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1 Introduction

In the literature of cooperative games, the notion of power index [1–3] has been widely
studied to analyze the “influence” of individuals taking into account their ability to force
a decision within groups or coalitions. In practical situations, however, the information
concerning the strength of coalitions is hardly quantifiable. So, any attempt to numerically
represent the influence of groups and individuals clashes with the complex and multi-
attribute nature of the problem and it seems more realistic to represent collective
decision-making mechanisms using an ordinal coalitional framework based on two main
ingredients: a binary relation over groups or coalitions and a ranking over the individuals.

The main objective of the package socialranking is to provide answers for the general
problem of how to compare the elements of a finite set N given a ranking over the
elements of its power-set (the set of all possible subsets of N). To do this, the package
socialranking implements a portfolio of solutions from the recent literature on social

rankings [4–11].

1.1 Quick start

A power relation (i.e, a ranking over subsets of a finite set N ; see the Section 2
for a formal definition) can be constructed using the functions PowerRelation() or
as.PowerRelation().

library(socialranking)

PowerRelation(list(list(c(1,2)), list(1, c()), list(2)))

## 12 > (1 ~ {}) > 2

as.PowerRelation("12 > 1 ~ {} > 2")

## 12 > (1 ~ {}) > 2

as.PowerRelation("ab > a ~ {} > b")

## ab > (a ~ {}) > b

as.PowerRelation(list(c(1,2), 1, c(), 2))

## 12 > 1 > {} > 2

as.PowerRelation(list(c(1,2), 1, c(), 2), comparators = c(">", "~", ">"))

## 12 > (1 ~ {}) > 2

Functions used to analyze a given PowerRelation object can be grouped into three main
categories:

• Comparison functions, only comparing two elements;
• Score functions, calculating the scores for each element;
• Ranking functions, creating SocialRanking objects.

Comparison and score functions are often used to evaluate a social ranking solution (see
section 2 for a formal definition). Listed below are some of the most prominent functions
and solutions introduced in the aforementioned papers.

These functions may be called as follows.
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Comparison functions Score functions Ranking functions

dominates()

cumulativelyDominates() cumulativeScores()

cpMajorityComparison()

cpMajorityComparisonScore()

copelandScores()

kramerSimpsonScores()

copelandRanking()

kramerSimpsonRanking()

lexcelScores()
lexcelRanking()

dualLexcelRanking()

L1Scores()

L2Scores()

LPScores()

LPSScores()

L1Ranking()

L2Ranking()

LPRanking()

LPSRanking()

ordinalBanzhafScores() ordinalBanzhafRanking()

pr <- as.PowerRelation("ab > abc ~ ac ~ bc > a ~ c > {} > b")

# a dominates b, but b does not dominate a

c(dominates(pr, "a", "b"),

dominates(pr, "b", "a"))

## [1] TRUE FALSE

# calculate cumulative scores

scores <- cumulativeScores(pr)

# show score of element a

scores$a

## [1] 1 3 4 4 4

# performing a bunch of rankings

lexcelRanking(pr)

## a > b > c

L1Ranking(pr)

## a > b > c

dualLexcelRanking(pr)

## a > c > b

copelandRanking(pr)

## a > b ~ c

kramerSimpsonRanking(pr)

## a > b ~ c

ordinalBanzhafRanking(pr)

## a > c > b

Lastly, an incidence matrix for all given coalitions can be constructed using
powerRelationMatrix(pr) or as.relation(pr) from the relations package [12].
The incidence matrix may be displayed using relations::relation_incidence().
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rel <- relations::as.relation(pr)

rel
## A binary relation of size 8 x 8.

relations::relation_incidence(rel)

## Incidences:

## ab abc ac bc a c {} b

## ab 1 1 1 1 1 1 1 1

## abc 0 1 1 1 1 1 1 1

## ac 0 1 1 1 1 1 1 1

## bc 0 1 1 1 1 1 1 1

## a 0 0 0 0 1 1 1 1

## c 0 0 0 0 1 1 1 1

## {} 0 0 0 0 0 0 1 1

## b 0 0 0 0 0 0 0 1

2 PowerRelation objects

We first introduce some basic definitions on binary relations. Let X be a set. A set
R ⊆ X × X is said a binary relation on X. For two elements x, y ∈ X, xRy refers to
their relation, more formally it means that (x, y) ∈ R. A binary relation (x, y) ∈ R is
said to be

• reflexive, if for each x ∈ X, xRx,
• transitive, if for each x, y, z ∈ X, xRy and yRz ⇒ xRz,
• total, if for each x, y ∈ X, x ̸= y ⇒ xRy or yRx,
• symmetric, if for each x, y ∈ X, xRy ⇔ yRx,
• asymmetric, if for each x, y ∈ X, (x, y) ∈ R ⇒ (y, x) /∈ R, and
• antisymmetric, if for each x, y ∈ X, xRy ∩ yRx ⇒ x = y.

A preorder is defined as a reflexive and transitive relation. If it is total, it is called a total

preorder. Additionally if it is antisymmetric, it is called a linear order.

Let N = {1, 2, . . . , n} be a finite set of elements, sometimes also called players. For some
p ∈ {1, . . . , 2n}, let P = {S1, S2, . . . , Sp} be a set of coalitions such that Si ⊆ N for all
i ∈ {1, . . . , p}. Thus P ⊆ 2N , where 2N denotes the power set of N , the set of all subsets
or coalitions of N .

T (N) denotes the set of all total preorders on N , T (P) the set of all total preorders on
P. A single total preorder ≿∈ T (P) is said a power relation.

In a given power relation ≿∈ T (P) on P ⊆ 2N , its symmetric part is denoted by ∼ (i.e.,
S ∼ T if S ≿ T and T ≿ S), whereas its asymmetric part is denoted by ≻ (i.e., S ≻ T
if S ≿ T and not T ≿ S). In other terms, for S ∼ T we say that S is indifferent to T ,
whereas for S ≻ T we say that S is strictly better than T .

Lastly, for a given power relation in the form of S1 ≿ S2 ≿ . . . ≿ Sm, coalitions that are
indifferent to one another can be grouped into equivalence classes

∑

i such that we get
the quotient order

∑

1 ≻
∑

2 ≻ . . . ≻
∑

m.

Example 1. Let N = {1, 2} be two players with its corresponding power set 2N =
{{1, 2}, {1}, {2}, ∅}. The following power relation is given:
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≿ = {({1, 2}, {1, 2}), ({1, 2}, {2}), ({1, 2}, ∅), ({1, 2}, {1}),
({2}, {2}), ({2}, ∅), ({2}, {1}),

(∅, ∅), (∅, {2}), (∅, {1}),
({1}, {1}) }

This power relation can be rewritten in a consecutive order as: {1, 2} ≻ {2} ∼ ∅ ≻ {1}.
Its quotient order is formed by three equivalence classes

∑

1 = {{1, 2}},
∑

2 = {{2}, ∅},
and

∑

3 = {{1}}; so the quotient order of ≿ is such that {{1, 2}} ≻ {{2}, ∅} ≻ {{1}}.

