Trajectory analysis of Turkey vultures

Retrieve data

library(move2)
vulture_data <-
  movebank_download_study("Turkey vultures in North and South America")
vulture_data
#> A <move2> with `track_id_column` "individual_local_identifier" and `time_column`
#> "timestamp"
#> Containing 19 tracks lasting on average 1083 days in a
#> Simple feature collection with 215719 features and 6 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -123.9255 ymin: -39.8214 xmax: -48.5788 ymax: 54.01817
#> Geodetic CRS:  WGS 84
#> # A tibble: 215,719 × 7
#>   sensor_type_id individual_local_ident…¹ manually_marked_outl…² timestamp          
#>          <int64> <fct>                    <lgl>                  <dttm>             
#> 1            653 Irma                     FALSE                  2004-09-06 17:00:00
#> 2            653 Irma                     FALSE                  2004-09-06 18:00:00
#> 3            653 Irma                     FALSE                  2004-09-06 19:00:00
#> 4            653 Irma                     FALSE                  2004-09-06 20:00:00
#> 5            653 Irma                     FALSE                  2004-09-07 00:00:00
#> # ℹ 215,714 more rows
#> # ℹ abbreviated names: ¹​individual_local_identifier, ²​manually_marked_outlier
#> # ℹ 3 more variables: event_id <int64>, visible <lgl>, geometry <POINT [°]>
#> First 5 track features:
#> # A tibble: 19 × 54
#>   deployment_id   tag_id individual_id animal_life_stage animal_mass attachment_type
#>         <int64>  <int64>       <int64> <fct>                     [g] <fct>          
#> 1      17225120 16883951      17002744 adult                    2372 harness        
#> 2      17225134 16883951      17002745 adult                    1951 harness        
#> 3      17225131 16883928      17002732 adult                    2012 harness        
#> 4      17225133 16883937      17002737 adult                    2108 harness        
#> 5      17225122 16883967      17002753 adult                      NA harness        
#> # ℹ 14 more rows
#> # ℹ 48 more variables: deployment_comments <chr>, deploy_off_timestamp <dttm>,
#> #   deploy_on_timestamp <dttm>, duty_cycle <chr>,
#> #   deployment_local_identifier <fct>, …

In this case some tracks have very long time gaps, to prevent distant points to be connected by a line we split those tracks by creating a new id.

library(dplyr, quietly = TRUE)
library(ggplot2, quietly = TRUE)
library(rnaturalearth, quietly = TRUE)
library(units, quietly = TRUE)
vulture_lines <- vulture_data %>%
  mutate_track_data(name = individual_local_identifier) %>%
  mutate(
    large_gaps = !(mt_time_lags(.) < set_units(1500, "h") |
      is.na(mt_time_lags(.))),
    track_sub_id = cumsum(lag(large_gaps, default = FALSE)),
    new_track_id = paste(mt_track_id(.), track_sub_id)
  ) %>%
  mt_set_track_id("new_track_id") %>%
  mt_track_lines()
ggplot() +
  geom_sf(data = ne_coastline(returnclass = "sf", 50)) +
  theme_linedraw() +
  geom_sf(
    data = vulture_lines,
    aes(color = name)
  ) +
  coord_sf(
    crs = sf::st_crs("+proj=aeqd +lon_0=-83 +lat_0=8 +units=km"),
    xlim = c(-3500, 3800), ylim = c(-4980, 4900)
  )

Categorize seasons

library(magrittr, quietly = TRUE)
#> 
#> Attaching package: 'magrittr'
#> The following object is masked from 'package:raster':
#> 
#>     extract
library(lubridate, quietly = TRUE)
vulture_data %<>% mutate(
  month = month(mt_time(), label = TRUE, abbr = FALSE),
  season = recode_factor(month,
    January = "Wintering", February = "Wintering",
    March = "Wintering", April = "North migration",
    May = "North migration", June = "Breeding",
    July = "Breeding", August = "Breeding",
    September = "South migration", October = "South migration",
    November = "Wintering", December = "Wintering"
  ),
  # Here we change season to NA if the next location is either from
  # a different track or season
  season = if_else(season == lead(season, 1) &
    mt_track_id() == lead(mt_track_id(), 1),
  season, NA
  )
)

Annotate speed and azimuth to the trajectory.

vulture_data %<>% mutate(azimuth = mt_azimuth(.), speed = mt_speed(.))

