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add_constants Augments parameter matrix or vector p with constant parameters
(also used in data)

Description

Augments parameter matrix or vector p with constant parameters (also used in data)

Usage

add_constants(p, constants)
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Arguments

p either a matrix or vector of parameters

constants a named vector of constants

Value

a matrix or vector, depending on input, with the varying parameters and constants combined.

auto_burn Runs burn-in for emc.

Description

Special instance of run_emc, with default arguments specified for completing burn_in. Will run
both preburn and burn.

Usage

auto_burn(
emc,
preburn = 150,
p_accept = 0.8,
step_size = 100,
verbose = FALSE,
verboseProgress = FALSE,
fileName = NULL,
stop_criteria = NULL,
particles = NULL,
particle_factor = 50,
cores_per_chain = 1,
cores_for_chains = length(emc),
max_tries = 20,
n_blocks = 1

)

Arguments

emc An emc object

preburn An integer. The number of iterations run for preburn stage.

p_accept A double. The target acceptance probability of the MCMC process. This fine-
tunes the width of the search space to obtain the desired acceptance probability.
Defaults to .8

step_size An integer. After each step, the stopping requirements as specified by stop_criteria
are checked and proposal distributions are updated. Defaults to 100.

verbose Logical. Whether to print messages between each step with the current status
regarding the stop_criteria.
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verboseProgress

Logical. Whether to print a progress bar within each step or not. Will print one
progress bar for each chain and only if cores_for_chains = 1.

fileName A string. If specified will autosave emc at this location on every iteration.

stop_criteria A list. Defines the stopping criteria and for which types of parameters these
should hold. See ?fit.

particles An integer. How many particles to use, default is NULL and particle_factor
is used instead. If specified will override particle_factor.

particle_factor

An integer. particle_factor multiplied by the square root of the number of
sampled parameters determines the number of particles used.

cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations. Only available on Linux or Mac OS. For Windows, only paral-
lelization across chains (cores_for_chains) is available.

cores_for_chains

An integer. How many cores to use across chains. Defaults to the number of
chains. the total number of cores used is equal to cores_per_chain * cores_for_chains.

max_tries An integer. How many times should it try to meet the finish conditions as speci-
fied by stop_criteria? Defaults to 20. max_tries is ignored if the required number
of iterations has not been reached yet.

n_blocks An integer. Number of blocks. Will block the parameter chains such that they
are updated in blocks. This can be helpful in extremely tough models with a
large number of parameters.

Value

An emc object

chain_n chain_n()

Description

Returns a matrix with the number of samples per chain for each stage that is present in the emc
object (i.e., preburn, burn, adapt, sample). The number of rows of the matrix reflects the number
of chains and the number of columns the number of sampling stages.

Usage

chain_n(emc)

Arguments

emc A list, the output of fit().
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Value

A matrix

Examples

chain_n(samples_LNR)

check.emc Convergence checks for an emc object

Description

Runs a series of convergence checks, prints statistics to the console, and makes traceplots of the
worst converged parameter per selection.

Usage

## S3 method for class 'emc'
check(
emc,
selection = c("mu", "sigma2", "alpha"),
digits = 3,
plot_worst = TRUE,
...

)

check(emc, ...)

Arguments

emc An emc object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

digits Integer. How many digits to round the ESS and Rhat to in the plots

plot_worst Boolean. If TRUE also plots the chain plots for the worst parameter

... Optional arguments that can be passed to get_pars or plot.default (see par())

Details

Note that the Rhat is calculated by doubling the number of chains by first splitting chains into first
and second half, so it also a test of stationarity.

Efficiency of sampling is indicated by the effective sample size (ESS) (from the coda R package).
Full range of possible samples manipulations described in get_pars.
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Value

a list with the statistics for the worst converged parameter per selection

Examples

check(samples_LNR)

compare Information criteria and marginal likelihoods

Description

Returns the BPIC/DIC or marginal deviance (-2*marginal likelihood) for a list of samples objects.

Usage

compare(
sList,
stage = "sample",
filter = NULL,
use_best_fit = TRUE,
BayesFactor = TRUE,
cores_for_props = 4,
cores_per_prop = 1,
print_summary = TRUE,
digits = 0,
digits_p = 3,
...

)

Arguments

sList List of samples objects

stage A string. Specifies which stage the samples are to be taken from "preburn",
"burn", "adapt", or "sample"

filter An integer or vector. If it’s an integer, iterations up until the value set by filter
will be excluded. If a vector is supplied, only the iterations in the vector will be
considered.

use_best_fit Boolean, defaults to TRUE, uses the minimal or mean likelihood (whichever is
better) in the calculation, otherwise always uses the mean likelihood.

BayesFactor Boolean, defaults to TRUE. Include marginal likelihoods as estimated using WARP-
III bridge sampling. Usually takes a minute per model added to calculate

cores_for_props

Integer, how many cores to use for the Bayes factor calculation, here 4 is the
default for the 4 different proposal densities to evaluate, only 1, 2 and 4 are
sensible.
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cores_per_prop Integer, how many cores to use for the Bayes factor calculation if you have more
than 4 cores available. Cores used will be cores_for_props * cores_per_prop.
Best to prioritize cores_for_props being 4 or 2

print_summary Boolean (default TRUE), print table of results

digits Integer, significant digits in printed table for information criteria

digits_p Integer, significant digits in printed table for model weights

... Additional, optional arguments

Value

Matrix of effective number of parameters, mean deviance, deviance of mean, DIC, BPIC, Marginal
Deviance (if BayesFactor=TRUE) and associated weights.

Examples

## Not run:
# Define a list of two (or more different models)
# Here the full model is an emc object with the hypothesized effect
# The null model is an emc object without the hypothesized effect
design_full <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Now without a ~ E
design_null <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~1, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

full_model <- make_emc(forstmann, design_full)
full_model <- fit(full_model)

null_model <- make_emc(forstmann, design_null)
null_model <- fit(null_model)
sList <- list(full_model, null_model)
# By default emc uses 4 cores to parallelize marginal likelihood estimation across proposals
# So cores_per_prop = 3 results in 12 cores used.
compare(sList, cores_per_prop = 3)

## End(Not run)

compare_MLL Calculate a table of model probabilities based for a list of samples
objects based on samples of marginal log-likelihood (MLL) added to
these objects by run_IS2. Probabilities estimated by a bootstrap ath
picks a vector of MLLs, one for each model in the list randomly with
replacement nboot times, calculates model probabilities and averages
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Description

Calculate a table of model probabilities based for a list of samples objects based on samples of
marginal log-likelihood (MLL) added to these objects by run_IS2. Probabilities estimated by a
bootstrap ath picks a vector of MLLs, one for each model in the list randomly with replacement
nboot times, calculates model probabilities and averages

Usage

compare_MLL(mll, nboot = 1e+05, digits = 2, print_summary = TRUE)

Arguments

mll List of samples objects with IS_samples attribute added by by run_IS2

nboot Integer number of bootstrap samples, the default (1e5) usually gives stable re-
sults at 2 decimal places.

digits Integer, significant digits in printed table

print_summary Boolean (default TRUE) print table of results

Value

Vector of model probabilities with names from samples list.

compare_subject Information criteria for each participant

Description

Returns the BPIC/DIC based model weights for each participant in a list of samples objects

Usage

compare_subject(
sList,
stage = "sample",
filter = 0,
use_best_fit = TRUE,
print_summary = TRUE,
digits = 3

)
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Arguments

sList List of samples objects

stage A string. Specifies which stage the samples are to be taken from "preburn",
"burn", "adapt", or "sample"

filter An integer or vector. If it’s an integer, iterations up until the value set by filter
will be excluded. If a vector is supplied, only the iterations in the vector will be
considered.

use_best_fit Boolean, defaults to TRUE, use minimal likelihood or mean likelihood (whichever
is better) in the calculation, otherwise always uses the mean likelihood.

print_summary Boolean (defaults to TRUE) print table of results

digits Integer, significant digits in printed table

Value

List of matrices for each subject of effective number of parameters, mean deviance, deviance of
mean, DIC, BPIC and associated weights.

Examples

## Not run:
# Define a list of two (or more different models)
# Here the full model is an emc object with the hypothesized effect
# The null model is an emc object without the hypothesized effect
design_full <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Now without a ~ E
design_null <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~1, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

full_model <- make_emc(forstmann, design_full)
full_model <- fit(full_model, cores_for_chains = 1)

null_model <- make_emc(forstmann, design_null, cores_for_chains = 1)
null_model <- fit(null_model)
sList <- list(full_model, null_model)
compare_subject(sList)
# prints a set of weights for each model for the different participants
# And returns the DIC and BPIC for each participant for each model.

## End(Not run)
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contr.anova Anova style contrast matrix

Description

Similar to contr.helmert, but then scaled to estimate differences between conditions. Use in
design().

Usage

contr.anova(n)

Arguments

n An integer. The number of items for which to create the contrast

Value

A contrast matrix.

Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.anova),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}

contr.bayes Contrast to enforce equal prior variance on each level

Description

Typical contrasts impose different levels of marginal prior variance for the different levels. This
contrast can be used to ensure that each level has equal marginal priors (Rouder, Morey, Speckman,
& Province; 2012).

Usage

contr.bayes(n)

Arguments

n An integer. The number of items for which to create the contrast
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Value

A contrast matrix.

Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.bayes),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}

contr.decreasing Contrast to enforce decreasing estimates

Description

Each level will be estimated as a reduction from the previous level

Usage

contr.decreasing(n)

Arguments

n an integer. The number of items for which to create the contrast.

Value

a contrast matrix.

Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.decreasing),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}
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contr.increasing Contrast to enforce increasing estimates

Description

Each level will be estimated additively from the previous level

Usage

contr.increasing(n)

Arguments

n an integer. The number of items for which to create the contrast.

Value

a contrast matrix.

Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.increasing),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}

credible.emc Posterior credible interval tests

Description

Modeled after t.test, returns the credible interval of the parameter or test and what proportion of
the posterior distribution (or the difference in posterior distributions in case of a two sample test)
overlaps with mu. For a one sample test provide x and for two sample also provide y. Note that for
comparisons within one model, we recommend using hypothesis() if the priors were well chosen.

Usage

## S3 method for class 'emc'
credible(
x,
x_name = NULL,
x_fun = NULL,
x_fun_name = "fun",
selection = "mu",
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y = NULL,
y_name = NULL,
y_fun = NULL,
y_fun_name = "fun",
x_subject = NULL,
y_subject = NULL,
mu = 0,
alternative = c("less", "greater")[1],
probs = c(0.025, 0.5, 0.975),
digits = 2,
p_digits = 3,
print_table = TRUE,
...

)

credible(x, ...)

Arguments

x An emc object

x_name A character string. Name of the parameter to be tested for x

x_fun Function applied to the MCMC chains to create variable to be tested.

x_fun_name Name to give to quantity calculated by x_fun

selection A character string designating parameter type (e.g. alpha or covariance)

y A second emc object

y_name A character string. Name of the parameter to be tested for y

y_fun Function applied to the MCMC chains to create variable to be tested.

y_fun_name Name to give to quantity calculated by y_fun

x_subject Integer or name selecting a subject

y_subject Integer or name selecting a subject

mu Numeric. NULL value for single sample test if y is not supplied (default 0)

alternative less or greater determining direction of test probability

probs Vector defining quantiles to return.

digits Integer, significant digits for estimates in printed results

p_digits Integer, significant digits for probability in printed results

print_table Boolean (defaults to TRUE) for printing results table

... Additional optional arguments that can be passed to get_pars

Value

Invisible results table with no rounding.
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Examples

## Not run:
# Run a credible interval test (Bayesian ''t-test'')
# Here the full model is an emc object with the hypothesized effect
design_full <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

full_model <- make_emc(forstmann, design_full)
full_model <- fit(full_model)
credible(full_model, x_name = "v")
# We can also compare between two sets of emc objects
# Now without a ~ E
design_null <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~1, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

null_model <- make_emc(forstmann, design_null)
null_model <- fit(null_model)
credible(x = null_model, x_name = "a", y = full_model, y_name = "a")

# Or provide custom functions
credible(x = full_model, x_fun = function(d) d["a_Eaccuracy"] - d["a_Eneutral"])

## End(Not run)

DDM The Diffusion Decision Model

Description

Model file to estimate the Diffusion Decision Model (DDM) in EMC2.

Usage

DDM()

Details

Model files are almost exclusively used in design().

Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with DDM()$p_types.