Note that the way the set ≿ is presented in the example is somewhat deliberate to better
visualize occurring symmetries and asymmetries. This also lets us neatly represent a
power relation in the form of an incidence matrix in chapter 4.

2.1 Creating PowerRelation objects

A power relation in the socialranking package is defined to be reflexive, transitive and
total. In designing the package it was deemed logical to have the coalitions specified in a
consecutive order, as seen in Example 1. Each coalition in that order is split either by a
">" (left side strictly better) or a "~" (two coalitions indifferent to one another). The
following code chunk shows the power relation from Example 1 and how a correlating
PowerRelation object can be constructed.

library(socialranking)

pr <- PowerRelation(list(

list(c(1,2)),

list(2, c()),

list(1)

))

pr

## 12 > (2 ~ {}) > 1

class(pr)

## [1] "PowerRelation" "SingleCharElements"

Notice how coalitions such as {1, 2} are written as 12 to improve readability. Similarly,
passing a string to the function as.PowerRelation() saves some typing on the user’s
end by interpreting each character of a coalition as a separate element. Note that spaces
in that function are ignored.

as.PowerRelation("12 > 2~{} > 1")

## 12 > (2 ~ {}) > 1

The compact notation is only done in PowerRelation objects where every element is one
digit or one character long. If this is not the case, curly braces and commas are added
where needed.

prLong <- PowerRelation(list(

list(c("Alice", "Bob")),

list("Bob", c()),

list("Alice")

))

prLong
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Attribute Description Value in pr

elements Sorted vector of elements c(1,2)

eqs

List containing lists, each
containing coalitions in the
same equivalence class

list(list(c(1,2)),

list(c(2), c()),

list(c(1)))

coalitionLookup
Function to determine a coalition’s
equivalence class index

function(coalition)

elementLookup
Function to determine, which coalitions
an element takes part in

function(element)

## {Alice, Bob} > ({Bob} ~ {}) > {Alice}

class(prLong)

## [1] "PowerRelation"

Some may have spotted a "SingleCharElements" class missing in class(prLong) that
has been there in class(pr). "SingleCharElements" influences how coalitions are
printed. If it is removed from class(pr), the output will include the same curly braces
and commas displayed in prLong.

class(pr) <- class(pr)[-which(class(pr) == "SingleCharElements")]

pr

## {1, 2} > ({2} ~ {}) > {1}

Internally a PowerRelation is a list with four attributes.

While coalitions are formally defined as sets, meaning the order doesn’t matter and each
element is unique, the package tries to stay flexible. As such, coalitions will only be
sorted during initialization, but duplicate elements will not be removed.

prAtts <- PowerRelation(list(

list(c(2,2,1,1,2)),

list(c(2,1), c())

))

#! Warning in createLookupTables(equivalenceClasses): Found 1

coalition that contain elements more than once.

#! - 1, 2 in the coalition {1, 1, 2, 2, 2}

prAtts

## 11222 > (12 ~ {})

prAtts$elements

## [1] 1 2

prAtts$coalitionLookup(c(1,2))

## [1] 2

prAtts$coalitionLookup(c(2,1))

## [1] 2
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prAtts$coalitionLookup(c(2,1,2,1,2))

## [1] 1

prAtts$elementLookup(2)

## [[1]]

## [1] 1 1

##

## [[2]]

## [1] 1 1

##

## [[3]]

## [1] 1 1

##

## [[4]]

## [1] 2 1

2.2 Manipulating PowerRelation objects

It is strongly discouraged to directly manipulate PowerRelation objects, as its attributes
are so tightly coupled. This would require updates in multiple places. Instead, it is
advisable to simply create new PowerRelation objects.

To permutate the order of equivalence classes, it is possible to take the equivalence classes
in $eqs and use a vector of indexes to move them around.

pr <- as.PowerRelation("12 > (1 ~ {}) > 2")

PowerRelation(pr$eqs[c(2, 3, 1)])

## (1 ~ {}) > 2 > 12

PowerRelation(rev(pr$eqs))

## 2 > (1 ~ {}) > 12

For permutating individual coalitions, using as.PowerRelation.list() may be more
convenient since it doesn’t require nested list indexing.

coalitions <- unlist(pr$eqs, recursive = FALSE)

compares <- c(">", "~", ">")

as.PowerRelation(coalitions[c(2,1,3,4)], comparators = compares)

## 1 > (12 ~ {}) > 2

# notice that the length of comparators does not need to match

# length(coalitions)-1

as.PowerRelation(rev(coalitions), comparators = c("~", ">"))

## (2 ~ {}) > (1 ~ 12)

# not setting the comparators parameter turns it into a linear order

as.PowerRelation(coalitions)

## 12 > 1 > {} > 2
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2.2.1 appendMissingCoalitions()

Let ≿∈ T (P). We may have not included all possible coalitions, such that P ⊂ 2N , P ≠
2N .

appendMissingCoalitions() appends all the missing coalitions 2N − P as a single
equivalence class to the end of the power relation.

pr <- PowerRelation(list(

list(c("AT", "DE"), "FR"),

list("DE"),

list(c("AT", "FR"), "AT")

))

pr

## ({AT, DE} ~ {FR}) > {DE} > ({AT, FR} ~ {AT})

# since we have 3 elements, the super set 2ˆN should include 8 coalitions

appendMissingCoalitions(pr)

## ({AT, DE} ~ {FR}) > {DE} > ({AT, FR} ~ {AT}) > ({AT, DE, FR} ~

{DE, FR} ~ {})

2.2.2 makePowerRelationMonotonic()

A power relation ≿∈ T (P) is monotonic if

S ≿ T ⇒ T ⊂ S

for all S, T ⊆ N . In other terms, given a monotonic power relation, for any coalition, all
its subsets cannot be ranked higher.

makePowerRelationMonotonic() turns a potentially non-monotonic power relation into
a monotonic one by moving and (optionally) adding all missing coalitions in 2N − P to
the corresponding equivalence classes.

pr <- as.PowerRelation("a > b > c ~ ac > abc")

makePowerRelationMonotonic(pr)

## (abc ~ ab ~ ac ~ a) > (bc ~ b) > c

makePowerRelationMonotonic(pr, addMissingCoalitions = FALSE)

## (abc ~ ac ~ a) > b > c

# notice how an empty coalition in some equivalence class

# causes all remaining coalitions to be moved there

makePowerRelationMonotonic(as.PowerRelation("ab > c > {} > abc > a > b"))

