_density | Plot defective densities for each subject and cell |
plot_fit | Posterior predictive checks |
plot_fit_choice | Plots choice data |
plot_mcmc | Plot MCMC |
plot_mcmc_list | Plot MCMC.list |
plot_pars | Plots density for parameters |
plot_prior | Title |
plot_relations | Plot relations |
posterior_summary | Posterior quantiles |
posterior_summary.emc | Posterior quantiles |
predict.emc | Generate posterior predictives |
prior | Prior specification |
probit | Gaussian Signal Detection Theory Model |
profile_plot | Likelihood profile plots |
RDM | The Racing Diffusion Model |
recovery | Recovery plots |
recovery.emc | Recovery plots |
run_adapt | Runs adapt stage for emc. |
run_bridge_sampling | Estimating Marginal likelihoods using WARP-III bridge sampling |
run_emc | Custom function for more controlled model estimation |
run_IS2 | Runs IS2 from Tran et al. 2021 on a list of emc |
run_sample | Runs sample stage for emc. |
sampled_p_vector | Get model parameters from a design |
samples_LNR | An emc object of an LNR model of the Forstmann dataset using the first three subjects |
standardize_loadings | Standardized factor loadings |
subset.emc | Shorten an emc object |
summary.emc | Summary statistics for emc objects |