Parameter Transform Natural scale Default Mapping Interpretation
v - [-Inf, Inf] 1 Mean evidence-accumulation rate (drift rate)
a log [0, Inf] log(1) Boundary separation
t0 log [0, Inf] log(0) Non-decision time
s log [0, Inf] log(1) Within-trial standard deviation of drift rate
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Z probit [0, 1] qnorm(0.5) z = Z x a Relative start point (bias)
SZ probit [0, 1] qnorm(0) sz = 2 x SZ x min(a x Z, a x (1-Z)) Relative between-trial variation in start point
sv log [0, Inf] log(0) Between-trial standard deviation of drift rate
st0 log [0, Inf] log(0) Between-trial variation (range) in non-decision time
DP probit [0, 1] qnorm(0.5) dp = t0 x (2 x DP -1) Relative difference in non-decision time between responses

a, t0, sv, st0, s are sampled on the log scale because these parameters are strictly positive, Z, SZ
and DP are sampled on the probit scale because they should be strictly between 0 and 1.

Z is estimated as the ratio of bias to one boundary where 0.5 means no bias. DP comprises the
difference in non-decision time for each response option.

Conventionally, sv is fixed to 1 to satisfy scaling constraints.

See Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-
choice decision tasks. Neural computation, 20(4), 873-922. doi:10.1162/neco.2008.12-06-420.

Value

A model list with all the necessary functions for EMC2 to sample

Examples

design_DDMaE <- design(data = forstmann,model=DDM,
formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).

DDMt0natural Diffusion decision model with t0 on the natural scale

Description

Diffusion decision model with t0 on the natural scale

Usage

DDMt0natural()

Value

A model list with all the necessary functions to sample
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design Specify a design and model

Description

This function combines information regarding the data, type of model, and the model specification.

Usage

design(
formula = NULL,
factors = NULL,
Rlevels = NULL,
model,
data = NULL,
contrasts = NULL,
matchfun = NULL,
constants = NULL,
covariates = NULL,
functions = NULL,
report_p_vector = TRUE,
custom_p_vector = NULL,
...

)

Arguments

formula A list. Contains the design formulae in the format list(y ~ x, a ~ z).

factors A named list containing all the factor variables that span the design cells and
that should be taken into account by the model. The name subjects must be
used to indicate the participant factor variable, also in the data.
Example: list(subjects=levels(dat$subjects), condition=levels(dat$condition))

Rlevels A character vector. Contains the response factor levels. Example: c("right",
"left")

model A function, specifies the model type. Choose from the drift diffusion model
(DDM(), DDMt0natural()), the log-normal race model (LNR()), the linear bal-
listic model (LBA()), the racing diffusion model (RDM(), RDMt0natural()), or
define your own model functions.

data A data frame. data can be used to automatically detect factors, Rlevels and
covariates in a dataset. The variable R needs to be a factor variable indicating
the response variable. Any numeric column except trials and rt are treated as
covariates, and all remaining factor variables are internally used in factors.

contrasts Optional. A named list specifying a design matrix. Example for supplying a cus-
tomized design matrix: list(lM = matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"diff"))))
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matchfun A function. Only needed for race models. Specifies whether a response was
correct or not. Example: function(d)d$S==d$lR where lR refers to the latent
response factor.

constants A named vector that sets constants. Any parameter in sampled_p_vector can
be set constant.

covariates Names of numeric covariates.

functions List of functions to create new factors based on those in the factors argument.
These new factors can then be used in formula.

report_p_vector

Boolean. If TRUE (default), it returns the vector of parameters to be estimated.
custom_p_vector

A character vector. If specified, a custom likelihood function can be supplied.

... Additional, optional arguments

Value

A design list.

Examples

# load example dataset
dat <- forstmann

# create a function that takes the latent response (lR) factor (d) and returns a logical
# defining the correct response for each stimulus. Here the match is simply
# such that the S factor equals the latent response factor
matchfun <- function(d)d$S==d$lR

# When working with lM and lR, it can be useful to design an
# "average and difference" contrast matrix. For binary responses, it has a
# simple canonical form
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"diff"))

# Create a design for a linear ballistic accumulator model (LBA) that allows
# thresholds to be a function of E and lR. The final result is a 9 parameter model.
design_LBABE <- design(data = dat,model=LBA,matchfun=matchfun,

formula=list(v~lM,sv~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),
constants=c(sv=log(1)))

ess_summary.emc Effective sample size

Description

Returns the effective sample size (ESS) of the selected parameter type. Full range of possible
samples manipulations described in get_pars.
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Usage

## S3 method for class 'emc'
ess_summary(
emc,
selection = "mu",
stat = "min",
stat_only = FALSE,
digits = 1,
...

)

ess_summary(emc, ...)

Arguments

emc An emc object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

stat A string. Should correspond to a function that can be applied to a vector, which
will be performed on the vector/rows or columns of the matrix of the parameters

stat_only Boolean. If TRUE will only return the result of the applied stat function, other-
wise returns both the stat result and the result of the function on all parameters.

digits Integer. How many digits to round the output to

... Optional additional arguments that can be passed to get_pars

Value

A matrix or vector of ESS values for the selected parameter type.

Examples

ess_summary(samples_LNR, selection = "alpha")

fit.emc Model estimation in EMC2

Description

General purpose function to estimate models specified in EMC2.
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Usage

## S3 method for class 'emc'
fit(
emc,
stage = NULL,
iter = 1000,
stop_criteria = NULL,
report_time = TRUE,
p_accept = 0.8,
step_size = 100,
verbose = TRUE,
verboseProgress = FALSE,
fileName = NULL,
particles = NULL,
particle_factor = 50,
cores_per_chain = 1,
cores_for_chains = length(emc),
max_tries = 20,
n_blocks = 1,
...

)

fit(emc, ...)

Arguments

emc An emc object created with make_emc, or a path to where the emc object is
stored.

stage A string. Indicates which stage to start the run from, either preburn, burn,
adapt or sample. If unspecified, it will run the subsequent stage (if there is
one).

iter An integer. Indicates how many iterations to run in the sampling stage.

stop_criteria A list. Defines the stopping criteria and for which types of parameters these
should hold. See the details and examples section.

report_time Boolean. If TRUE, the time taken to run the MCMC chains till completion of the
stop_criteria will be printed.

p_accept A double. The target acceptance probability of the MCMC process. This fine-
tunes the width of the search space to obtain the desired acceptance probability.
Defaults to .8

step_size An integer. After each step, the stopping requirements as specified by stop_criteria
are checked and proposal distributions are updated. Defaults to 100.

verbose Logical. Whether to print messages between each step with the current status
regarding the stop_criteria.

verboseProgress

Logical. Whether to print a progress bar within each step or not. Will print one
progress bar for each chain and only if cores_for_chains = 1.
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fileName A string. If specified, will auto-save emc object at this location on every itera-
tion.

particles An integer. How many particles to use, default is NULL and particle_factor
is used instead. If specified, particle_factor is overwritten.

particle_factor

An integer. particle_factor multiplied by the square root of the number of
sampled parameters determines the number of particles used.

cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations. Only available on Linux or Mac OS. For Windows, only paral-
lelization across chains (cores_for_chains) is available.

cores_for_chains

An integer. How many cores to use across chains. Defaults to the number
of chains. The total number of cores used is equal to cores_per_chain *
cores_for_chains.

max_tries An integer. How many times should it try to meet the finish conditions as spec-
ified by stop_criteria? Defaults to 20. max_tries is ignored if the required
number of iterations has not been reached yet.

n_blocks An integer. Number of blocks. Will block the parameter chains such that they
are updated in blocks. This can be helpful in extremely tough models with a
large number of parameters.

... Additional optional arguments

Details

stop_criteria is either a list of lists with names of the stages, or a single list in which case its
assumed to be for the sample stage (see examples). The potential stop criteria to be set are:

selection (character vector): For which parameters the stop_criteria should hold

mean_gd (numeric): The mean Gelman-Rubin diagnostic across all parameters in the selection

max_gd (numeric): The max Gelman-Rubin diagnostic across all parameters in the selection

min_unique (integer): The minimum number of unique samples in the MCMC chains across all
parameters in the selection

min_es (integer): The minimum number of effective samples across all parameters in the selection

omit_mpsrf (Boolean): Whether to include the multivariate point-scale reduction factor in the
Gelman-Rubin diagnostic. Default is FALSE.

iter (integer): The number of MCMC samples to collect.

The estimation is performed using particle-metropolis within-Gibbs sampling. For sampling details
see:

Gunawan, D., Hawkins, G. E., Tran, M.-N., Kohn, R., & Brown, S. (2020). New estimation ap-
proaches for the hierarchical linear ballistic accumulator model. Journal of Mathematical Psychol-
ogy ,96, 102368. doi.org/10.1016/j.jmp.2020.102368

Stevenson, N., Donzallaz, M. C., Innes, R. J., Forstmann, B., Matzke, D., & Heathcote, A. (2024).
EMC2: An R Package for cognitive models of choice. doi.org/10.31234/osf.io/2e4dq
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Value

An emc object

Examples

## Not run:
# First define a design
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then make the emc object, we've omitted a prior here for brevity so default priors will be used.
emc_forstmann <- make_emc(forstmann, design)

# With the emc object we can start sampling by simply calling fit
emc_forstmann <- fit(emc_forstmann, fileName = "intermediate_save_location.RData")

# For particularly hard models it pays off to increase the ``particle_factor``
# and, although to a lesser extent, lower ``p_accept``.
emc_forstmann <- fit(emc_forstmann, particle_factor = 100, p_accept = .6)

# Example of how to use the stop_criteria:
emc_forstmann <- fit(emc_forstmann, stop_criteria = list(mean_gd = 1.1, max_gd = 1.5,

selection = c('alpha', 'sigma2'), omit_mpsrf = TRUE, min_es = 1000))
# In this case the stop_criteria are set for the sample stage, which will be
# run until the mean_gd < 1.1, the max_gd < 1.5 (omitting the multivariate psrf)
# and the effective sample size > 1000,
# for both the individual-subject parameters ("alpha")
# and the group-level variance parameters.

# For the unspecified stages in the ``stop_criteria`` the default values
# are assumed which are found in Stevenson et al. 2024 <doi.org/10.31234/osf.io/2e4dq>

# Alternatively, you can also specify the stop_criteria for specific stages by creating a
# nested list
emc_forstmann <- fit(emc_forstmann, stop_criteria = list("burn" = list(mean_gd = 1.1, max_gd = 1.5,

selection = c('alpha')), "adapt" = list(min_unique = 100)))

## End(Not run)

forstmann Forstmann et al.’s data

Description

A dataset containing the speed or accuracy manipulation for a Random Dot Motion experiment.

Usage

forstmann
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Format

A data frame with 15818 rows and 5 variables:

E Factor with 3 levels for Speed, Accuracy and Neutral

R Factor with 2 levels for Left and Right responses

S Factor with 2 levels for Left and Right trials

rt reaction time for each trial as a double

subjects integer ID for each subject

Details

Details on the dataset can be found in the following paper:

Striatum and pre-SMA facilitate decision-making under time pressure

Birte U. Forstmann, Gilles Dutilh, Scott Brown, Jane Neumann, D. Yves von Cramon, K. Richard
Ridderinkhof, Eric-Jan Wagenmakers.

Proceedings of the National Academy of Sciences Nov 2008, 105 (45) 17538-17542; DOI: 10.1073/pnas.0805903105

Source

https://www.pnas.org/doi/10.1073/pnas.0805903105

gd_summary.emc Gelman-Rubin statistic

Description

Returns the Gelman-Rubin diagnostics (otherwise known as the R-hat) of the selected parameter
type; i.e. the ratio of between to within MCMC chain variance.

Usage

## S3 method for class 'emc'
gd_summary(
emc,
selection = "mu",
omit_mpsrf = TRUE,
stat = "max",
stat_only = FALSE,
digits = 3,
...

)

gd_summary(emc, ...)

https://www.pnas.org/doi/10.1073/pnas.0805903105
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Arguments

emc An emc object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

omit_mpsrf Boolean. If TRUE also returns the multivariate point scale reduction factor (see
?coda::gelman.diag).

stat A string. Should correspond to a function that can be applied to a vector, which
will be performed on the vector/rows or columns of the matrix of the parameters

stat_only Boolean. If TRUE will only return the result of the applied stat function, other-
wise returns both the stat result and the result of the function on all parameters.

digits Integer. How many digits to round the output to

... Optional additional arguments that can be passed to get_pars

Details

See: Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple se-
quences, Statistical Science, 7, 457-511.

Full range of possible samples manipulations described in get_pars.

Value

A matrix or vector of R-hat values for the selected parameter type.

Examples

gd_summary(samples_LNR, selection = "correlation", stat = "mean", flatten = TRUE)

get_BayesFactor Bayes Factors

Description

returns the Bayes Factor for two models

Usage

get_BayesFactor(MLL1, MLL2)

Arguments

MLL1 Numeric. Marginal likelihood of model 1. Obtained with run_bridge_sampling()

MLL2 Numeric. Marginal likelihood of model 2. Obtained with run_bridge_sampling()

Value

The BayesFactor for model 1 over model 2
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Examples

## Not run:
# First get the marginal likelihood for two_models
# Here the full model is an emc object with the hypothesized effect
# The null model is an emc object without the hypothesized effect
MLL_full <- run_bridge_sampling(full_model, cores_per_prop = 3)
MLL_null <- run_bridge_sampling(null_model, cores_per_prop = 3)
# Now we can calculate their Bayes factor
get_BayesFactor(MLL_full, MLL_null)

## End(Not run)

get_data.emc Get data

Description

Extracts data from an emc object

Usage

## S3 method for class 'emc'
get_data(emc)

get_data(emc)

Arguments

emc an emc object

Details

emc adds columns and rows to a dataframe in order to facilitate efficient likelihood calculations.
This function will return the data as provided originally.