## (abc ~ ab) > (ac ~ bc ~ c) > (a ~ b ~ {})

2.3 Creating power sets

As the number of elements n increases, the number of possible coalitions increases to
|2N | = 2n. createPowerset() is a convenient function that not only creates a power
set 2N which can be used to call PowerRelation or as.PowerRelation(), but also
formats the function call in such a way that makes it easy to rearrange the ordering of
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the coalitions. RStudio offers shortcuts such as Alt+Up or Alt+Down (Option+Up or
Option+Down on MacOS) to move one or multiple lines of code up or down (see fig. 1).

createPowerset(

c("a", "b", "c"),

result = "print"

)

## as.PowerRelation("

## abc

## > ab

## > ac

## > bc

## > a

## > b

## > c

## > {}

## ")

Figure 1: Using Alt+Up or Alt+Down to move one or more lines of code

By default, createPowerset() returns the power set in the form of a list. This list can
be passed directly to as.PowerRelation() to create a linear order.

ps <- createPowerset(1:2, includeEmptySet = FALSE)

ps

## [[1]]

## [1] 1 2

##

## [[2]]

## [1] 1

##

## [[3]]

## [1] 2

as.PowerRelation(ps)

## 12 > 1 > 2

# equivalent

PowerRelation(list(ps))

## (12 ~ 1 ~ 2)

as.PowerRelation(createPowerset(letters[1:4]))

## abcd > abc > abd > acd > bcd > ab > ac > ad > bc > bd > cd > a > b

> c > d > {}
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2.4 Generating PowerRelation objects

For the ease of experimentation, it is possible to have power relations created automatically
given a list of coalitions. Either,

• create random power relations using generateRandomPowerRelation(), or
• generate a sequence of all possible power relations with powerRelationGenerator().

For the former, one may also specify if the generated power relation should be a linear
order (as in, there are no ~ but only strict > relations) and whether or not the power
relation should be monotonic (as in, {1} ≻ {1, 2} is not monotonic because {1} ⊂ {1, 2}).

set.seed(1)

coalitions <- createPowerset(1:3)

generateRandomPowerRelation(coalitions)

## 13 > (2 ~ 12) > {} > (1 ~ 123) > 23 > 3

generateRandomPowerRelation(coalitions)

## ({} ~ 1 ~ 2 ~ 12 ~ 123) > 3 > 13 > 23

generateRandomPowerRelation(coalitions, linearOrder = TRUE)

## 12 > 2 > 123 > 23 > 13 > 3 > {} > 1

generateRandomPowerRelation(coalitions, monotonic = TRUE)

## (123 ~ 23 ~ 12 ~ 13 ~ 1) > (2 ~ 3 ~ {})

generateRandomPowerRelation(coalitions, linearOrder = TRUE, monotonic = TRUE)

## 123 > 23 > 12 > 2 > 13 > 1 > 3 > {}

For looping through all possible power relations, powerRelationGenerator() returns
a generator function that, when called repeatedly, returns one unique PowerRelation

object after the other. If all permutations have been exhausted, NULL is returned.

coalitions <- list(c(1,2), 1, 2)

gen <- powerRelationGenerator(coalitions)

while(!is.null(pr <- gen())) {

print(pr)

}

## (12 ~ 1 ~ 2)

## (12 ~ 1) > 2

## (12 ~ 2) > 1

## (1 ~ 2) > 12

## 12 > (1 ~ 2)

## 1 > (12 ~ 2)

## 2 > (12 ~ 1)

## 12 > 1 > 2

## 12 > 2 > 1

## 1 > 12 > 2

## 2 > 12 > 1

## 1 > 2 > 12

## 2 > 1 > 12

Permutations over power relations can be split into two parts:
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1. generating partitions, or, generating differently sized equivalence classes, and
2. moving coalitions between these partitions.

In the code example above, we started with a single partition of size three, wherein all
coalitions are considered equally preferable. By the end, we have reached the maximum
number of partitions, where each coalition is put inside an equivalence class of size 1.

The partition generation can be reversed, such that we first receive linear power relations.

gen <- powerRelationGenerator(coalitions, startWithLinearOrder = TRUE)

while(!is.null(pr <- gen())) {

print(pr)

}

## 12 > 1 > 2

## 12 > 2 > 1

## 1 > 12 > 2

## 2 > 12 > 1

## 1 > 2 > 12

## 2 > 1 > 12

## 12 > (1 ~ 2)

## 1 > (12 ~ 2)

## 2 > (12 ~ 1)

## (12 ~ 1) > 2

## (12 ~ 2) > 1

## (1 ~ 2) > 12

## (12 ~ 1 ~ 2)

Notice that the “moving coalitions” part was not reversed, only the order the partitions
come in.

Similarly, we are also able to skip the current partition.

gen <- powerRelationGenerator(coalitions)

# partition 3

gen <- generateNextPartition(gen)

# partition 2+1

gen <- generateNextPartition(gen)

# partition 1+2

gen()

## 12 > (1 ~ 2)

Note: the number of possible power relations grows tremendously fast as the number of
coalitions rises. To get to that number, first consider how many ways n coalitions can be
split into k partitions, also known as the Stirling number of second kind,

S(n, k) =
1

k!

k
∑

j=0

(−1)j

(

k

j

)

(k − j)n.

The number of all possible partitions given n coalitions is known as the Bell number (see
also numbers::bell()),
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Bn =

k
∑

j=0

S(n, k).

Given a set of coalitions P ∈ 2N , the number of total preorders in T (P) is

|T (P)| =

|P|
∑

k=0

k! ∗ S(|P|, k)

# of coalitions # of partitions # of total preorders

1 1 1
2 2 3
3 5 13
4 15 75
5 52 541
6 203 4.683
7 877 47.293
8 4.140 545.835
9 21.147 7.087.261

10 115.975 102.247.563
11 678.570 1.622.632.573
12 4.213.597 28.091.567.595
13 27.644.437 526.858.348.381
14 190.899.322 10.641.342.970.441

(24 − 1) 15 1.382.958.545 230.283.190.977.959
16 10.480.142.147 5.315.654.681.940.580

3 SocialRanking Objects

The main goal of the socialranking package is to rank elements based on a given power
ranking. More formally we try to map R : T (P) → T (N), associating to each power
relation ≿∈ T (P) a total preorder R(≿) (or R≿) over the elements of N .

In this context iR≿j tells us that, given a power relation ≿ and applying a social ranking
solution R(≿), i is ranked higher than or equal to j. From here on out, > and ~ also
denote the asymmetric and the symmetric part of a social ranking, respectively, i > j
indicating that i is strictly better than j, whereas in i ~ j, i is indifferent to j.

In literature, iI≿j and iP≿j are often used to denote the symmetric and asymmetric
part, respectively. iI≿j therefore means that iR≿j and jR≿i, whereas iP≿j implies that
iR≿j but not jR≿j.

