

Network Working Group V. Jacobson
Request for Comments: 1323 LBL
Obsoletes: RFC 1072, RFC 1185 R. Braden
 ISI
 D. Borman
 Cray Research
 May 1992

 TCP Extensions for High Performance

Status of This Memo

 This RFC specifies an IAB standards track protocol for the Internet
 community, and requests discussion and suggestions for improvements.
 Please refer to the current edition of the "IAB Official Protocol
 Standards" for the standardization state and status of this protocol.
 Distribution of this memo is unlimited.

Abstract

 This memo presents a set of TCP extensions to improve performance
 over large bandwidth*delay product paths and to provide reliable
 operation over very high-speed paths. It defines new TCP options for
 scaled windows and timestamps, which are designed to provide
 compatible interworking with TCP’s that do not implement the
 extensions. The timestamps are used for two distinct mechanisms:
 RTTM (Round Trip Time Measurement) and PAWS (Protect Against Wrapped
 Sequences). Selective acknowledgments are not included in this memo.

 This memo combines and supersedes RFC-1072 and RFC-1185, adding
 additional clarification and more detailed specification. Appendix C
 summarizes the changes from the earlier RFCs.

TABLE OF CONTENTS

 1. Introduction ... 2
 2. TCP Window Scale Option 8
 3. RTTM -- Round-Trip Time Measurement 11
 4. PAWS -- Protect Against Wrapped Sequence Numbers 17
 5. Conclusions and Acknowledgments 25
 6. References ... 25
 APPENDIX A: Implementation Suggestions 27
 APPENDIX B: Duplicates from Earlier Connection Incarnations 27
 APPENDIX C: Changes from RFC-1072, RFC-1185 30
 APPENDIX D: Summary of Notation 31
 APPENDIX E: Event Processing 32
 Security Considerations .. 37

Jacobson, Braden, & Borman [Page 1]

RFC 1323 TCP Extensions for High Performance May 1992

 Authors’ Addresses ... 37

1. INTRODUCTION

 The TCP protocol [Postel81] was designed to operate reliably over
 almost any transmission medium regardless of transmission rate,
 delay, corruption, duplication, or reordering of segments.
 Production TCP implementations currently adapt to transfer rates in
 the range of 100 bps to 10**7 bps and round-trip delays in the range
 1 ms to 100 seconds. Recent work on TCP performance has shown that
 TCP can work well over a variety of Internet paths, ranging from 800
 Mbit/sec I/O channels to 300 bit/sec dial-up modems [Jacobson88a].

 The introduction of fiber optics is resulting in ever-higher
 transmission speeds, and the fastest paths are moving out of the
 domain for which TCP was originally engineered. This memo defines a
 set of modest extensions to TCP to extend the domain of its
 application to match this increasing network capability. It is based
 upon and obsoletes RFC-1072 [Jacobson88b] and RFC-1185 [Jacobson90b].

 There is no one-line answer to the question: "How fast can TCP go?".
 There are two separate kinds of issues, performance and reliability,
 and each depends upon different parameters. We discuss each in turn.

 1.1 TCP Performance

 TCP performance depends not upon the transfer rate itself, but
 rather upon the product of the transfer rate and the round-trip
 delay. This "bandwidth*delay product" measures the amount of data
 that would "fill the pipe"; it is the buffer space required at
 sender and receiver to obtain maximum throughput on the TCP
 connection over the path, i.e., the amount of unacknowledged data
 that TCP must handle in order to keep the pipeline full. TCP
 performance problems arise when the bandwidth*delay product is
 large. We refer to an Internet path operating in this region as a
 "long, fat pipe", and a network containing this path as an "LFN"
 (pronounced "elephan(t)").

 High-capacity packet satellite channels (e.g., DARPA’s Wideband
 Net) are LFN’s. For example, a DS1-speed satellite channel has a
 bandwidth*delay product of 10**6 bits or more; this corresponds to
 100 outstanding TCP segments of 1200 bytes each. Terrestrial
 fiber-optical paths will also fall into the LFN class; for
 example, a cross-country delay of 30 ms at a DS3 bandwidth
 (45Mbps) also exceeds 10**6 bits.

 There are three fundamental performance problems with the current
 TCP over LFN paths:

Jacobson, Braden, & Borman [Page 2]

RFC 1323 TCP Extensions for High Performance May 1992

 (1) Window Size Limit

 The TCP header uses a 16 bit field to report the receive
 window size to the sender. Therefore, the largest window
 that can be used is 2**16 = 65K bytes.

 To circumvent this problem, Section 2 of this memo defines a
 new TCP option, "Window Scale", to allow windows larger than
 2**16. This option defines an implicit scale factor, which
 is used to multiply the window size value found in a TCP
 header to obtain the true window size.

 (2) Recovery from Losses

 Packet losses in an LFN can have a catastrophic effect on
 throughput. Until recently, properly-operating TCP
 implementations would cause the data pipeline to drain with
 every packet loss, and require a slow-start action to
 recover. Recently, the Fast Retransmit and Fast Recovery
 algorithms [Jacobson90c] have been introduced. Their
 combined effect is to recover from one packet loss per
 window, without draining the pipeline. However, more than
 one packet loss per window typically results in a
 retransmission timeout and the resulting pipeline drain and
 slow start.