Seasonal distribution per individual

library(circular, quietly = TRUE)
#> 
#> Attaching package: 'circular'
#> The following objects are masked from 'package:stats':
#> 
#>     sd, var
vulture_azimuth_distributions <- vulture_data %>%
  filter(speed > set_units(2, "m/s") & !is.na(season)) %>%
  group_by(season, track_id = mt_track_id()) %>%
  filter(n() > 50) %>%
  summarise(azimuth_distribution = list(density(
    as.circular(
      drop_units(set_units(
        azimuth,
        "degrees"
      )),
      units = "degrees",
      modulo = "asis",
      zero = 0,
      template = "geographic", rotation = "clock", type = "angles"
    ),
    bw = 180, kernel = "vonmises"
  )))
#> `summarise()` has grouped output by 'season'. You can override using the `.groups`
#> argument.

# Load purrr for map function
library(purrr, quietly = TRUE)
#> 
#> Attaching package: 'purrr'
#> The following object is masked from 'package:magrittr':
#> 
#>     set_names
# Load tidy r for unnest function
library(tidyr, quietly = TRUE)
#> 
#> Attaching package: 'tidyr'
#> The following object is masked from 'package:magrittr':
#> 
#>     extract
#> The following object is masked from 'package:raster':
#> 
#>     extract
vulture_azimuth_distributions %>%
  mutate(
    x = map(azimuth_distribution, ~ .$x),
    y = map(azimuth_distribution, ~ .$y)
  ) %>%
  select(-azimuth_distribution) %>%
  unnest(c(x, y)) %>%
  ggplot() +
  geom_path(aes(x = x, y = y, color = season)) +
  coord_polar(start = pi / 2) +
  theme_linedraw() +
  facet_wrap(~ factor(track_id)) +
  scale_x_continuous(
    name = NULL, breaks = (-2:1) * 90,
    labels = c("S", "W", "N", "E")
  ) +
  scale_y_continuous(name = NULL, limits = c(-0.8, 1.0), expand = c(0L, 0L))

Individual trajectory

leo <- vulture_data |>
  filter_track_data(individual_local_identifier == "Leo") |>
  mutate(speed_categorical = cut(speed, breaks = c(2, 5, 10, 15, 35)))
leo |> ggplot(aes(x = azimuth, y = speed)) +
  geom_point() +
  scale_x_units(unit = "degrees", breaks = c(-2:2) * 90, expand = c(0L, 0L)) +
  theme_linedraw()
#> Warning: Removed 6683 rows containing missing values or values outside the scale range
#> (`geom_point()`).

leo |>
  filter(speed > set_units(2L, "m/s") & !is.na(season)) |>
  ggplot() +
  coord_polar(start = pi) +
  geom_histogram(
    aes(
      x = set_units(azimuth, "degrees"),
      fill = speed_categorical
    ),
    breaks = set_units(seq(-180L, 180L, by = 10L), "degrees"),
    position = position_stack(reverse = TRUE)
  ) +
  scale_x_units(
    name = NULL,
    limits = set_units(c(-180L, 180L), "degrees"),
    breaks = (-2L:2L) * 90L
  ) +
  facet_wrap(~season) +
  scale_fill_ordinal("Speed") +
  theme_linedraw()

Plot turn angle distribution.

pi_r <- set_units(pi, "rad")
leo %>%
  mutate(turnangle = mt_turnangle(.)) %>%
  filter(speed > set_units(2L, "m/s") & lag(speed, 1L) > set_units(2L, "m/s")) %>%
  ggplot() +
  geom_histogram(
    aes(
      x = turnangle,
      fill = speed_categorical
    ),
    position = position_stack(reverse = TRUE)
  ) +
  scale_fill_ordinal("Speed") +
  coord_polar(start = pi) +
  scale_x_units(limits = c(-pi_r, pi_r), name = NULL) +
  scale_y_continuous(limits = c(-500L, 650L), breaks = c(0L, 250L, 500L)) +
  theme_linedraw()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Net displacement

Here we visualize the distance to the first location of each trajectory.

vulture_data %<>% group_by(mt_track_id()) %>%
  mutate(displacement = c(st_distance(
    !!!syms(attr(., "sf_column")),
    (!!!syms(attr(., "sf_column")))[row_number() == 1]
  )))

vulture_data %>% ggplot() +
  geom_line(aes(
    x = timestamp,
    y = set_units(displacement, "km"),
    color = individual_local_identifier
  )) +
  ylab("Distance from start") +
  theme_linedraw()