In section 3.1 we show how a general SocialRanking object can be constructed using
the doRanking function. In the following sections, we will introduce the notion of
dominance[4], cumulative dominance[13] and CP-Majority comparison[6] that lets us
compare two elements before diving into the social ranking solutions of the Ordinal
Banzhaf Index[5], Copeland-like and Kramer-Simpson-like methods[10], and lastly the
Lexicographical Excellence Solution[9] (Lexcel) and the Dual Lexicographical Excellence
solution[14] (Dual Lexcel).
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Example 2. Let {a, b} ≻ ({a, c} ∼ {b, c}) ≻ ({a} ∼ {c}) > ({a, b, c} ∼ ∅) ≻ {b} be a
power ranking. Using the following social ranking solutions, we get:

• a > b > c for lexcelRanking, L1Ranking and L2Ranking

• a > c > b for dualLexcelRanking, ordinalBanzhafRanking and LPSRanking

• a > b ~ c for copelandRanking and kramerSimpsonRanking

• a ~ c > b for ordinalBanzhafRanking and LPRanking

3.1 Creating SocialRanking objects

A SocialRanking object represents a total preorder in T (N) over the elements of N .
Internally they are saved as a list of vectors, each containing players that are indifferent
to one another. This is somewhat similar to the equivalenceClasses attribute in
PowerRelation objects.

The function doRanking offers a generic way of creating SocialRanking objects. Given
a sortable vector or list of scores it determines the power relation between all players,
where the names of the elements are determined from the names() attribute of scores.
Hence, a PowerRelation object is not necessary to create a SocialRanking object.

# we define some arbitrary score vector where "a" scores highest.

# "b" and "c" both score 1, thus they are indifferent.

scores <- c(a = 100, b = 1, c = 1)

doRanking(scores)

## a > b ~ c

# we can also tell doRanking to punish higher scores

doRanking(scores, decreasing = FALSE)

## b ~ c > a

When working with types that cannot be sorted (i.e., lists), a function can be passed
to the compare parameter that allows comparisons between arbitrary elements. This
function must take two parameters (i.e., a and b) and return a numeric value based on
the comparison:

• compare(a,b) > 0: a scores higher than b,
• compare(a,b) < 0: a scores lower than b,
• compare(a,b) == 0: a and b are equivalent.

scores <- list(a = c(3, 3, 3), b = c(2, 3, 2), c = c(7, 0, 2))

doRanking(scores, compare = function(a, b) sum(a) - sum(b))

## a ~ c > b

# a and c are considered to be indifferent, because their sums are the same

doRanking(scores, compare = function(a,b) sum(a) - sum(b), decreasing = FALSE)

## b > a ~ c

3.2 Comparison Functions

Comparison functions only compare two elements in a given power relation. They do
not offer a social ranking solution. However in cases such as CP-Majority comparison,
those comparison functions may be used to construct a social ranking solution in some
particular cases.
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3.2.1 Dominance

Definition 1. (Dominance [4]) Given a power relation ≿∈ T (P) and two elements
i, j ∈ N , i dominates j in ≿ if S ∪ {i} ≿ S ∪ {j} for each S ∈ 2N\{i,j}. i also strictly

dominates j if there exists S ∈ 2N\{i,j} such that S ∪ {i} ≻ S ∪ {j}.

The implication is that for every coalition i and j can join, i has at least the same positive
impact as j.

The function dominates(pr, e1, e2) only returns a logical value TRUE if e1 dominates
e2, else FALSE. Note that e1 not dominating e2 does not indicate that e2 dominates e1,
nor does it imply that e1 is indifferent to e2.

pr <- as.PowerRelation("3 > 1 > 2 > 12 > 13 > 23")

# 1 clearly dominates 2

dominates(pr, 1, 2)

## [1] TRUE

dominates(pr, 2, 1)

## [1] FALSE

# 3 does not dominate 1, nor does 1 dominate 3, because

# {}u3 > {}u1, but 2u1 > 2u3

dominates(pr, 1, 3)

## [1] FALSE

dominates(pr, 3, 1)

## [1] FALSE

# an element i dominates itself, but it does not strictly dominate itself

# because there is no Sui > Sui

dominates(pr, 1, 1)

## [1] TRUE

dominates(pr, 1, 1, strictly = TRUE)

## [1] FALSE

For any S ∈ 2N\{i,j}, we can only compare S ∪ {i} ≿ S ∪ {j} if both S ∪ {i} and S ∪ {j}
take part in the power relation.

Additionally, for S = ∅, we also want to compare {i} ≿ {j}. In some situations
however a comparison between singletons is not desired. For this reason the parameter
includeEmptySet can be set to FALSE such that ∅ ∪ {i} ≿ ∅ ∪ {j} is not considered in
the CP-Majority comparison.

pr <- as.PowerRelation("ac > bc ~ b > a ~ abc > ab")

# FALSE because ac > bc, whereas b > a

dominates(pr, "a", "b")

## [1] FALSE
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# TRUE because ac > bc, ignoring b > a comparison

dominates(pr, "a", "b", includeEmptySet = FALSE)

## [1] TRUE

3.2.2 Cumulative Dominance

When comparing two players i, j ∈ N , instead of looking at particular coalitions S ∈
2N\{i,j} they can join, we look at how many stronger coalitions they can form at each
point. This property was originally introduced in [13] as a regular dominance axiom.

For a given power relation ≿∈ T (P) and its corresponding quotient order
∑

1 ≻ · · · ≻
∑

m,
the power of a player i is given by a vector ScoreCumul(i) ∈ N

m where we cumulatively
sum the amount of times i appears in

∑

k for each index k.

Definition 2. (Cumulative Dominance Score) Given a power relation ≿∈ T (P) and its
quotient order

∑

1 ≻ · · · ≻
∑

m, the cumulative score vector ScoreCumul(i) ∈ N
m of an

element i ∈ N is given by:

ScoreCumul(i) =
(

k
∑

t=1

|{S ∈
∑

t : i ∈ S}|
)

k∈{1,...,m}
(1)

Definition 3. (Cumulative Dominance) Given two elements i, j ∈ N , i cumulatively dom-

inates j in ≿, if ScoreCumul(i)k ≥ ScoreCumul(j)k for each k ∈ {1, . . . , m}. i also strictly

cumulatively dominates j if there exists a k such that ScoreCumul(i)k > ScoreCumul(j)k.

For a given PowerRelation object pr and two elements e1 and e2, cumulativeScores(pr)

returns the vectors described in definition 2 for each element, cumulativelyDominates(pr,

e1, e2) returns TRUE or FALSE based on definition 3.

pr <- as.PowerRelation("ab > (ac ~ bc) > (a ~ c) > {} > b")

cumulativeScores(pr)

## $a

## [1] 1 2 3 3 3

##

## $b

## [1] 1 2 2 2 3

##

## $c

## [1] 0 2 3 3 3

##

## attr(,"class")

## [1] "CumulativeScores"

# for each index k, $a[k] >= $b[k]

cumulativelyDominates(pr, "a", "b")

## [1] TRUE

# $a[3] > $b[3], therefore a also strictly dominates b

cumulativelyDominates(pr, "a", "b", strictly = TRUE)

## [1] TRUE
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# $b[1] > $c[1], but $c[3] > $b[3]

# therefore neither b nor c dominate each other

cumulativelyDominates(pr, "b", "c")

## [1] FALSE

cumulativelyDominates(pr, "c", "b")

## [1] FALSE

Similar to the dominance property from our previous section, two elements not dominating
one or the other does not indicate that they are indifferent.