Value

A dataframe of the original data

Examples

get_data(samples_LNR)
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get_pars Filter/manipulate parameters from emc object

Description

Underlying function used in most plotting and object handling functions in EMC2. Can for example
be used to filter/thin a parameter type (i.e, group-level means mu) and convert to an mcmc.list.

Usage

get_pars(
emc,
selection = "mu",
stage = "sample",
thin = 1,
filter = 0,
map = FALSE,
add_recalculated = FALSE,
length.out = NULL,
by_subject = FALSE,
return_mcmc = TRUE,
merge_chains = FALSE,
subject = NULL,
flatten = FALSE,
remove_dup = FALSE,
remove_constants = TRUE,
use_par = NULL,
type = NULL,
true_pars = NULL,
chain = NULL,
covariates = NULL

)

Arguments

emc an emc object.

selection A Character string. Indicates which parameter type to select (e.g., alpha, mu,
sigma2, correlation).

stage A character string. Indicates from which sampling stage(s) to take the samples
from (i.e. preburn, burn, adapt, sample)

thin An integer. By how much to thin the chains

filter Integer or numeric vector. If an integer is supplied, iterations up until that integer
are removed. If a vector is supplied, the iterations within the range are kept.

map Boolean. If TRUE parameters will be mapped back to the cells of the experi-
mental design using the design matrices. Otherwise the sampled parameters are
returned. Only works for selection = mu or selection = alpha.
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add_recalculated

Boolean. If TRUE will also add recalculated parameters, such as b in the LBA (b
= B + A; see ?LBA), or z in the DDM z = Z*A (see ?DDM) only works when map
= TRUE

length.out Integer. Alternatively to thinning, you can also select a desired length of the
MCMC chains, which will be thinned appropriately.

by_subject Boolean. If TRUE for selections that include subject parameters (e.g. alpha),
plot/stats are organized by subject, otherwise by parameter.

return_mcmc Boolean. If TRUE returns an mcmc.list object, otherwise a matrix/array with the
parameter type.

merge_chains Boolean. If TRUE returns parameter type merged across chains.

subject Integer (vector) or character (vector). If an integer will select the ’x’th subject(s),
if a character it should match subject names in the data which will be selected.

flatten Boolean. If FALSE for 3-dimensional samples (e.g., correlations: n-pars x n-pars
x iterations). organizes by the dimension containing parameter names, other-
wise collapses names across the first and second dimension. Does not apply for
selection = "alpha"

remove_dup Boolean. If TRUE removes duplicate values from the samples. Automatically set
to TRUE if flatten = TRUE

remove_constants

Boolean. If TRUE removes constant values from the samples (e.g. 0s in the
covariance matrix).

use_par Character (vector). If specified, only these parameters are returned. Should
match the parameter names (i.e. these are collapsed when flatten = TRUE and
use_par should also be collapsed names).

type Character indicating the group-level model selected. Only necessary if sampler
isn’t specified.

true_pars Set of true_parameters can be specified to apply flatten or use_par on a set of
true parameters

chain Integer. Which of the chain(s) to return

covariates Only needed with plot_prior and covariates in the design

Value

An mcmc.list object of the selected parameter types with the specified manipulations

Examples

# E.g. get the group-level mean parameters mapped back to the design
get_pars(samples_LNR, stage = "sample", map = TRUE, selection = "mu")

# Or return the flattened correlation, with 10 iterations per chain
get_pars(samples_LNR, stage = "sample", selection = "correlation", flatten = TRUE, length.out = 10)
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get_prior_blocked Prior specification or prior sampling for blocked estimation

Description

Works analogous to get_prior_standard. Blocks of the covariance matrix to estimate are only
considered in sampling. To get the default prior for a created design: get_prior_diag(design =
design, sample = FALSE)

Usage

get_prior_blocked(
prior = NULL,
n_pars = NULL,
sample = TRUE,
N = 1e+05,
selection = "mu",
design = NULL,
par_groups = NULL

)

Arguments

prior A named list that can contain the prior mean (theta_mu_mean) and variance
(theta_mu_var) on the group-level mean, or the scale (A), or degrees of freedom
(v) for the group-level variance-covariance matrix. For NULL entries, a default
prior gets created.

n_pars Often inferred from the design, but if design = NULL, n_pars will be used to
determine the size of prior.

sample Boolean, defaults to TRUE, sample from the prior or simply return the prior spec-
ifications?

N How many samples to draw from the prior, the default is 1e5

selection Character. If sample = TRUE, what prior to sample from. Options: "mu", "sigma2",
"covariance" "Sigma", "alpha", "correlation".

design The design obtained from design(), required when map = TRUE

par_groups Integer vector indicating which parts of the covariance matrix should be blocked
together

Details

For details see Huang, A., & Wand, M. P. (2013). Simple marginally noninformative prior distribu-
tions for covariance matrices. Bayesian Analysis, 8, 439-452. https://doi.org/10.1214/13-BA815.

Note that if sample = FALSE, prior$theta_mu_invar (the inverse of the prior covariance matrix on
the group-level mean) is returned, which is only used for computational efficiency
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Value

A list with a single entry of type of samples from the prior (if sample = TRUE) or else a prior object

Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Now get the default prior
prior <- get_prior_blocked(design = design_DDMaE, sample = FALSE)
# We can change values in the default prior or use `prior`
# Then we can get samples from this prior e.g.
samples <- get_prior_blocked(prior = prior, design = design_DDMaE,

sample = TRUE, selection = "mu")

get_prior_diag Prior specification or prior sampling for diagonal estimation

Description

To get the default prior for a created design: get_prior_diag(design = design, sample = FALSE)

Usage

get_prior_diag(
prior = NULL,
n_pars = NULL,
sample = TRUE,
N = 1e+05,
selection = "mu",
design = NULL

)

Arguments

prior A named list that can contain the prior mean (theta_mu_mean) and variance
(theta_mu_var) on the group-level mean, or the scale (A), or degrees of freedom
(v) for the group-level variance-covariance matrix. For NULL entries, a default
prior gets created.

n_pars Often inferred from the design, but if design = NULL, n_pars will be used to
determine the size of prior.

sample Boolean, defaults to TRUE, sample from the prior or simply return the prior spec-
ifications?

N How many samples to draw from the prior, the default is 1e5
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selection Character. If sample = TRUE, what prior to sample from. Options: "mu", "sigma2",
"covariance" "Sigma", "alpha", "correlation".

design The design obtained from design(), required when map = TRUE

Details

For details see Huang, A., & Wand, M. P. (2013). Simple marginally noninformative prior distribu-
tions for covariance matrices. Bayesian Analysis, 8, 439-452. https://doi.org/10.1214/13-BA815.

Note that if sample = FALSE, prior$theta_mu_invar (the inverse of the prior covariance matrix on
the group-level mean) is returned, which is only used for computational efficiency.

Value

A list with a single entry of type of samples from the prior (if sample = TRUE) or else a prior object

Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Now get the default prior
prior <- get_prior_diag(design = design_DDMaE, sample = FALSE)
# We can change values in the default prior or use `prior`
# Then we can get samples from this prior e.g.
samples <- get_prior_diag(prior = prior, design = design_DDMaE,

sample = TRUE, selection = "mu")

get_prior_factor Prior specification and prior sampling for factor estimation

Description

To get the default priors for a given design: get_prior_factor(design = design, sample = FALSE)

Usage

get_prior_factor(
prior = NULL,
n_pars = NULL,
sample = TRUE,
N = 1e+05,
selection = "mu",
design = NULL,
Lambda_mat = NULL,
n_factors = NULL

)
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Arguments

prior A named list that can contain the prior mean (theta_mu_mean) and variance
(theta_mu_var) on the group-level mean; the variance of the loadings (theta_lambda_var);
shape and rate of the factor variances (ap and bp) and shape and rate of the resid-
ual variances (as and bs). For NULL entries, the default prior is is used.

n_pars Often inferred from the design, but if design = NULL, n_pars will be used to
determine the size of prior.

sample Whether to sample from the prior or to simply return the prior. Default is TRUE,

N How many samples to draw from the prior, the default is 1e5

selection Character. If sample = TRUE, what priors to sample from.

design The design obtained from design(), required when map = TRUE

Lambda_mat The loadings constraint matrix.

n_factors Integer. The number of factors.

Details

For details see Ghosh, J., & Dunson, D. B. (2009). Default prior distributions and efficient posterior
computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18,
306-320. or Stevenson, N., Innes, R. J., Gronau, Q. F., Miletic, S., Heathcote, A., PhD, Forstmann,
B., & Brown, S. (2024). Using group level factor models to resolve high dimensionality in model-
based sampling. https://doi.org/10.31234/osf.io/pn3wv.

Note that if sample = FALSE, prior$theta_mu_invar (the inverse of the prior covariance matrix on
the group-level mean) is returned, which is only used for computational efficiency

Value

A list with a single entry of type of samples from the prior (if sample = TRUE) or else a prior object

Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Now get the default prior
prior <- get_prior_factor(design = design_DDMaE, sample = FALSE, n_factors = 3)
# We can change values in the default prior or use `prior`
# Then we can get samples from this prior e.g.
samples <- get_prior_factor(prior = prior, design = design_DDMaE,

sample = TRUE, selection = "mu", n_factors = 3)
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get_prior_SEM Prior specification or prior sampling for SEM estimation.

Description

Prior specification or prior sampling for SEM estimation.

Usage

get_prior_SEM(
prior = NULL,
n_pars = NULL,
sample = TRUE,
N = 1e+05,
selection = "mu",
design = NULL,
Lambda_mat = NULL,
B_mat = NULL,
K_mat = NULL,
G_mat = NULL,
covariates = NULL

)

Arguments

prior A named list containing the prior mean on group-level mean (theta_mu_mean),
variance of group-level mean (theta_mu_var), variance of the loadings and G
(lambda_var), variance of the latent regressions and (B_var), shape and rate
prior on the factor variances (a_p and b_p), and shape and rate prior on the
residual variances (a_e and b_e)

n_pars Argument used by the sampler, best left NULL. In user case inferred from the
design

sample Whether to sample from the prior. Default is TRUE. If not returns a prior list
N How many samples to draw from the prior, default 1e5
selection Which parameter type to select e.g. alpha
design The design obtained from design, required when map = TRUE
Lambda_mat The loadings constraint matrix
B_mat The latent regressions constraint matrix
K_mat The regression on the parameters by the included covariates
G_mat The regression on the latent factors by the included covariates
covariates The included covariates

Value

A list with a single entry of type of samples from the prior (if sample = TRUE) or else a prior object
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get_prior_single Prior specification or prior sampling for single subject estimation

Description

With this type of estimation, one or multiple subjects are estimated independently, without any
hierarchical constraint.

Usage

get_prior_single(
prior = NULL,
n_pars = NULL,
sample = TRUE,
N = 1e+05,
selection = "alpha",
design = NULL,
map = FALSE

)

Arguments

prior A named list containing the prior mean (theta_mu_mean) and variance (theta_mu_var).
If NULL, the default prior is used.

n_pars Often inferred from the design, but if design = NULL, n_pars will be used to
determine the size of prior.

sample Boolean, defaults to TRUE, sample from the prior or simply return the prior spec-
ifications?

N How many samples to draw from the prior, the default is 1e5

selection Character. If sample = TRUE, what prior to sample from. Options: "alpha".

design The design obtained from design(), required when map = TRUE

map Boolean, defaults to TRUE. If sample = TRUE, the implied prior is sampled. This
includes back-transformations for naturally bounded parameters such as the non-
decision time and an inverse mapping from the design matrix back to the cells
of the design. If FALSE, the transformed, unmapped, parameters are used. Note
that map does not affect the prior used in the sampling process.

Details

To specify a (multivariate normal) prior, prior$theta_mu_mean and prior$theta_mu_var an en-
try is needed for each parameter.

Value

A list with a single entry named "alpha" and samples from the prior (if sample = TRUE) or else a
prior object
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Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Now get the default prior
prior <- get_prior_single(design = design_DDMaE, sample = FALSE)
# We can change values in the default prior or use `prior`
# Then we can get samples from this prior e.g.
samples <- get_prior_single(prior = prior, design = design_DDMaE,

sample = TRUE, selection = "alpha")

get_prior_standard Prior specification or prior sampling for standard estimation.

