
LLMAgentR is an R package for building Language Model Agents using a modular state graph execution framework. Inspired by LangGraph and LangChain architectures, it supports iterative workflows for research, data analysis, and automation.
install.packages("LLMAgentR")To get the latest features or bug fixes, you can install the
development version of LLMAgentR from GitHub:
# If needed
install.packages("remotes")
remotes::install_github("knowusuboaky/LLMAgentR")See the full function reference or the package website for more details.
Sys.setenv(
OPENAI_API_KEY = "your-openai-key",
GROQ_API_KEY = "your-groq-key",
ANTHROPIC_API_KEY = "your-anthropic-key",
DEEPSEEK_API_KEY = "your-deepseek-key",
DASHSCOPE_API_KEY = "your-dashscope-key",
GH_MODELS_TOKEN = "your-github-models-token"
)The chatLLM package allows you to interact with large
language models (LLMs) effortlessly - either through direct calls or via
reusable minimal wrappers.
library(chatLLM)Create a lightweight wrapper around call_llm() for
reuse. It optionally provides verbose output:
call_llm(
prompt = "Summarize the capital of France.",
provider = "groq",
model = "llama3-8b",
temperature = 0.7,
max_tokens = 200,
verbose = TRUE
)
my_llm_wrapper <- function(prompt, verbose = FALSE) {
if (verbose) {
message("[my_llm_wrapper] Sending prompt to LLM...")
}
# Suppress console output but always return the response
response_text <- if (verbose) {
call_llm(
prompt = prompt,
provider = "openai",
model = "gpt-4o",
max_tokens = 3000,
verbose = TRUE
)
} else {
suppressMessages(
suppressWarnings(
call_llm(
prompt = prompt,
provider = "openai",
model = "gpt-4o",
max_tokens = 3000,
verbose = TRUE
)
)
)
}
if (verbose) {
message("[my_llm_wrapper] Response received.")
}
return(response_text)
}Alternatively, preconfigure an LLM call for one-liners:
my_llm_wrapper <- call_llm(
provider = "openai",
model = "gpt-4o",
max_tokens = 3000,
verbose = TRUE
)chatLLMThe chatLLM
package (now available on CRAN) offers a modular interface for
interacting with LLM providers including OpenAI,
Groq, Anthropic,
DeepSeek, DashScope, and
GitHub Models.
install.packages("chatLLM")Detailed guides now live in pkgdown Articles (one per agent):
Custom graph workflows:
A full index page is also available:
MIT (c) Kwadwo Daddy Nyame Owusu Boakye