3.2.3 CP-Majority comparison

The Ceteris Paribus Majority (CP-Majority) relation is a somewhat relaxed version of
the dominance property. Instead of checking if S ∪ {i} ≿ S ∪ {j} for all S ∈ 2N\{i,j}, the

CP-Majority relation iR
≿
CPj holds if the number of times S ∪ {i} ≿ S ∪ {j} is greater

than or equal to the number of times S ∪ {j} ≿ S ∪ {i}.

Definition 4. (CP-Majority [6]) Let ≿∈ T (P). The Ceteris Paribus majority relation

is the binary relation R
≿
CP ⊆ N × N such that for all i, j ∈ N :

iR
≿
CPj ⇔ dij(≿) ≥ dji(≿) (2)

where dij(≿) represents the cardinality of the set Dij(≿), the set of all coalitions
S ∈ 2N\{i,j} for which S ∪ {i} ≿ S ∪ {j}.

cpMajorityComparisonScore(pr, e1, e2) calculates the two scores dij(≿) and −dji(≿
). Notice the minus sign - that way we can use the sum of both values to determine the
relation between e1 and e2.

pr <- as.PowerRelation("ab > (ac ~ bc) > (a ~ c) > {} > b")

cpMajorityComparisonScore(pr, "a", "b")

## [1] 2 -1

cpMajorityComparisonScore(pr, "b", "a")

## [1] 1 -2

if(sum(cpMajorityComparisonScore(pr, "a", "b")) >= 0) {

print("a >= b")

} else {

print("b > a")

}

## [1] "a >= b"

As a slight variation the logical parameter strictly calculates d∗
ij(≿) and −d∗

ji(≿), the

number of coalitions S ∈ 2N\{i,j} where S ∪ {i} ≻ S ∪ {j}.

# Now (ac ~ bc) is not counted

cpMajorityComparisonScore(pr, "a", "b", strictly = TRUE)

## [1] 1 0
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# Notice that the sum is still the same

sum(cpMajorityComparisonScore(pr, "a", "b", strictly = FALSE)) ==

sum(cpMajorityComparisonScore(pr, "a", "b", strictly = TRUE))

## [1] TRUE

Coincidentally, cpMajorityComparisonScore with strictly = TRUE can be used to
determine if e1 (strictly) dominates e2.

cpMajorityComparisonScore should be used for simple and quick calculations. The
more comprehensive function cpMajorityComparison(pr, e1, e2) does the same cal-
culations, but in the process retains more information about all the comparisons that
might be interesting to a user, i.e., the set Dij(≿) and Dji(≿) as well as the relation

iR
≿
CPj. See the documentation for a full list of available data.

# extract more information in cpMajorityComparison

cpMajorityComparison(pr, "a", "b")

## a > b

## D_ab = {c, {}}

## D_ba = {c}

## Score of a = 2

## Score of b = 1

# with strictly set to TRUE, coalition c does

# neither appear in D_ab nor in D_ba

cpMajorityComparison(pr, "a", "b", strictly = TRUE)

## a > b

## D_ab = {{}}

## D_ba = {}

## Score of a = 1

## Score of b = 0

The CP-Majority relation can generate cycles, which is the reason that it is not offered
as a social ranking solution. Instead, we will introduce the Copeland-like method and
Kramer-Simpson-like method in chapters 3.3.2 and 3.3.3 that make use of the CP-
Majority functions to determine a power relation between elements. For further readings
on CP-Majority, see [7] and [10].

3.3 Social Ranking Solutions

3.3.1 Ordinal Banzhaf

The Ordinal Banzhaf Score is a vector defined by the principle of marginal contributions.
Intuitively speaking, if a player joining a coalition causes it to move up in the ranking, it
can be interpreted as a positive contribution. On the contrary a negative contribution
means that participating causes the coalition to go down in the ranking.

Definition 5. (Ordinal marginal contribution [5]) Let ≿∈ T (P). For a given element
i ∈ N , its ordinal marginal contribution mS

i (≿) with right to a coalition S ∈ P is defined
as:

mS
i (≿) =











1 if S ∪ {i} ≻ S

−1 if S ≻ S ∪ {i}

0 otherwise

(3)
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Definition 6. (Ordinal Banzhaf relation) Let ≿∈ T (P). The Ordinal Banzhaf relation

is the binary relation R
≿
Banz ⊆ N × N such that for all i, j ∈ N :

iR
≿
Banzj ⇔ ScoreBanz(i) ≥ ScoreBanz(j), (4)

where ScoreBanz(i) =
∑

S mS
i (≿) for all S ∈ N \ {i}.

Note that if S /∈ P or S ∪ {i} /∈ P, mS
i (≿) = 0.

The function ordinalBanzhafScores() returns three numbers for each element,

1. the number of coalitions S where a player’s contribution has a positive impact,
2. the number of coalitions S where a player’s contribution has a negative impact,

and
3. the number of coalitions S for which no information can be gathered, because

S /∈ P or S ∪ {i} /∈ P.

The sum of the first two numbers determines the score of a player. Players with higher
scores rank higher.

pr <- as.PowerRelation(list(c(1,2), c(1), c(2)))

pr

## 12 > 1 > 2

# both players 1 and 2 have an Ordinal Banzhaf Score of 1

# therefore they are indifferent to one another

# note that the empty set is missing, as such we cannot compare {}u{i} with {}

ordinalBanzhafScores(pr)

## $`1`

## [1] 1 0 1

##

## $`2`

## [1] 1 0 1

##

## attr(,"class")

## [1] "OrdinalBanzhafScores"

ordinalBanzhafRanking(pr)

## 1 ~ 2

pr <- as.PowerRelation("ab > a > {} > b")

# player b has a negative impact on the empty set

# -> player b's score is 1 - 1 = 0

# -> player a's score is 2 - 0 = 2

sapply(ordinalBanzhafScores(pr), function(score) sum(score[c(1,2)]))

## a b

## 2 0

ordinalBanzhafRanking(pr)

## a > b
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3.3.2 Copeland-like method

The Copeland-like method of ranking elements based on the CP-Majority rule is strongly
inspired by the Copeland score from social choice theory[15]. The score of an element
i ∈ N is determined by the amount of the pairwise CP-Majority winning comparisons

iR
≿
CPj, minus the number of all losing comparisons jR

≿
CPi against all other elements

j ∈ N \ {i}.