Description

To get the default prior for a created design: get_prior_standard(design = design, sample = FALSE)

Usage

get_prior_standard(
prior = NULL,
n_pars = NULL,
sample = TRUE,
N = 1e+05,
selection = "mu",
design = NULL

)

Arguments

prior A named list that can contain the prior mean (theta_mu_mean) and variance
(theta_mu_var) on the group-level mean, or the scale (A), or degrees of freedom
(v) for the group-level variance-covariance matrix. For NULL entries, a default
prior gets created.

n_pars Often inferred from the design, but if design = NULL, n_pars will be used to
determine the size of prior.

sample Boolean, defaults to TRUE, sample from the prior or simply return the prior spec-
ifications?

N How many samples to draw from the prior, the default is 1e5

selection Character. If sample = TRUE, what prior to sample from. Options: "mu", "sigma2",
"covariance" "Sigma", "alpha", "correlation".

design The design obtained from design(), required when map = TRUE
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Details

For details see Huang, A., & Wand, M. P. (2013). Simple marginally noninformative prior distribu-
tions for covariance matrices. Bayesian Analysis, 8, 439-452. https://doi.org/10.1214/13-BA815.

Note that if sample = FALSE, prior$theta_mu_invar (the inverse of the prior covariance matrix on
the group-level mean) is also returned, which is only used for computational efficiency

Value

A list with a single entry of type of samples from the prior (if sample = TRUE) or else a prior object

Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Now get the default prior
prior <- get_prior_standard(design = design_DDMaE, sample = FALSE)
# We can change values in the default prior or use `prior`
# Then we can get samples from this prior e.g.
samples <- get_prior_standard(prior = prior, design = design_DDMaE,

sample = TRUE, selection = "mu")

hypothesis.emc Within-model hypothesis testing

Description

Approximates the Bayes factor for parameter effects using the savage-dickey ratio.

Usage

## S3 method for class 'emc'
hypothesis(
emc,
parameter = NULL,
H0 = 0,
fun = NULL,
selection = "mu",
do_plot = TRUE,
use_prior_lim = TRUE,
N = 10000,
prior_plot_args = list(),
...

)

hypothesis(emc, ...)
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Arguments

emc An emc object

parameter A string. A parameter which you want to compare to H0. Will not be used if a
FUN is specified.

H0 An integer. The H0 value which you want to compare to

fun A function. Specifies an operation to be performed on the sampled or mapped
parameters.

selection A Character string. Indicates which parameter type to use (e.g., alpha, mu,
sigma2, correlation).

do_plot Boolean. If FALSE will omit the prior-posterior plot and only return the savage-
dickey ratio.

use_prior_lim Boolean. If TRUE will use xlimits based on prior density, otherwise based on
posterior density.

N Integer. How many prior samples to draw

prior_plot_args

A list. Optional additional arguments to be passed to plot.default for the plotting
of the prior density (see par())

... Optional arguments that can be passed to get_pars, density, or plot.default
(see par())

Details

Note this is different to the computation of the marginal deviance in compare since it only considers
the group level effect and not the whole model (i.e. subject-level parameters). For details see:
Wagenmakers, Lodewyckx, Kuriyal, & Grasman (2010).

Value

The Bayes factor for the hypothesis against H0.

Examples

# Here the emc object has an effect parameter (e.g. m),
# that maps onto a certain hypothesis.
# The hypothesis here is that m is different from zero.
# We can test whether there's a group-level effect on m:
hypothesis(samples_LNR, parameter = "m")
# Alternatively we can also test whether two parameters differ from each other
mdiff <- function(p)diff(p[c("m","m_lMd")])
hypothesis(samples_LNR,fun=mdiff)
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IC Calculate information criteria (DIC, BPIC), effective number of pa-
rameters and constituent posterior deviance (D) summaries (meanD
= mean of D, Dmean = D for mean of posterior parameters and minD
= minimum of D).

Description

Calculate information criteria (DIC, BPIC), effective number of parameters and constituent poste-
rior deviance (D) summaries (meanD = mean of D, Dmean = D for mean of posterior parameters
and minD = minimum of D).

Usage

IC(
emc,
stage = "sample",
filter = 0,
use_best_fit = TRUE,
print_summary = TRUE,
digits = 0,
subject = NULL,
group_only = FALSE

)

Arguments

emc emc object or list of these

stage A string. Specifies which stage you want to plot.

filter An integer or vector. If it’s an integer, iterations up until the value set by filter
will be excluded. If a vector is supplied, only the iterations in the vector will be
considered.

use_best_fit Boolean, default TRUE use best of minD and Dmean in calculation otherwise
always use Dmean

print_summary Boolean (default TRUE) print table of results

digits Integer, significant digits in printed table

subject Integer or string selecting a single subject, default NULL returns sums over all
subjects

group_only Boolean. If TRUE will calculate the IC for the group-level only

Value

Table of DIC, BPIC, EffectiveN, meanD, Dmean, and minD
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init_chains Initialize chains

Description

Adds a set of start points to each chain. These start points are sampled from a user-defined multi-
variate normal across subjects.

Usage

init_chains(
emc,
start_mu = NULL,
start_var = NULL,
particles = 1000,
cores_per_chain = 1,
cores_for_chains = length(emc)

)

Arguments

emc An emc object made by make_emc()

start_mu A vector. Mean of multivariate normal used in proposal distribution

start_var A matrix. Variance covariance matrix of multivariate normal used in proposal
distribution. Smaller values will lead to less deviation around the mean.

particles An integer. Number of starting values
cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations.

cores_for_chains

An integer. How many cores to use to parallelize across chains. Default is the
number of chains.

Value

An emc object

Examples

## Not run:
# Make a design and an emc object
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

DDMaE <- make_emc(forstmann, design_DDMaE)
# set up our mean starting points (same used across subjects).
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mu <- c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))

# Small variances to simulate start points from a tight range
var <- diag(0.05, length(mu))
# Initialize chains, 4 cores per chain, and parallelizing across our 3 chains as well
# so 4*3 cores used.
DDMaE <- init_chains(DDMaE, start_mu = p_vector, start_var = var, cores_per_chain = 4)
# Afterwards we can just use fit
DDMaE <- fit(DDMaE, cores_per_chain = 4)

## End(Not run)

LBA The Linear Ballistic Accumulator model

Description

Model file to estimate the Linear Ballistic Accumulator (LBA) in EMC2.

Usage

LBA()

Details

Model files are almost exclusively used in design().

Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with LBA()$p_types.

Parameter Transform Natural scale Default Mapping Interpretation
v - [-Inf, Inf] 1 Mean evidence-accumulation rate
A log [0, Inf] log(0) Between-trial variation (range) in start point
B log [0, Inf] log(1) b = B+A Distance from A to b (response threshold)
t0 log [0, Inf] log(0) Non-decision time
sv log [0, Inf] log(1) Between-trial variation in evidence-accumulation rate

All parameters are estimated on the log scale, except for the drift rate which is estimated on the real
line.

Conventionally, sv is fixed to 1 to satisfy scaling constraints.

The b = B + A parameterization ensures that the response threshold is always higher than the be-
tween trial variation in start point of the drift rate.

Because the LBA is a race model, it has one accumulator per response option. EMC2 automatically
constructs a factor representing the accumulators lR (i.e., the latent response) with level names
taken from the R column in the data.

The lR factor is mainly used to allow for response bias, analogous to Z in the DDM. For ex-
ample, in the LBA, response thresholds are determined by the B parameters, so B~lR allows for
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different thresholds for the accumulator corresponding to left and right stimuli (e.g., a bias to
respond left occurs if the left threshold is less than the right threshold). For race models, the
design() argument matchfun can be provided, a function that takes the lR factor (defined in the
augmented data (d) in the following function) and returns a logical defining the correct response.
In the example below, the match is simply such that the S factor equals the latent response factor:
matchfun=function(d)d$S==d$lR. Then matchfun is used to automatically create a latent match
(lM) factor with levels FALSE (i.e., the stimulus does not match the accumulator) and TRUE (i.e.,
the stimulus does match the accumulator). This is added internally and can also be used in model
formula, typically for parameters related to the rate of accumulation.

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Lin-
ear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. https://doi.org/10.1016/j.cogpsych.2007.12.002

Value

A model list with all the necessary functions for EMC2 to sample

Examples

# When working with lM it is useful to design an "average and difference"
# contrast matrix, which for binary responses has a simple canonical from:
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR
# We now construct our design, with v ~ lM and the contrast for lM the ADmat.
design_LBABE <- design(data = forstmann,model=LBA,matchfun=matchfun,

formula=list(v~lM,sv~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),constants=c(sv=log(1)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).

LNR The Log-Normal Race Model

Description

Model file to estimate the Log-Normal Race Model (LNR) in EMC2.

Usage

LNR()

Details

Model files are almost exclusively used in design().

Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with LNR()$p_types.
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Parameter Transform Natural scale Default Mapping Interpretation
m - [-Inf, Inf] 1 Scale parameter
s log [0, Inf] log(1) Shape parameter
t0 log [0, Inf] log(0) Non-decision time

Because the LNR is a race model, it has one accumulator per response option. EMC2 automatically
constructs a factor representing the accumulators lR (i.e., the latent response) with level names
taken from the R column in the data.

In design(), matchfun can be used to automatically create a latent match (lM) factor with levels
FALSE (i.e., the stimulus does not match the accumulator) and TRUE (i.e., the stimulus does match
the accumulator). This is added internally and can also be used in the model formula, typically for
parameters related to the rate of accumulation (see the example below).

Rouder, J. N., Province, J. M., Morey, R. D., Gomez, P., & Heathcote, A. (2015). The lognormal
race: A cognitive-process model of choice and latency with desirable psychometric properties.
Psychometrika, 80, 491-513. https://doi.org/10.1007/s11336-013-9396-3

Value

A model list with all the necessary functions for EMC2 to sample

Examples

# When working with lM it is useful to design an "average and difference"
# contrast matrix, which for binary responses has a simple canonical from:
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR
# We now construct our design, with v ~ lM and the contrast for lM the ADmat.
design_LNRmE <- design(data = forstmann,model=LNR,matchfun=matchfun,

formula=list(m~lM + E,s~1,t0~1),
contrasts=list(m=list(lM=ADmat)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).

make_data Simulate data

Description

Simulates data based on a model design and a parameter vector (p_vector) by one of two methods:

1. Creating a fully crossed and balanced design specified by the design, with number of trials per
cell specified by the n_trials argument

2. Using the design of a data frame supplied, which allows creation of unbalanced and other
irregular designs, and replacing previous data with simulated data
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Usage

make_data(
parameters,
design = NULL,
n_trials = NULL,
data = NULL,
expand = 1,
mapped_p = FALSE,
hyper = FALSE,
...

)

Arguments

parameters parameter vector used to simulate data. Can also be a matrix with one row per
subject (with corresponding row names) or an emc object with sampled param-
eters (in which case posterior medians of alpha are used to simulate data)

design Design list created by design()

n_trials Integer. If data is not supplied, number of trials to create per design cell

data Data frame. If supplied, the factors are taken from the data. Determines the
number of trials per level of the design factors and can thus allow for unbalanced
designs

expand Integer. Replicates the data (if supplied) expand times to increase number of
trials per cell.

mapped_p If TRUE instead returns a data frame with one row per design cell and columns
for each parameter specifying how they are mapped to the design cells.

hyper If TRUE the supplied parameters must be a set of samples, from which the group-
level will be used to generate subject level parameters. See also make_random_effects
to generate subject-level parameters from a hyper distribution.

... Additional optional arguments

Details

To create data for multiple subjects see ?make_random_effects().

Value

A data frame with simulated data

Examples

# First create a design
design_DDMaE <- design(factors = list(S = c("left", "right"),

E = c("SPD", "ACC"),
subjects = 1:30),

Rlevels = c("left", "right"), model = DDM,
formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
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constants=c(s=log(1)))
# Then create a p_vector:
parameters <- c(v_Sleft=-2,v_Sright=2,a=log(1),a_EACC=log(2), t0=log(.2),

Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))

# Now we can simulate data
data <- make_data(parameters, design_DDMaE, n_trials = 30)

# We can also simulate data based on a specific dataset
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

parameters <- c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))

data <- make_data(parameters, design_DDMaE, data = forstmann)

make_emc Make an emc object

Description

Creates an emc object by combining the data, prior, and model specification into a emc object that
is needed in fit().

Usage

make_emc(
data,
design,
model = NULL,
type = "standard",
n_chains = 3,
compress = TRUE,
rt_resolution = 0.02,
prior_list = NULL,
grouped_pars = NULL,
par_groups = NULL,
...