Definition 7. (Copeland-like relation [10]) Let ≿∈ T (P). The Copeland-like relation is

the binary relation R
≿
Cop ⊆ N × N such that for all i, j ∈ N :

iR
≿
Copj ⇔ ScoreCop(i) ≥ ScoreCop(j), (5)

where ScoreCop(i) = |{j ∈ N \ {i} : dij(≿) ≥ dji(≿)}| − |{j ∈ N \ {i} : dij(≿) ≤ dji(≿)}|

copelandScores(pr) returns two numerical values for each element, a positive number
for the winning comparisons (shown in ScoreCop(i) on the left) and a negative number
for the losing comparisons (in ScoreCop(i) on the right).

pr <- as.PowerRelation("(abc ~ ab ~ c ~ a) > (b ~ bc) > ac")

scores <- copelandScores(pr)

# Based on CP-Majority, a>=b and a>=c (+2), but b>=a (-1)

scores$a

## [1] 2 -1

sapply(copelandScores(pr), sum)

## a b c

## 1 0 -1

copelandRanking(pr)

## a > b > c

3.3.3 Kramer-Simpson-like method

Strongly inspired by the Kramer-Simpson method of social choice theory[16, 17], elements
are ranked inversely to their greatest pairwise defeat over all possible CP-Majority
comparisons.

Definition 8. (Kramer-Simpson-like relation [10]) Let ≿∈ T (P). The Kramer-Simpson-

like relation is the binary relation R
≿
KS ⊆ N × N such that for all i, j ∈ N :

iR
≿
KSj ⇔ ScoreKS(i) ≥ ScoreKS(j), (6)

where ScoreKS(i) = − maxj d∗
ji(≿) for all j ∈ N \ {i}.

Recall that d∗
ji(≿) returns the number of strict relations of S ∪ {j} ≻ S ∪ {i}.

kramerSimpsonScores(pr) returns a vector with a single numerical value for each
element which, sorted highest to lowest, gives us the ranking solution.

pr <- as.PowerRelation("(abc ~ ab ~ c ~ a) > (b ~ bc) > ac")

kramerSimpsonScores(pr)
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## a b c

## -1 -1 -1

## attr(,"class")

## [1] "KramerSimpsonScores"

kramerSimpsonRanking(pr)

## a ~ b ~ c

3.3.4 Lexcel and Dual Lexcel

Lexicographical Excellence Solution The idea behind the lexicographical excellence
solution (Lexcel) is to reward elements appearing more frequently in higher ranked
equivalence classes.

For a given power relation ≿ and its quotient order
∑

1 ≻ · · · ≻
∑

m, we denote by ik

the number of coalitions in
∑

k containing i:

ik = |{S ∈
∑

k : i ∈ S}| (7)

for k ∈ {1, . . . , m}. Now, let ScoreLex(i) be the m-dimensional vector ScoreLex(i) =
(i1, . . . , im) associated to ≿. Consider the lexicographic order ≥Lex among vectors i and
j: i ≥Lex j if either i = j or there exists t : ir = jr, r ∈ {1, . . . , t − 1}, and it > jt.

Definition 9. (Lexicographic-Excellence relation [8]) Let ≿∈ T (P) with its correspond-
ing quotient order

∑

1 ≻ · · · ≻
∑

m. The Lexicographic-Excellence relation is the binary

relation R
≿
Lex ⊆ N × N such that for all i, j ∈ N :

iR
≿
Lexj ⇔ ScoreLex(i) ≥Lex ScoreLex(j) (8)

pr <- as.PowerRelation("12 > (123 ~ 23 ~ 3) > (1 ~ 2) > 13")

# show the number of times an element appears in each equivalence class

# e.g. 3 appears 3 times in [[2]] and 1 time in [[4]]

lapply(pr$equivalenceClasses, unlist)

## list()

lexScores <- lexcelScores(pr)

for(i in names(lexScores))

paste0("Lexcel score of element ", i, ": ", lexScores[i])

# at index 1, element 2 ranks higher than 3

lexScores['2'] > lexScores['3']

## [1] TRUE

# at index 2, element 2 ranks higher than 1

lexScores['2'] > lexScores['1']

## [1] TRUE

lexcelRanking(pr)

## 2 > 1 > 3

20



For some generalizations of the Lexcel solution see also [9].

Lexcel score vectors are very similar to the cumulative score vectors (3.2.2) in that the
number of times an element appears in a given equivalence class is of interest. In fact,
applying the base function cumsum on an element’s lexcel score gives us its cumulative
score.

lexcelCumulated <- lapply(lexScores, cumsum)

cumulScores <- cumulativeScores(pr)

paste0(names(lexcelCumulated), ": ", lexcelCumulated, collapse = ', ')

## [1] "1: 1:4, 2: c(1, 3, 4, 4), 3: c(0, 3, 3, 4)"

paste0(names(cumulScores), ": ", cumulScores, collapse = ', ')

## [1] "1: 1:4, 2: c(1, 3, 4, 4), 3: c(0, 3, 3, 4)"

Dual Lexicographical Excellence Solution Similar to the Lexcel ranking, the Dual
Lexcel also uses the Lexcel score vectors from definition 9 to establish a ranking. However,
instead of rewarding higher frequencies in high ranking coalitions, it punishes players
that appear more frequently in lower ranking equivalence classes. In a more interpreted
sense, it punishes mediocrity.

Take the values ik for k ∈ {1, . . . , m} and the Lexcel score vector ScoreLex(i) from the
section above. Consider the dual lexicographical order ≥DualLex among vectors i and j:
i ≥DualLex j if either i = j or there exists t : it < jt and ir = jr, r ∈ {t + 1, . . . , m}.

Definition 10. (Dual Lexicographical-Excellence relation [14]) Let ≿∈ T (P). The Dual

Lexicographic-Excellence relation is the binary relation R
≿
DualLex ⊆ N × N such that for

all i, j ∈ N :

iR
≿
DualLexj ⇔ ScoreLex(i) ≥DualLex ScoreLex(j) (9)

The only difference between the two functions lexcelScores() and dualLexcelScores()

is the S3 class attached to the list, the former being LexcelScores and the latter being
DualLexcelScores.

pr <- as.PowerRelation("12 > (123 ~ 23 ~ 3) > (1 ~ 2) > 13")

lexScores <- lexcelScores(pr)

# in regular Lexcel, 1 scores higher than 3

lexScores['1'] > lexScores['3']

## [1] TRUE

# turn Lexcel score into Dual Lexcel score

dualLexScores <- structure(

lexScores,

class = 'DualLexcelScores'

)

# now 1 scores lower than 3

dualLexScores['1'] > dualLexScores['3']
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## [1] FALSE

# element 2 comes out at the top in both Lexcel and Dual Lexcel

lexcelRanking(pr)

## 2 > 1 > 3

dualLexcelRanking(pr)

## 2 > 3 > 1

3.3.5 L(1), L(2), Lp, Lp∗

The remaining social ranking solutions are a variation of the lexcel solutions from the
previous section. While they all rank individuals using a lexicographical approach, they
all not only consider the equivalence classes, but also the size of the coalitions an element
appears in. In answering the question of what player has more influence in a group than
others, we may want to attribute a higher value to smaller coalitions.

For a given coalitional ranking ≿ and its associated quotient order Σ1 ≻ · · · ≻ Σm,
ScoreLex(i) produced a vector of length m with each index signifying the number of times
i appears in each equivalence class. This is now further extended to a function

M
≿
i = ScoreL(i) ∈ N

|N |×m

that produces a matrix. Each column q corresponds to an equivalence class, each row p
to a coalition size. The values are then defined as

(M
≿
i )p,q = |{S ∈ Σq : |S| = p and i ∈ S}|.

For a ranking such as ({1, 2} ∼ {1} ∼ {2, 3}) ≻ N ≻ ∅ ≻ ({1, 3} ∼ {2} ∼ {3}) this
would give use the following three matrices.

M
≿
1 =





1 0 0 0
1 0 0 1
0 1 0 0



 M
≿
2 =





0 0 0 1
2 0 0 0
0 1 0 0



 M
≿
3 =





0 0 0 1
1 0 0 1
0 1 0 0





These matrices can be created with the L1Scores() function.

pr <- as.PowerRelation('(12 ~ 1 ~ 23) > 123 > {} > (13 ~ 2 ~ 3)')

L1Scores(pr)

## $`1`

## [,1] [,2] [,3] [,4]

## [1,] 1 0 0 0

## [2,] 1 0 0 1

## [3,] 0 1 0 0

##

## $`2`

## [,1] [,2] [,3] [,4]

## [1,] 0 0 0 1

## [2,] 2 0 0 0

## [3,] 0 1 0 0

##
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## $`3`

## [,1] [,2] [,3] [,4]

## [1,] 0 0 0 1

## [2,] 1 0 0 1

## [3,] 0 1 0 0

##

## attr(,"class")

## [1] "L1Scores"

Comparing these matrices builds the foundation the the L(1), L(2), Lp and Lp∗

solutions.

L(1)

Definition 11. (L(1) solution [9]) For i, j ∈ N , the L(1) solution ranks i above j if there
exists a p0 ∈ {1, . . . , n} and q0 ∈ {1, . . . , m} such that the following conditions hold:

1. (M
≿
i )p,q = (M

≿
j )p,q for all 1 ≤ p ≤ n and 1 ≤ q < q0,

2. (M
≿
i )p,q0 = (M

≿
j )p,q0 for all 1 ≤ p < p0,

3. (M
≿
i )p0,q0 > (M

≿
j )p0,q0

Put into simple terms, when comparing two elements i and j with their corresponding
matrices, we first compare the first column, top to bottom. The first row in which the
value for one is higher than the other determines their relation. If both their columns
are the same, we move forward to the next column.

In the example above, the lexcel determines that 1 ~ 2. However, in their matrices, 1
has a higher value in the first row of the first column. This implies that L(1) prefers
1 > 2 simply because the singleton coalition {1} appears in the first equivalence class,
whereas {2} does not.

L1Ranking(pr)

## 1 > 2 > 3

L(2) Compared to the lexcel, L(1) could be seen as a little too strict in enforcing a
relation based on a singular coalition while discarding all others in the same equivalence
class. Take for instance ({1} ∼ {2, 3} ∼ {2, 4} ∼ {2, 3, 4}) ≻ . . .. Even though 2 seems
to have a lot more possibilities to cooperate, L(1) prefers 1 simply because the coalition
it appears in is smaller than all others.

The L(2) tries to find a happy medium between these two solutions. For a given equivalence
class, it first compares the total number of times each element appears (aka., the lexcel
score). If both scores are the same, only then does it compare the corresponding column
according to the L(1).

Definition 12. (L(2) solution [9]) For i, j ∈ N , the L(2) solution ranks i above j if there
exists a p0 ∈ {1, . . . , n} and q0 ∈ {1, . . . , m} such that the following conditions hold:

1. (M
≿
i )p,q = (M

≿
j )p,q for all 1 ≤ p ≤ n and 1 ≤ q < q0,

2. Either (2.1) ScoreLex(i)q0 > ScoreLex(j)q0 , or (2.2) (M
≿
i )p,q0 = (M

≿
j )p,q0 for all

1 ≤ p < p0 and (M
≿
i )p0,q0 > (M

≿
j )p0,q0

Note again that ScoreLex(i)q0 =
∑|N |

p=1(M
≿
i )p,q0 . To make finding the sum of each column

easier, these values are added as an extra row above. This also conveniently allows us to
use the traditional L(1) comparison on these matrices.
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The solution of L(2) will always coincide either with the lexcel or with the L(1) solution.
In the example of the beginning of the section, in comparing 1 against 2, the relation

for L(2) coincides with L(1): the sum of the first column in M
≿
1 and M

≿
2 equal both to

2, inducing a row-by-row comparison, same as with L(1). In the latter example in this
subsection, the sum of the first column vectors of 1 and 2 are vastly different, causing
L(2) to coincide with the lexcel solution.

L2Ranking(pr)

## 1 > 2 > 3

pr2 <- as.PowerRelation('1 ~ 23 ~ 24 ~ 234')

pr2 <- appendMissingCoalitions(pr2)

L1Ranking(pr2)

## 1 > 2 > 3 ~ 4

L2Ranking(pr2)

## 2 > 3 ~ 4 > 1

Lp Lp and Lp∗

differ drastically in that they compare the matrices on a row-by-row
basis rather than column-by-column. This puts a much higher value on smaller coalitions,
regardless of which equivalence class they are placed in.

Both of these solutions first consider the singleton coalition. For two given elements i
and j, if {i} ≻ {j}, then the relation according to the Lp and Lp∗

is already determined.
If {i} {j}, every subsequent comparison is done on the number of coalitions that rank
strictly higher. This may be practical in situation where we want individuals to work in
small groups and disregard any coalitions where they’d be better off alone.

Definition 13. (Lp solution [11]) For i, j ∈ N , the social ranking solution Lp ranks i
above j if one of the following conditions hold:

1. {i} ≻ {j};
2. {i}, {j} ∈ Σk and there exists a row p0 ∈ {2, . . . , |N |} such that:

∑

q<k

(M
≿
i )p,q =

∑

q<k

(M
≿
j )p,q ∀p < p0, and

∑

q<k

(M
≿
i )p0,q >

∑

q<k

(M
≿
j )p0,q.