)

Arguments

data A data frame, or a list of data frames. Needs to have the variable subjects as
participant identifier.

design A list with a pre-specified design, the output of design().

model A model list. If none is supplied, the model specified in design() is used.
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type A string indicating whether to run a standard group-level, blocked, diagonal,
factor, or single (i.e., non-hierarchical) model.

n_chains An integer. Specifies the number of mcmc chains to be run (has to be more than
1 to compute rhat).

compress A Boolean, if TRUE (i.e., the default), the data is compressed to speed up likeli-
hood calculations.

rt_resolution A double. Used for compression, response times will be binned based on this
resolution.

prior_list A named list containing the prior. Default prior created if NULL. For the default
priors, see ?get_prior_{type}.

grouped_pars An integer vector. Parameters on this location of the vector of parameters are
treated as constant across subjects

par_groups A vector. Only to be specified with type blocked, e.g., c(1,1,1,2,2) means
the covariances of the first three and of the last two parameters are estimated as
two separate blocks.

... Additional, optional arguments.

Value

An uninitialized emc object

Examples

dat <- forstmann

# function that takes the lR factor (named diff in the following function) and
# returns a logical defining the correct response for each stimulus. In this
# case the match is simply such that the S factor equals the latent response factor.
matchfun <- function(d)d$S==d$lR

# design an "average and difference" contrast matrix
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"diff"))

# specify design
design_LBABE <- design(data = dat,model=LBA,matchfun=matchfun,
formula=list(v~lM,sv~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),constants=c(sv=log(1)))

# specify priors
pmean <- c(v=1,v_lMdiff=1,sv_lMTRUE=log(.5), B=log(.5),B_Eneutral=log(1.5),

B_Eaccuracy=log(2),B_lRright=0, A=log(0.25),t0=log(.2))
psd <- c(v=1,v_lMdiff=0.5,sv_lMTRUE=.5,

B=0.3,B_Eneutral=0.3,B_Eaccuracy=0.3,B_lRright=0.3,A=0.4,t0=.5)
prior_LBABE <- prior(design_LBABE, type = 'standard',pmean=pmean,psd=psd)

# create emc object
LBABE <- make_emc(dat,design_LBABE,type="standard", prior=prior_LBABE)
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make_factor_diagram Factor diagram plot

Description

Makes a factor diagram plot. Heavily based on the fa.diagram function of the psych package.

Usage

make_factor_diagram(
emc = NULL,
stage = "sample",
loadings = NULL,
standardize = TRUE,
simple = FALSE,
only_cred = FALSE,
cut = 0,
nice_names = NULL,
factor_names = NULL,
sort = TRUE,
adj = 1,
main = NULL,
cex = NULL

)

Arguments

emc An emc object

stage Character. The stage from which to take the samples

loadings An array of loadings. Can be alternatively supplied if emc is not supplied

standardize Boolean. Whether to standardize the loadings

simple Boolean. Whether the factor diagram should be simplified for visual clarity.

only_cred Boolean. Whether to only plot the credible loadings

cut Numeric. Mean loadings beneath this number will be excluded.

nice_names Character vector. Alternative names to give the parameters

factor_names Character vector. Names to give the different factors

sort Boolean. Whether to sort the paramaters before plotting for visual clarity.

adj Integer. Adjust to adjust loading values positions in the diagram if illegible.

main Character vector. Title of the plot

cex Integer. Font size
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make_missing make_missing

Description

Truncate or censor data. is.na(rt) not truncated or censored.

Usage

make_missing(
data,
LT = 0,
UT = Inf,
LC = 0,
UC = Inf,
LCresponse = TRUE,
UCresponse = TRUE,
LCdirection = TRUE,
UCdirection = TRUE

)

Arguments

data Data frame with rt and R columns

LT lower truncation bound below which data are removed (scalar or subject named
vector)

UT upper truncation bound above which data are removed (scalar or subject named
vector)

LC lower censoring bound (scalar or subject named vector)

UC upper censoring bound (scalar or subject named vector)

LCresponse Boolean, default TRUE, if false set LC response to NA

UCresponse Boolean, default TRUE, if false set UC response to NA

LCdirection Boolean, default TRUE, set LC rt to 0, else to NA

UCdirection Boolean, default TRUE, set LC rt to Inf, else to NA

Value

Truncated and censored data frame
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make_random_effects Make random effects

Description

Simulates subject-level parameters in the format required by make_data().

Usage

make_random_effects(
design,
group_means,
n_subj = NULL,
variance_proportion = 0.2,
covariances = NULL

)

Arguments

design A design list. The design as specified by design()

group_means A numeric vector. The group level means for each parameter, in the same order
as sampled_p_vector(design)

n_subj An integer. The number of subjects to generate parameters for. If NULL will be
inferred from design

variance_proportion

A double. Optional. If covariances are not specified, the variances will be
created by multiplying the means by this number. The covariances will be 0.

covariances A covariance matrix. Optional. Specify the intended covariance matrix.

Value

A matrix of subject-level parameters.

Examples

# First create a design
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then create a group-level means vector:
group_means =c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
# Now we can create subject-level parameters
subj_pars <- make_random_effects(design_DDMaE, group_means, n_subj = 5)

# We can also define a covariance matrix to simulate from
subj_pars <- make_random_effects(design_DDMaE, group_means, n_subj = 5,
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covariances = diag(.1, length(group_means)))

# The subject level parameters can be used to generate data
make_data(subj_pars, design_DDMaE, n_trials = 10)

mapped_par Parameter mapping back to the design factors

Description

Maps a parameter vector that corresponds to sampled parameters of the cognitive model back to
the experimental design. The parameter vector can be created using sampled_p_vector(). The
returned matrix shows whether/how parameters differ across the experimental factors.

Usage

mapped_par(
p_vector,
design,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...

)

Arguments

p_vector A parameter vector. Must be in the form of sampled_p_vector(design)

design A design list. Created by design

model Optional model type (if not already specified in design)

digits Integer. Will round the output parameter values to this many decimals

remove_subjects

Boolean. Whether to include subjects as a factor in the design

covariates Covariates specified in the design can be included here.

... optional arguments

Value

Matrix with a column for each factor in the design and for each model parameter type (p_type).
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Examples

# First define a design:
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then create a p_vector:
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
# This will map the parameters of the p_vector back to the design
mapped_par(p_vector,design_DDMaE)

merge_chains Merge samples

Description

Merges samples from all chains as one unlisted object.

Usage

merge_chains(emc)

Arguments

emc An emc object, commonly the output of fit()

Details

Note that all sampling stages are included in the merged output, including iterations from the
preburn, burn, and adapt stages. merge_chains(emc)$samples$stage shows the correspond-
ing sampling stages.

Value

An unlisted emc object with all chains merged
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pairs_posterior Plot within-chain correlations

Description

Plots within-chain parameter correlations (upper triangle) and corresponding scatterplots (lower
triangle) to visualize parameter sloppiness.

Usage

pairs_posterior(
emc,
selection = "alpha",
scale_subjects = TRUE,
do_plot = TRUE,
N = 500,
...

)

Arguments

emc An emc object

selection A Character string. Indicates which parameter type to plot (alpha, mu, variance,
covariance, correlation).

scale_subjects Boolean. To standardize each participant with selection = "alpha", by sub-
tracting the mean and divding by the standard deviation. This ensures the plot
has every participant on the same scale.

do_plot Boolean. Whether to plot the pairs plot, if FALSE, only the correlations are
returned.

N Integer for maximum number of iterations used (defaults to 500). If number of
samples in stage or selection exceeds N, a random subset will be taken of size N

... Optional arguments that can be passed to get_pars

Details

If selection = alpha the parameter chains are concatenated across participants, (after standardiz-
ing if scale_subjects = TRUE) and then correlated.

Value

Invisibly returns a matrix with the correlations between the parameters.
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Examples

# Plot the sloppiness for the individual-level subjects
pairs_posterior(samples_LNR, selection = "alpha")

# We can also choose group-level parameters and subsets of the parameter space
pairs_posterior(samples_LNR, use_par = c("m", "t0"), selection = "sigma2")

parameters.emc Returns a parameter type from an emc object as a data frame.

Description

Returns a parameter type from an emc object as a data frame.

Usage

## S3 method for class 'emc'
parameters(emc, selection = "mu", N = NULL, resample = FALSE, ...)

parameters(emc, ...)

Arguments

emc An emc object

selection String designating parameter type (e.g. mu, sigma2, correlation, alpha)

N Integer. How many samples to take from the posterior. If NULL will return the
full posterior

resample Boolean. If TRUE will sample N samples from the posterior with replacement

... Optional arguments that can be passed to get_pars

Value

A data frame with one row for each sample (with a subjects column if selection = "alpha")
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plot.emc Plot function for emc objects

Description

Makes trace plots for model parameters.

Usage

## S3 method for class 'emc'
plot(
x,
stage = "sample",
selection = c("mu", "sigma2", "alpha"),
layout = NA,
...

)

Arguments

x An object of class emc

stage A character string indicating the sampling stage to be summarized. Can be
preburn, burn, adapt, or sample.

selection A character vector indicating the parameter group(s). Defaults to mu, sigma2,
and alpha.

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

... Optional arguments that can be passed to get_pars or plot.default (see par())

Value

A trace/acf plot of the selected MCMC chains

Examples

plot(samples_LNR)
# Or trace autocorrelation for the second subject:
plot(samples_LNR, subject = 2, selection = "alpha")

# Can also plot the trace of for example the group-level correlation:
plot(samples_LNR, selection = "correlation", col = c("green", "purple", "orange"), lwd = 2)
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plot_defective_density

Plot defective densities for each subject and cell

Description

Plots panels that contain a set of densities for each response option in the data. These densities are
defective; their areas are relative to the respective response proportion. Across all responses, the
area sums to 1.

Usage

plot_defective_density(
data,
subject = NULL,
factors = NULL,
layout = NA,
correct_fun = NULL,
rt_pos = "top",
accuracy = "topright",
...

)

Arguments

data A data frame. The experimental data in EMC2 format with at least subject
(i.e., the subject factor), R (i.e., the response factor) and rt (i.e., response time)
variable. Additional factor variables of the design are optional.

subject An integer or character string selecting a subject from the data. If specified, only
that subject is plotted. Per default (i.e., NULL), all subjects are plotted.

factors A character vector of the factor names in the design to aggregate across Defaults
to all (i.e., NULL).

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

correct_fun If specified, the accuracy for each subject is calculated, using the supplied func-
tion and an accuracy vector for each subject is returned invisibly.

rt_pos legend function position character string for the mean response time (defaults to
top)

accuracy legend function position character string for accuracy (defaults to topright)

... Optional arguments that can be passed to get_pars, density, or plot.default
(see par())

Value

If correct_fun is specified, a subject accuracy vector is returned invisibly
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Examples

# First for each subject and the factor combination in the design:
plot_defective_density(forstmann)
# Now collapsing across subjects:
plot_defective_density(forstmann, factors = c("S", "E"))
# If the data is response coded, it generally makes sense to include the "S" factor
# because EMC2 will plot the "R" factor automatically. This way, choice accuracy can
# be examined
# Each subject's accuracy can be returned using a custom function:
print(plot_defective_density(forstmann, correct_fun = function(d) d$R == d$S))

plot_fit Posterior predictive checks

Description

Plot (defective) cumulative density functions of the observed data and data from the posterior pre-
dictive distribution: the probability of a response, p(R) as a function of response time for the exper-
imental data and posterior predictive simulations.

Usage

plot_fit(
data,
pp,
subject = NULL,
factors = NULL,
functions = NULL,
stat = NULL,
stat_name = "",
adjust = 1,
quants = c(0.025, 0.5, 0.975),
do_plot = TRUE,
xlim = NULL,
ylim = NULL,
layout = NULL,
mfcol = FALSE,
probs = c(1:99)/100,
data_lwd = 2,
fit_lwd = 1,
q_points = c(0.1, 0.3, 0.5, 0.7, 0.9),
qp_cex = 1,
pqp_cex = 0.5,
lpos = "right",
main = ""

)
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Arguments

data A data frame. The experimental data in EMC2 format with at least subject
(i.e., the subject factor), R (i.e., the response factor) and rt (i.e., response time)
variable. Additional factor variables of the design are optional.

pp A data frame. Posterior predictives created by predict()

subject Integer or string selecting a subject from the data. If specified only that subject
is plotted. NULL (i.e., the default), will plot all subjects.

factors Character vector of factors in data to display separately. If NULL (default) use
names of all columns in data except "trials","R", and "rt". Omitted factors are
aggregated over. If NA treats entire data set as a single cell. Must be NA or
NULL when using stat argument.

functions A named list of functions that create new factors which can then be used by the
factors and stat arguments.

stat A function that takes the data/the posterior predictives and returns a single value.
For the posterior predictives it will use a single value per replicate, which are
then plotted as a density.

stat_name A string naming what the stat argument calculates, used in labeling the x-axis of
the plot.

adjust Numeric. Density function bandwidth adjust parameter. See “?density‘

quants A vector. Quantiles of the posterior predictives to return when stat argument is
supplied.

do_plot Boolean. Set to FALSE to only return the quantiles and omit the plots.

xlim A numeric vector. x-axis plot limit.

ylim A numeric vector. y-axis plot limit.

layout A vector specifying the layout as in par(mfrow = layout). If NA or NULL uses
current plot window layout.

mfcol Boolean. If TRUE uses par(mfrow = layout), otherwise uses par(mfcol = layout)

probs Vector of probabilities at which to calculate cumulative density function

data_lwd Integer. Line width for data

fit_lwd Integer. Line width for posterior predictives

q_points Vector. Quantile points to plot

qp_cex Numeric. Cex for data quantile points

pqp_cex Numeric. Cex for predicted quantile points

lpos Character. Legend position, see ?legend().

main Character. Pasted before the plot title, especially useful when specifying a stat
argument.