The Lp looks at the total number of times an element has the chance to form a better
coalition than its singleton. Since a lot of the information from the matrix of an element
is therefore redundant, LPScores() discards much of it to save space. The first value then
corresponds to the equivalence class index that the singleton appears in, each subsequent
value the number of times it is able to form coalitions of size 2, 3, and so on.

LPScores(pr)

## $`1`

## [1] 1 0 0

##

## $`2`

## [1] 4 2 1

##
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## $`3`

## [1] 4 1 1

##

## attr(,"class")

## [1] "LPScores"

LPRanking(pr)

## 1 > 2 > 3

Lp∗

Only taking the sum of all coalitions of a certain size might not be informative
enough. Similarly to how L(1) builds a more granual comparison between two elements
by incorporating the coalition size, Lp∗

can be seen as a more granual version of the Lp

by incorporating the specific equivalence class the element appears in.

Definition 14. (Lp∗

solution [11]) For i, j ∈ N , the social ranking solution Lp∗

ranks i
above j if one of the following conditions hold:

1. {i} ≻ {j};
2. {i}, {j} ∈ Σk and there exists a row p0 ∈ {2, . . . , |N |} and column q0 ∈ {1, . . . , k−1}

such that:
(M

≿
i )p,q = (M

≿
j )p,q ∀p < p0, q < k,

(M
≿
i )p0,q = (M

≿
j )p0,q ∀q < q0, and

(M
≿
i )p0,q0 > (M

≿
j )p0,q0 .

The score matrices of LPSScores() look similar to L1Scores() then, the only difference
being the number of columns; as any equivalence class with {i} ∈ Σk and Σk ≻ Σl does
not influence the final ranking, these columns are discarded in the final matrix.

L1Scores(pr)

## $`1`

## [,1] [,2] [,3] [,4]

## [1,] 1 0 0 0

## [2,] 1 0 0 1

## [3,] 0 1 0 0

##

## $`2`

## [,1] [,2] [,3] [,4]

## [1,] 0 0 0 1

## [2,] 2 0 0 0

## [3,] 0 1 0 0

##

## $`3`

## [,1] [,2] [,3] [,4]

## [1,] 0 0 0 1

## [2,] 1 0 0 1

## [3,] 0 1 0 0

##

## attr(,"class")

## [1] "L1Scores"
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LPSScores(pr)

## $`1`

##

## [1,]

## [2,]

##

## $`2`

## [,1] [,2] [,3]

## [1,] 2 0 0

## [2,] 0 1 0

##

## $`3`

## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 0 1 0

##

## attr(,"class")

## [1] "LP*Scores"

LPSRanking(pr)

## 1 > 2 > 3

4 Relations

4.1 Incidence Matrix

In our vignette we focused more on the intuitive aspects of power relations and social
ranking solutions. To reiterate, a power relation is a total preorder, or a reflexive and
transitive relation ≿∈ P × P, where ∼ denotes the symmetric part and ≻ its asymmetric
part.

A power relation can be represented as an incidence matrix (bij) = B ∈ {0, 1}|P|×|P|.
Given two coalitions i, j ∈ P, if iRj then bij = 1, else 0.

With the help of the relations package, the functions relations::as.relation(pr)

and powerRelationMatrix(pr) turn a PowerRelation object into a relation

object. relations then offers ways to display the relation object as an
incidence matrix with relation_incidence(rel) and to test basic proper-
ties such relation_is_linear_order(rel), relation_is_acyclic(rel) and
relation_is_antisymmetric(rel) (see relations package for more [12]).

pr <- as.PowerRelation("ab > a > {} > b")

rel <- relations::as.relation(pr)

relations::relation_incidence(rel)

## Incidences:

## ab a {} b

## ab 1 1 1 1

## a 0 1 1 1

## {} 0 0 1 1

## b 0 0 0 1
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c(

relations::relation_is_acyclic(rel),

relations::relation_is_antisymmetric(rel),

relations::relation_is_linear_order(rel),

relations::relation_is_complete(rel),

relations::relation_is_reflexive(rel),

relations::relation_is_transitive(rel)

)

## [1] TRUE TRUE TRUE TRUE TRUE TRUE

Note that the columns and rows are sorted by their names in relation_domain(rel),
hence why each name is preceded by the ordering number.

# a power relation where coalitions {1} and {2} are indifferent

pr <- as.PowerRelation("12 > (1 ~ 2)")

rel <- relations::as.relation(pr)

# we have both binary relations {1}R{2} as well as {2}R{1}

relations::relation_incidence(rel)

## Incidences:

## 12 1 2

## 12 1 1 1

## 1 0 1 1

## 2 0 1 1

# FALSE

c(

relations::relation_is_acyclic(rel),

relations::relation_is_antisymmetric(rel),

relations::relation_is_linear_order(rel),

relations::relation_is_complete(rel),

relations::relation_is_reflexive(rel),

relations::relation_is_transitive(rel)

)

## [1] FALSE FALSE FALSE TRUE TRUE TRUE

4.2 Cycles and Transitive Closure

A cycle in a power relation exists, if there is one coalition S ∈ 2N that appears twice.
For example, in {1, 2} ≻ ({1} ∼ ∅) ≻ {1, 2}, the coalition {1, 2} appears at the beginning
and at the end of the power relation.

Properly handling power relations and calculating social ranking solutions with cycles is
somewhat ill-defined, hence a warning message is shown as soon as one is created.

as.PowerRelation("12 > 2 > (1 ~ 2) > 12")

#! Warning in createLookupTables(equivalenceClasses): Found 2

duplicate coalitions, listed below. This violates transitivity and

can cause issues with certain ranking solutions. You may want to take

a look at socialranking::transitiveClosure().

#! - {2}

#! - {1, 2}
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## 12 > 2 > (1 ~ 2) > 12

Recall that a power relation is transitive, meaning for three coalitions x, y, z ∈ 2N , if xRy
and yRz, then xRz. If we introduce cycles, we pretty much introduce symmetry. Assume
we have the power relation x ≻ y ≻ x. Then, even though xRy and yRx are defined as
the asymmetric part of the power relation ≿, together they form the symmetric power
relation x ∼ y.

transitiveClosure(pr) is a function that turns a power relation with cycles into one
without one. In the process of removing duplicate coalitions, it turns all asymmectric
relations within a cycle into symmetric relations.

pr <- suppressWarnings(as.PowerRelation(list(1, 2, 1)))

pr

## 1 > 2 > 1

transitiveClosure(pr)

## (1 ~ 2)

# two cycles, (1>3>1) and (2>23>2)

pr <- suppressWarnings(

as.PowerRelation("1 > 3 > 1 > 2 > 23 > 2")

)

transitiveClosure(pr)

## (1 ~ 3) > (2 ~ 23)

# overlapping cycles

pr <- suppressWarnings(

as.PowerRelation("c > ac > b > ac > (a ~ b) > abc")

)

transitiveClosure(pr)

## c > (ac ~ b ~ a) > abc
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