56 plot_fit_choice

Details

The data is plotted in black. Large grey points show the average quantiles across the posterior pre-
dictives. The small grey points represent the predicted quantile of an individual replicate, providing
a representation of uncertainty in the model predictions.

If the stat argument is supplied (which calculates a statistic based on the data), the posterior predic-
tives are plotted as a density over the different replicates. A vertical line is plotted at the value of
that statistic for the experimental data.

If more than one subject is included, the data and fits are aggregated across subjects by default.

Also see ?plot_defective_density() for more details.

Value

If stat argument is provided, a vector of observed values and predicted quantiles is returned

Examples

# First generate posterior predictives based on an emc object run with run_emc
pp <- predict(samples_LNR, n_cores = 1, n_post = 10)
# Then visualize the model fit
plot_fit(forstmann, pp, factors = c("S", "E"), layout = c(2,3))

# Specific statistics on the posterior predictives can also be specified
# This function calculates the difference in rt between two S levels.
# It takes the data (or the posterior predictives) as an argument
drt <- function(data) diff(tapply(data$rt,data[,c("S")],mean))
plot_fit(forstmann, pp, stat=drt,stat_name="Rt difference",

main=("Left vs Right"))

plot_fit_choice Plots choice data

Description

Plots choice data with no response times.

Usage

plot_fit_choice(
data,
pp,
subject = NULL,
factors = NULL,
functions = NULL,
stat = NULL,
stat_name = "",
adjust = 1,
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ci = c(0.025, 0.5, 0.975),
do_plot = TRUE,
xlim = NULL,
ylim = NULL,
main = "",
layout = NULL,
mfcol = TRUE,
signalFactor = "S",
zROC = FALSE,
qfun = qnorm,
lim = NULL,
rocfit_cex = 0.5

)

Arguments

data A data frame. The experimental data in EMC2 format with at least subject
(i.e., the subject factor), R (i.e., the response factor) and rt (i.e., response time)
variable. Additional factor variables of the design are optional.

pp Posterior predictives created by predict()

subject Integer or string picking out subject(s).

factors Character vector of factors in data to display separately. If NULL (i.e., the de-
fault), use names of all columns in data except trials,R, and rt. Omitted fac-
tors are aggregated over. If NA, treats entire data set as a single cell. If stat is
used, the default is changed to NA.

functions A named list of functions that create new factors which can then be used by the
factors and stat arguments.

stat A function that takes a the data and returns a single value.

stat_name A string naming what the stat argument calculates.

adjust Control of smoothing in density plots

ci Credible interval and central tendency quantiles for return when stat argument
is supplied (defaults to the 2.5\%, the 50\% and the 97.5\% quantiles)

do_plot Boolean (defaults to TRUE) whether a plot should be created or not

xlim x-axis plot limit, 2-vector (same for all) or matrix (one row for each paramter)

ylim y-axis plot limit, 2-vector (same for all) or matrix (one row for each paramter)

main Text title, pasted before cell name.

layout 2-vector specifying par(mfrow) or par(mfcol). The default NULL uses current,
NA keeps par currently active.

mfcol Boolean for layout settings, the default TRUE uses mfcol, else mfrow.

signalFactor Character name of factor for the signal

zROC Boolean, plot Z transformed ROC (defaults to FALSE)

qfun Type of Z transform (defaults to probit)

lim x = y limit for ROC plots

rocfit_cex Size of points in ROC plot (default 0.5)
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Value

If stat argument is provided a matrix of observed values and predicted quantiles is returned

plot_mcmc Plot MCMC

Description

Uses the coda plot functions that are applied per chain

Usage

plot_mcmc(
emc,
selection = "mu",
fun = "cumuplot",
layout = NA,
chain = 1,
plot_type = NULL,
...

)

Arguments

emc An emc object

selection A Character string. Indicates which parameter type to plot (e.g., alpha, mu,
sigma2, correlation).

fun A plot function that takes a vector/mcmc object as input, e.g. cumuplot, acf

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

chain Integer, which chain to include, if more than 1 will make separate plots per
chain.

plot_type type argument passed on to coda fun.

... Optional arguments that can be passed to get_pars, the chosen coda plot func-
tion, or plot.default (see par())

Value

A coda plot
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plot_mcmc_list Plot MCMC.list

Description

Uses the coda plot functions that are applied across chain

Usage

plot_mcmc_list(emc, selection = "mu", fun = "traceplot", layout = NA, ...)

Arguments

emc An emc object

selection A Character string. Indicates which parameter type to plot (e.g., alpha, mu,
sigma2, correlation).

fun A coda plot function choice from

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

... Optional arguments that can be passed to get_pars, the chosen coda plot func-
tion, or plot.default (see par())

Value

A coda plot

plot_pars Plots density for parameters

Description

Plots the posterior and prior density for selected parameters of a model. Full range of samples
manipulations described in get_pars.

Usage

plot_pars(
emc,
layout = NA,
selection = "mu",
show_chains = FALSE,
plot_prior = TRUE,
N = 10000,
use_prior_lim = !all_subjects,
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lpos = "topright",
true_pars = NULL,
all_subjects = FALSE,
prior_plot_args = list(),
true_plot_args = list(),
...

)

Arguments

emc An emc object

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

selection A Character string. Indicates which parameter type to use (e.g., alpha, mu,
sigma2, correlation).

show_chains Boolean (defaults to FALSE) plots a separate density for each chain.

plot_prior Boolean. If TRUE will overlay prior density in the plot (default in red)

N Integer. How many prior samples to draw

use_prior_lim Boolean. If TRUE will use xlimits based on prior density, otherwise based on
posterior density.

lpos Character. Where to plot the contraction statistic.

true_pars A vector or emc object. Can be used to visualize recovery. If a vector will
plot a vertical line for each parameter at the appropriate place. If an emc object
will plot the densities of the object as well, assumed to be the data-generating
posteriors.

all_subjects Boolean. Will plot the densities of all (selected) subjects overlaid with the
group-level distribution

prior_plot_args

A list. Optional additional arguments to be passed to plot.default for the plotting
of the prior density (see par())

true_plot_args A list. Optional additional arguments to be passed to plot.default for the plotting
of the true parameters (see par())

... Optional arguments that can be passed to get_pars, density, or plot.default
(see par())

Value

An invisible return of the contraction statistics for the selected parameter type

Examples

# Full range of possibilities described in get_pars
plot_pars(samples_LNR)
# Or plot all subjects
plot_pars(samples_LNR, all_subjects = TRUE, col = 'purple')
# Or plot recovery
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true_emc <- samples_LNR # This would normally be the data-generating samples
plot_pars(samples_LNR, true_pars = true_emc, true_plot_args = list(col = 'blue'), adjust = 2)

plot_prior Title

Description

Title

Usage

plot_prior(
prior,
design,
selection = "mu",
do_plot = TRUE,
covariates = NULL,
layout = NA,
N = 50000,
...

)

Arguments

prior A prior list created with prior

design A design list created with design

selection A Character string. Indicates which parameter type to use (e.g., alpha, mu,
sigma2, correlation).

do_plot Boolean. If FALSE will only return prior samples and omit plotting.

covariates dataframe/functions as specified by the design

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

N Integer. How many prior samples to draw

... Optional arguments that can be passed to get_pars, histogram, plot.default (see
par()), or arguments required for the types of models e.g. n_factors for type =
"factor"

Value

An mcmc.list object with prior samples of the selected type
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Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then set up a prior using make_prior
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
psd <- c(v_Sleft=1,v_Sright=1,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,

t0=.4,Z=1,sv=.4,SZ=1)
# Here we left the variance prior at default
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd)
# Now we can plot all sorts of (implied) priors
plot_prior(prior_DDMaE, design_DDMaE, selection = "mu", N = 1e3)
plot_prior(prior_DDMaE, design_DDMaE, selection = "mu", mapped = FALSE, N=1e3)
# We can also plot the implied prior on the participant level effects.
plot_prior(prior_DDMaE, design_DDMaE, selection = "alpha", col = "green", N = 1e3)

plot_relations Plot relations

Description

An adjusted version of the corrplot package function corrplot() tailored to EMC2 and the plotting
of estimated correlations.

Usage

plot_relations(
emc = NULL,
stage = "sample",
plot_cred = TRUE,
plot_means = TRUE,
only_cred = FALSE,
nice_names = NULL,
...

)

Arguments

emc An EMC2 object, commonly the output of run_emc().

stage Character. The stage from which to take the samples, defaults to the sampling
stage sample.

plot_cred Boolean. Whether to plot the 95 percent credible intervals or not

plot_means Boolean. Whether to plot the means or not

only_cred Boolean. Whether to only plot credible values
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nice_names Character string. Alternative names to give the parameters

... Optional additional arguments

Value

No return value, creates a plot of group-level relations

Examples

# For a given set of hierarchical model samples we can make a
# correlation matrix plot.
plot_relations(samples_LNR, only_cred = TRUE, plot_cred = TRUE)
# We can also only plot the correlations where the credible interval does not include zero
plot_relations(samples_LNR, plot_means = TRUE, only_cred = TRUE)

posterior_summary.emc Posterior quantiles

Description

Returns the quantiles of the selected parameter type. Full range of possible samples manipulations
described in get_pars.

Usage

## S3 method for class 'emc'
posterior_summary(
emc,
selection = "mu",
probs = c(0.025, 0.5, 0.975),
digits = 3,
...

)

posterior_summary(emc, ...)

Arguments

emc An emc object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

probs A vector. Indicates which quantiles to return from the posterior.

digits Integer. How many digits to round the output to

... Optional additional arguments that can be passed to get_pars
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Value

A list of posterior quantiles for each parameter group in the selected parameter type.

Examples

posterior_summary(samples_LNR)

predict.emc Generate posterior predictives

Description

Simulate n_post data sets using the posterior parameter estimates

Usage

## S3 method for class 'emc'
predict(
object,
hyper = FALSE,
n_post = 100,
n_cores = 1,
stat = c("random", "mean", "median")[1],
...

)

Arguments

object An emc object from which posterior predictives should be generated
hyper Boolean. Defaults to FALSE. If TRUE, simulates from the group-level (hyper)

parameters instead of the subject-level parameters.
n_post Integer. Number of generated datasets
n_cores Integer. Number of cores across which there should be parallellized
stat Character. Can be mean, median or random (i.e., the default). Will take either

random samples from the chain(s) or use the mean or median of the parameter
estimates.

... Optional additional arguments passed to get_pars or make_data

Value

A list of simulated data sets of length n_post

Examples

# based on an emc object ran by fit() we can generate posterior predictives
predict(samples_LNR, n_cores = 1, n_post = 10)
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prior Prior specification

Description

Specify priors for the chosen model. These values are entered manually by default but can be
recycled from another prior (given in the update argument).

Usage

prior(
design,
type = "standard",
update = NULL,
ask = NULL,
fill_default = TRUE,
...

)

Arguments

design Design list for which a prior is constructed, typically the output of design()

type Character. What type of group-level model you plan on using i.e. diagonal

update Prior list from which to copy values

ask Character. For which parameter types to ask for prior specification, i.e. Sigma,
mu or loadings for factor models

fill_default Boolean, If TRUE will fill all non-specified parameters, and parameters outside
of ask, to default values

... Either values to prefill, i.e. theta_mu_mean = c(1:6), or additional arguments
such as n_factors = 2

Details

Where a value is not supplied, the user is prompted to enter numeric values (or functions that
evaluate to numbers).

To get the default prior for a type, run: get_prior_{type}(design = design, sample = F)

E.g.: get_prior_diagonal(design = design, sample = F)

Value

A prior list object
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Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then set up a prior using prior
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
psd <- c(v_Sleft=1,v_Sright=1,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,

t0=.4,Z=1,sv=.4,SZ=1)
# Here we left the variance prior at default
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd)
# Also add a group-level variance prior:
pscale <- c(v_Sleft=.6,v_Sright=.6,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,

t0=.2,Z=.5,sv=.4,SZ=.3)
df <- .4
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd, A = pscale, df = df)
# If we specify a new design
design_DDMat0E <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~E, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# We can easily update the prior
prior_DDMat0E <- prior(design_DDMat0E, update = prior_DDMaE)

probit Gaussian Signal Detection Theory Model

Description

Discrete choice based on continuous Gaussian latent, with no rt. Model parameters are mean (un-
bounded) sd (log scale) and threshold, with a first value is on the natural scale, and others for designs
with with more than two responses are threshold increases on a log scale to enforce monotonic in-
crease on the natural scale.

Usage

probit()

Value

A model list with all the necessary functions to sample
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profile_plot Likelihood profile plots

Description

Creates likelihood profile plots from a design and the experimental data by varying one model
parameter while holding all others constant.

Usage

profile_plot(
data,
design,
p_vector,
range = 0.5,
layout = NA,
p_min = NULL,
p_max = NULL,
use_par = NULL,
n_point = 100,
n_cores = 1,
round = 3,
true_plot_args = list(),
...

)

Arguments

data A dataframe. Experimental data used, needed for the design mapping

design A design list. Created using design.

p_vector Named vector of parameter values (typically created with sampled_p_vector(design))

range Numeric. The max and min will be p_vector + range/2 and p_vector - range/2,
unless specified in p_min or p_max.

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

p_min Named vector. If specified will instead use these values for minimum range of
the selected parameters.

p_max Named vector. If specified will instead use these values for maximum range of
the selected parameters.

use_par Character vector. If specified will only plot the profiles for the specified param-
eters.

n_point Integer. Number of evenly spaced points at which to calculate likelihood

n_cores Number of likelihood points evenly spaced between the minimum and maximum
likelihood range.
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round Integer. To how many digits will the output be rounded.

true_plot_args A list. Optional additional arguments that can be passed to plot.default for the
plotting of the true vertical line.

... Optional additional arguments that can be passed to plot.default.

Value

Vector with highest likelihood point, input and mismatch between true and highest point

Examples

# First create a design
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then create a p_vector:
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(.95),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.25),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
# Make a profile plot for some parameters. Specifying a custom range for t0.
profile_plot(p_vector = p_vector, p_min = c(t0 = -1.35),

p_max = c(t0 = -1.45), use_par = c("a", "t0", "SZ"),
data = forstmann, design = design_DDMaE, n_point = 10)

RDM The Racing Diffusion Model

Description

Model file to estimate the Racing Diffusion Model (RDM), also known as the Racing Wald Model.

Usage

RDM()

Details

Model files are almost exclusively used in design().

Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with RDM()$p_types.

Parameter Transform Natural scale Default Mapping Interpretation
v log [0, Inf] log(1) Evidence-accumulation rate (drift rate)
A log [0, Inf] log(0) Between-trial variation (range) in start point
B log [0, Inf] log(1) b = B + A Distance from A to b (response threshold)
t0 log [0, Inf] log(0) Non-decision time
sv log [0, Inf] log(1) Within-trial standard deviation of drift rate
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All parameters are estimated on the log scale.

The parameterization b = B + A ensures that the response threshold is always higher than the be-
tween trial variation in start point.

Conventionally, s is fixed to 1 to satisfy scaling constraints.

Because the RDM is a race model, it has one accumulator per response option. EMC2 automatically
constructs a factor representing the accumulators lR (i.e., the latent response) with level names taken
from the R column in the data.

The lR factor is mainly used to allow for response bias, analogous to Z in the DDM. For example,
in the RDM, response thresholds are determined by the B parameters, so B~lR allows for different
thresholds for the accumulator corresponding to "left" and "right" stimuli, for example, (e.g., a bias
to respond left occurs if the left threshold is less than the right threshold).

For race models in general, the argument matchfun can be provided in design(). One needs to sup-
ply a function that takes the lR factor (defined in the augmented data (d) in the following function)
and returns a logical defining the correct response. In the example below, this is simply whether the
S factor equals the latent response factor: matchfun=function(d)d$S==d$lR. Using matchfun a
latent match factor (lM) with levels FALSE (i.e., the stimulus does not match the accumulator) and
TRUE (i.e., the stimulus does match the accumulator). This is added internally and can also be used
in model formula, typically for parameters related to the rate of accumulation.

Tillman, G., Van Zandt, T., & Logan, G. D. (2020). Sequential sampling models without random
between-trial variability: The racing diffusion model of speeded decision making. Psychonomic
Bulletin & Review, 27(5), 911-936. https://doi.org/10.3758/s13423-020-01719-6

Value

A list defining the cognitive model

Examples

# When working with lM it is useful to design an "average and difference"
# contrast matrix, which for binary responses has a simple canonical from:
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR
# We now construct our design, with v ~ lM and the contrast for lM the ADmat.
design_RDMBE <- design(data = forstmann,model=RDM,matchfun=matchfun,

formula=list(v~lM,s~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),constants=c(s=log(1)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).
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recovery.emc Recovery plots

Description

Plots recovery of data generating parameters/samples. Full range of samples manipulations de-
scribed in get_pars

Usage

## S3 method for class 'emc'
recovery(
emc,
true_pars,
selection = "mu",
layout = NA,
do_CI = TRUE,
correlation = "pearson",
stat = "rmse",
digits = 3,
CI = 0.95,
ci_plot_args = list(),
...

)

recovery(emc, ...)

Arguments

emc An emc object
true_pars A vector of data-generating parameters or an emc object with data-generating

samples
selection A Character vector. Indicates which parameter types to plot (e.g., alpha, mu,

sigma2, correlation).
layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will

automatically generate an appropriate layout.
do_CI Boolean. If TRUE will also include bars representing the credible intervals
correlation Character. Which correlation to include in the plot. Options are either pearson

or spearman
stat Character. Which statistic to include in the plot. Options are either rmse or

coverage

digits Integer. How many digits to round the statistic and correlation in the plot to
CI Numeric. The size of the credible intervals. Default is .95 (95%).
ci_plot_args A list. Optional additional arguments to be passed to plot.default for the plotting

of the credible intervals (see par())
... Optional arguments that can be passed to get_pars or plot.default (see par())
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Value

Invisible list with RMSE, coverage, and Pearson and Spearman correlations.

Examples

# Make up some values that resemble posterior samples
# Normally this would be true values that were used to simulate the data
# Make up some values that resemble posterior samples
# Normally this would be true values that were used to simulate the data
pmat <- matrix(rnorm(12, mean = c(-1, -.6, -.4, -1.5), sd = .01), ncol = 4, byrow = TRUE)
# Conventionally this would be created before one makes data with true values
recovery(samples_LNR, pmat, correlation = "pearson", stat = "rmse", selection = "alpha")
# Similarly we can plot recovery of other parameters with a set of true samples
true_samples <- samples_LNR # Normally this would be data-generating samples
recovery(samples_LNR, true_samples, correlation = "pearson", stat = "rmse",

selection = "correlation", cex = 1.5,
ci_plot_args = list(lty = 3, length = .2, lwd = 2, col = "brown"))

run_adapt Runs adapt stage for emc.

Description

Special instance of run_emc, with default arguments specified for completing adaptation.

Usage

run_adapt(
emc,
stop_criteria = NULL,
p_accept = 0.8,
step_size = 100,
verbose = FALSE,
verboseProgress = FALSE,
fileName = NULL,
particles = NULL,
particle_factor = 50,
cores_per_chain = 1,
cores_for_chains = length(emc),
max_tries = 20,
n_blocks = 1

)

Arguments

emc An emc object

stop_criteria A list. Defines the stopping criteria and for which types of parameters these
should hold. See ?fit.
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p_accept A double. The target acceptance probability of the MCMC process. This fine-
tunes the width of the search space to obtain the desired acceptance probability.
Defaults to .8

step_size An integer. After each step, the stopping requirements as specified by stop_criteria
are checked and proposal distributions are updated. Defaults to 100.

verbose Logical. Whether to print messages between each step with the current status
regarding the stop_criteria.

verboseProgress

Logical. Whether to print a progress bar within each step or not. Will print one
progress bar for each chain and only if cores_for_chains = 1.

fileName A string. If specified will autosave emc at this location on every iteration.

particles An integer. How many particles to use, default is NULL and particle_factor
is used instead. If specified will override particle_factor.

particle_factor

An integer. particle_factor multiplied by the square root of the number of
sampled parameters determines the number of particles used.

cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations. Only available on Linux or Mac OS. For Windows, only paral-
lelization across chains (cores_for_chains) is available.

cores_for_chains

An integer. How many cores to use across chains. Defaults to the number of
chains. the total number of cores used is equal to cores_per_chain * cores_for_chains.

max_tries An integer. How many times should it try to meet the finish conditions as speci-
fied by stop_criteria? Defaults to 20. max_tries is ignored if the required number
of iterations has not been reached yet.

n_blocks An integer. Number of blocks. Will block the parameter chains such that they
are updated in blocks. This can be helpful in extremely tough models with a
large number of parameters.

Value

An emc object

run_bridge_sampling Estimating Marginal likelihoods using WARP-III bridge sampling

Description

Uses bridge sampling that matches a proposal distribution to the first three moments of the posterior
distribution to get an accurate estimate of the marginal likelihood. The marginal likelihood can be
used for computing Bayes factors and posterior model probabilities.
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Usage

run_bridge_sampling(
emc,
stage = "sample",
filter = NULL,
repetitions = 1,
cores_for_props = 4,
cores_per_prop = 1,
both_splits = TRUE,
...

)

Arguments

emc An emc object with a set of converged samples

stage A character indicating which stage to use, defaults to sample

filter An integer or vector. If integer, it will exclude up until that integer. If vector it
will include everything in that range.

repetitions An integer. How many times to repeat the bridge sampling scheme. Can help
get an estimate of stability of the estimate.

cores_for_props

Integer. Warp-III evaluates the posterior over 4 different proposal densities. If
you have the CPU, 4 cores will do this in parallel, 2 is also already helpful.

cores_per_prop Integer. Per density we can also parallelize across subjects. Eventual cores will
be cores_for_props * cores_per_prop. For efficiency users should prioritize
cores_for_props being 4.

both_splits Boolean. Bridge sampling uses a proposal density and a target density. We can
estimate the stability of our samples and therefore MLL estimate, by running 2
bridge sampling iterations The first one uses the first half of the samples as the
proposal and the second half as the target, the second run uses the opposite. If
this is is set to FALSE, it will only run bridge sampling once and it will instead do
an odd-even iterations split to get a more reasonable estimate for just one run.

... Additional, optional more in-depth hyperparameters

Details

If not enough posterior samples were collected using fit(), bridge sampling can be unstable. It is
recommended to run run_bridge_sampling() several times with the repetitions argument and
to examine how stable the results are.

It can be difficult to converge bridge sampling for exceptionally large models, because of a large
number of subjects (> 100) and/or cognitive model parameters.

For a practical introduction:

Gronau, Q. F., Heathcote, A., & Matzke, D. (2020). Computing Bayes factors for evidence-
accumulation models using Warp-III bridge sampling. Behavior research methods, 52(2), 918-937.
doi.org/10.3758/s13428-019-01290-6
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For mathematical background:

Meng, X.-L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple iden-
tity: A theoretical exploration. Statistica Sinica, 6, 831-860. http://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm

Meng, X.-L., & Schilling, S. (2002). Warp bridge sampling. Journal of Computational and Graph-
ical Statistics, 11(3), 552-586. doi.org/10.1198/106186002457

Value

A vector of length repetitions which contains the marginal log likelihood estimates per repetition

Examples

## Not run:
# After `fit` has converged on a specific model
# We can take those samples and calculate the marginal log-likelihood for them
MLL <- run_bridge_sampling(list(samples_LNR), cores_per_prop = 2)
# This will run on 2*4 cores (since 4 is the default for ``cores_for_props``)

## End(Not run)

run_emc Custom function for more controlled model estimation

Description

Although typically users will rely on fit, this function can be used for more fine-tuned specification
of estimation needs. The function will throw an error if a stage is skipped, the stages have to be
run in order ("preburn", "burn", "adapt", "sample"). More details can be found in the fit help files
(?fit).

Usage

run_emc(
emc,
stage,
stop_criteria,
p_accept = 0.8,
step_size = 100,
verbose = FALSE,
verboseProgress = FALSE,
fileName = NULL,
particles = NULL,
particle_factor = 50,
cores_per_chain = 1,
cores_for_chains = length(emc),
max_tries = 20,
n_blocks = 1

)
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Arguments

emc An emc object

stage A string. Indicates which stage is to be run, either preburn, burn, adapt or
sample

stop_criteria A list. Defines the stopping criteria and for which types of parameters these
should hold. See ?fit.

p_accept A double. The target acceptance probability of the MCMC process. This fine-
tunes the width of the search space to obtain the desired acceptance probability.
Defaults to .8

step_size An integer. After each step, the stopping requirements as specified by stop_criteria
are checked and proposal distributions are updated. Defaults to 100.

verbose Logical. Whether to print messages between each step with the current status
regarding the stop_criteria.

verboseProgress

Logical. Whether to print a progress bar within each step or not. Will print one
progress bar for each chain and only if cores_for_chains = 1.

fileName A string. If specified will autosave emc at this location on every iteration.

particles An integer. How many particles to use, default is NULL and particle_factor
is used instead. If specified will override particle_factor.

particle_factor

An integer. particle_factor multiplied by the square root of the number of
sampled parameters determines the number of particles used.

cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations. Only available on Linux or Mac OS. For Windows, only paral-
lelization across chains (cores_for_chains) is available.

cores_for_chains

An integer. How many cores to use across chains. Defaults to the number of
chains. the total number of cores used is equal to cores_per_chain * cores_for_chains.

max_tries An integer. How many times should it try to meet the finish conditions as speci-
fied by stop_criteria? Defaults to 20. max_tries is ignored if the required number
of iterations has not been reached yet.

n_blocks An integer. Number of blocks. Will block the parameter chains such that they
are updated in blocks. This can be helpful in extremely tough models with a
large number of parameters.

Value

An emc object

Examples

## Not run:
# First define a design
design_DDMaE <- design(data = forstmann,model=DDM,
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formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then make the emc, we've omitted a prior here for brevity so default priors will be used.
emc <- make_emc(forstmann, design)

# Now for example we can specify that we only want to run the "preburn" phase
# for MCMC 200 iterations
emc <- run_emc(emc, stage = "preburn", stop_criteria = list(iter = 200))

## End(Not run)

run_IS2 Runs IS2 from Tran et al. 2021 on a list of emc

Description

Runs IS2 on a list of emc, only works for types standard, factor and diagonal yet.

Usage

run_IS2(
emc,
stage = "sample",
filter = 0,
IS_samples = 1000,
stepsize_particles = 500,
max_particles = 5000,
n_cores = 1,
df = 5

)

Arguments

emc A list of emc

stage A string. Indicates which stage to take samples from

filter An integer or vector. If integer specifies how many samples to remove from
within that stage. If vector used as index for samples to keep.

IS_samples An integer. Specifies how many IS2 samples to collect
stepsize_particles

An integer. It will increase particles till optimal variance with this stepsize.

max_particles An integer. Specifies the maximum number of particles to collect before stop-
ping one IS iteration.

n_cores An integer. Specifies how many cores to run IS_2 on.

df An integer. The degrees of freedom used in the t-distribution used as IS distri-
bution for the group-level proposals.
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Value

emc, with IS2 attribute

run_sample Runs sample stage for emc.

Description

Special instance of run_emc, with default arguments specified for running sample stage.

Usage

run_sample(
emc,
iter = 1000,
stop_criteria = NULL,
p_accept = 0.8,
step_size = 100,
verbose = FALSE,
verboseProgress = FALSE,
fileName = NULL,
particles = NULL,
particle_factor = 50,
cores_per_chain = 1,
cores_for_chains = length(emc),
max_tries = 20,
n_blocks = 1

)

Arguments

emc An emc object

iter Integer. Number of sample stage iterations to run

stop_criteria A list. Defines the stopping criteria and for which types of parameters these
should hold. See ?fit.

p_accept A double. The target acceptance probability of the MCMC process. This fine-
tunes the width of the search space to obtain the desired acceptance probability.
Defaults to .8

step_size An integer. After each step, the stopping requirements as specified by stop_criteria
are checked and proposal distributions are updated. Defaults to 100.

verbose Logical. Whether to print messages between each step with the current status
regarding the stop_criteria.

verboseProgress

Logical. Whether to print a progress bar within each step or not. Will print one
progress bar for each chain and only if cores_for_chains = 1.
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fileName A string. If specified will autosave emc at this location on every iteration.

particles An integer. How many particles to use, default is NULL and particle_factor
is used instead. If specified will override particle_factor.

particle_factor

An integer. particle_factor multiplied by the square root of the number of
sampled parameters determines the number of particles used.

cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations. Only available on Linux or Mac OS. For Windows, only paral-
lelization across chains (cores_for_chains) is available.

cores_for_chains

An integer. How many cores to use across chains. Defaults to the number of
chains. the total number of cores used is equal to cores_per_chain * cores_for_chains.

max_tries An integer. How many times should it try to meet the finish conditions as speci-
fied by stop_criteria? Defaults to 20. max_tries is ignored if the required number
of iterations has not been reached yet.

n_blocks An integer. Number of blocks. Will block the parameter chains such that they
are updated in blocks. This can be helpful in extremely tough models with a
large number of parameters.

Value

An emc object

sampled_p_vector Get model parameters from a design

Description

Makes a vector with zeroes, with names and length corresponding to the model parameters of the
design.

Usage

sampled_p_vector(
design,
model = NULL,
doMap = TRUE,
add_da = FALSE,
all_cells_dm = FALSE

)
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Arguments

design a list of the design made with design().

model a model list. Defaults to the model specified in the design list.

doMap logical. If TRUE will also include an attribute map with the design matrices that
perform the mapping back to the design

add_da Boolean. Whether to include the relevant data columns in the map attribute

all_cells_dm Boolean. Whether to include all levels of a factor in the mapping attribute, even
when one is dropped in the design

Value

Named vector.

Examples

# First define a design
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then for this design get which cognitive model parameters are sampled:
sampled_p_vector(design_DDMaE)

samples_LNR An emc object of an LNR model of the Forstmann dataset using the
first three subjects

Description

An emc object with a limited number of samples and subjects of the Forstmann dataset. The object
is a nested list of lenght three, each list containing the MCMC samples of the respective chain. The
MCMC samples are stored in the samples element.

Usage

samples_LNR

Format

An emc object. An emc object is a list with a specific structure and elements, as outlined below.

data A list of dataframes, one for each subject included

par_names A character vector containing the model parameter names

n_pars The number of parameters in the model

n_subjects The number of unique subject ID’s in the data
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subjects A vector containing the unique subject ID’s

prior A list that holds the prior for theta_mu (the model parameters). Contains the mean (theta_mu_mean),
covariance matrix (theta_mu_var), degrees of freedom (v), and scale (A) and inverse covari-
ance matrix (theta_mu_invar)

ll_func The log likelihood function used by pmwg for model estimation

samples A list with defined structure containing the samples, see the Samples Element section for
more detail

grouped Which parameters are grouped across subjects, in this case none

sampler_nuis A sampler list for nuisance parameters (in this case there are none), similarly struc-
tured to the overall samples list of one of the MCMC chains.

Samples Element

The samples element of a emc object contains the different types of samples estimated by EMC2.
These include the three main types of samples theta_mu, theta_var and alpha as well as a number
of other items which are detailed here.

theta_mu samples used for estimating the model parameters (group level), an array of size (n_pars
x n_samples)

theta_var samples used for estimating the parameter covariance matrix, an array of size (n_pars x
n_pars x n_samples)

alpha samples used for estimating the subject random effects, an array of size (n_pars x n_subjects
x n_samples)

stage A vector containing what PMwG stage each sample was drawn in

subj_ll The winning particles log-likelihood for each subject and sample

a_half Mixing weights used during the Gibbs step when creating a new sample for the covariance
matrix

last_theta_var_inv The inverse of the last samples covariance matrix

idx The index of the last sample drawn

epsilon The scaling parameter of the proposal distributions for each subject array of size (n_subjects
x n_samples)

origin From which propoosal distribution the accepted samples in the MCMC chain came, an array
of size (n_subjects x n_samples)

Source

https://www.pnas.org/doi/10.1073/pnas.0805903105

https://www.pnas.org/doi/10.1073/pnas.0805903105
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standardize_loadings Standardized factor loadings

Description

Returns a set of standardized factor loadings. The standardization considers the residual error as
well as described in Stevenson, Heathcote, Forstmann & Matzke, 2024.

Usage

standardize_loadings(
emc = NULL,
loadings = NULL,
sig_err_inv = NULL,
stage = "sample",
merge_chains = TRUE

)

Arguments

emc An emc object with samples from a hierarchical factor analysis model

loadings Array of pars by factors by iters. Can also specify loadings instead of emc

sig_err_inv Array of pars by iters. Can also specify sig_err_inv instead of emc

stage Character. From which stage to take samples

merge_chains Return the loadings for each chain separately or merged together.

Value

standardized loadings

subset.emc Shorten an emc object

Description

Shorten an emc object
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Usage

## S3 method for class 'emc'
subset(
x,
stage = "sample",
filter = NULL,
thin = 1,
keep_stages = FALSE,
length.out = NULL,
...

)

Arguments

x an emc object

stage A character string. Indicates from which sampling stage(s) to take the samples
from (i.e. preburn, burn, adapt, sample)

filter Integer or numeric vector. If an integer is supplied, iterations up until that integer
are removed. If a vector is supplied, the iterations within the range are kept.

thin An integer. By how much to thin the chains

keep_stages Boolean. If TRUE, will not remove samples from unselected stages.

length.out Integer. Alternatively to thinning, you can also select a desired length of the
MCMC chains, which will be thinned appropriately.

... additional optional arguments

Value

A shortened emc object

Examples

subset(samples_LNR, length.out = 10)

summary.emc Summary statistics for emc objects

Description

Computes quantiles, Rhat and ESS for selected model parameters.
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Usage

## S3 method for class 'emc'
summary(
object,
selection = c("mu", "sigma2", "alpha"),
probs = c(0.025, 0.5, 0.975),
digits = 3,
...

)

Arguments

object An object of class emc

selection A character string indicating the parameter type Defaults to mu, sigma2, and
alpha. See below for more information.

probs The quantiles to be computed. Defaults to the the 2.5%, 50% and 97.5% quan-
tiles.

digits An integer specifying rounding of output.

... Optional arguments that can be passed to get_pars

Details

Note that if selection = alpha and by_subject = TRUE (default) is used, summary statistics are
computed at the individual level. to the console but summary statistics for all subjects are returned
by the function.

Value

A list of summary output.



Index

∗ datasets
forstmann, 22
samples_LNR, 79

add_constants, 3
auto_burn, 4

chain_n, 5
check (check.emc), 6
check.emc, 6
compare, 7
compare_MLL, 8
compare_subject, 9
contr.anova, 11
contr.bayes, 11
contr.decreasing, 12
contr.increasing, 13
credible (credible.emc), 13
credible.emc, 13

DDM, 15
DDMt0natural, 16
design, 17

ess_summary (ess_summary.emc), 18
ess_summary.emc, 18

fit (fit.emc), 19
fit.emc, 19
forstmann, 22

gd_summary (gd_summary.emc), 23
gd_summary.emc, 23
get_BayesFactor, 24
get_data (get_data.emc), 25
get_data.emc, 25
get_pars, 26
get_prior_blocked, 28
get_prior_diag, 29
get_prior_factor, 30
get_prior_SEM, 32

get_prior_single, 33
get_prior_standard, 34

hypothesis (hypothesis.emc), 35
hypothesis.emc, 35

IC, 37
init_chains, 38

LBA, 39
LNR, 40

make_data, 41
make_emc, 43
make_factor_diagram, 45
make_missing, 46
make_random_effects, 47
mapped_par, 48
merge_chains, 49

pairs_posterior, 50
parameters (parameters.emc), 51
parameters.emc, 51
plot.emc, 52
plot_defective_density, 53
plot_fit, 54
plot_fit_choice, 56
plot_mcmc, 58
plot_mcmc_list, 59
plot_pars, 59
plot_prior, 61
plot_relations, 62
posterior_summary

(posterior_summary.emc), 63
posterior_summary.emc, 63
predict.emc, 64
prior, 65
probit, 66
profile_plot, 67

RDM, 68

84



INDEX 85

recovery (recovery.emc), 70
recovery.emc, 70
run_adapt, 71
run_bridge_sampling, 72
run_emc, 74
run_IS2, 76
run_sample, 77

sampled_p_vector, 78
samples_LNR, 79
standardize_loadings, 81
subset.emc, 81
summary.emc, 82


	add_constants
	auto_burn
	chain_n
	check.emc
	compare
	compare_MLL
	compare_subject
	contr.anova
	contr.bayes
	contr.decreasing
	contr.increasing
	credible.emc
	DDM
	DDMt0natural
	design
	ess_summary.emc
	fit.emc
	forstmann
	gd_summary.emc
	get_BayesFactor
	get_data.emc
	get_pars
	get_prior_blocked
	get_prior_diag
	get_prior_factor
	get_prior_SEM
	get_prior_single
	get_prior_standard
	hypothesis.emc
	IC
	init_chains
	LBA
	LNR
	make_data
	make_emc
	make_factor_diagram
	make_missing
	make_random_effects
	mapped_par
	merge_chains
	pairs_posterior
	parameters.emc
	plot.emc
	plot_defective_density
	plot_fit
	plot_fit_choice
	plot_mcmc
	plot_mcmc_list
	plot_pars
	plot_prior
	plot_relations
	posterior_summary.emc
	predict.emc
	prior
	probit
	profile_plot
	RDM
	recovery.emc
	run_adapt
	run_bridge_sampling
	run_emc
	run_IS2
	run_sample
	sampled_p_vector
	samples_LNR
	standardize_loadings
	subset.emc
	summary.emc
	Index