 Expanding the window size to match the capacity of an LFN
 results in a corresponding increase of the probability of
 more than one packet per window being dropped. This could
 have a devastating effect upon the throughput of TCP over an
 LFN. In addition, if a congestion control mechanism based
 upon some form of random dropping were introduced into
 gateways, randomly spaced packet drops would become common,
 possible increasing the probability of dropping more than one
 packet per window.

 To generalize the Fast Retransmit/Fast Recovery mechanism to
 handle multiple packets dropped per window, selective
 acknowledgments are required. Unlike the normal cumulative
 acknowledgments of TCP, selective acknowledgments give the
 sender a complete picture of which segments are queued at the
 receiver and which have not yet arrived. Some evidence in
 favor of selective acknowledgments has been published
 [NBS85], and selective acknowledgments have been included in
 a number of experimental Internet protocols -- VMTP
 [Cheriton88], NETBLT [Clark87], and RDP [Velten84], and
 proposed for OSI TP4 [NBS85]. However, in the non-LFN
 regime, selective acknowledgments reduce the number of

Jacobson, Braden, & Borman [Page 3]

RFC 1323 TCP Extensions for High Performance May 1992

 packets retransmitted but do not otherwise improve
 performance, making their complexity of questionable value.
 However, selective acknowledgments are expected to become
 much more important in the LFN regime.

 RFC-1072 defined a new TCP "SACK" option to send a selective
 acknowledgment. However, there are important technical
 issues to be worked out concerning both the format and
 semantics of the SACK option. Therefore, SACK has been
 omitted from this package of extensions. It is hoped that
 SACK can "catch up" during the standardization process.

 (3) Round-Trip Measurement

 TCP implements reliable data delivery by retransmitting
 segments that are not acknowledged within some retransmission
 timeout (RTO) interval. Accurate dynamic determination of an
 appropriate RTO is essential to TCP performance. RTO is
 determined by estimating the mean and variance of the
 measured round-trip time (RTT), i.e., the time interval
 between sending a segment and receiving an acknowledgment for
 it [Jacobson88a].

 Section 4 introduces a new TCP option, "Timestamps", and then
 defines a mechanism using this option that allows nearly
 every segment, including retransmissions, to be timed at
 negligible computational cost. We use the mnemonic RTTM
 (Round Trip Time Measurement) for this mechanism, to
 distinguish it from other uses of the Timestamps option.

 1.2 TCP Reliability

 Now we turn from performance to reliability. High transfer rate
 enters TCP performance through the bandwidth*delay product.
 However, high transfer rate alone can threaten TCP reliability by
 violating the assumptions behind the TCP mechanism for duplicate
 detection and sequencing.

 An especially serious kind of error may result from an accidental
 reuse of TCP sequence numbers in data segments. Suppose that an
 "old duplicate segment", e.g., a duplicate data segment that was
 delayed in Internet queues, is delivered to the receiver at the
 wrong moment, so that its sequence numbers falls somewhere within
 the current window. There would be no checksum failure to warn of
 the error, and the result could be an undetected corruption of the
 data. Reception of an old duplicate ACK segment at the
 transmitter could be only slightly less serious: it is likely to

Jacobson, Braden, & Borman [Page 4]

RFC 1323 TCP Extensions for High Performance May 1992

 lock up the connection so that no further progress can be made,
 forcing an RST on the connection.

 TCP reliability depends upon the existence of a bound on the
 lifetime of a segment: the "Maximum Segment Lifetime" or MSL. An
 MSL is generally required by any reliable transport protocol,
 since every sequence number field must be finite, and therefore
 any sequence number may eventually be reused. In the Internet
 protocol suite, the MSL bound is enforced by an IP-layer
 mechanism, the "Time-to-Live" or TTL field.

 Duplication of sequence numbers might happen in either of two
 ways:

 (1) Sequence number wrap-around on the current connection

 A TCP sequence number contains 32 bits. At a high enough
 transfer rate, the 32-bit sequence space may be "wrapped"
 (cycled) within the time that a segment is delayed in queues.

 (2) Earlier incarnation of the connection

 Suppose that a connection terminates, either by a proper
 close sequence or due to a host crash, and the same
 connection (i.e., using the same pair of sockets) is
 immediately reopened. A delayed segment from the terminated
 connection could fall within the current window for the new
 incarnation and be accepted as valid.

 Duplicates from earlier incarnations, Case (2), are avoided by
 enforcing the current fixed MSL of the TCP spec, as explained in
 Section 5.3 and Appendix B. However, case (1), avoiding the
 reuse of sequence numbers within the same connection, requires an
 MSL bound that depends upon the transfer rate, and at high enough
 rates, a new mechanism is required.

 More specifically, if the maximum effective bandwidth at which TCP
 is able to transmit over a particular path is B bytes per second,
 then the following constraint must be satisfied for error-free
 operation:

 2**31 / B > MSL (secs) [1]

 The following table shows the value for Twrap = 2**31/B in
 seconds, for some important values of the bandwidth B:

Jacobson, Braden, & Borman [Page 5]

RFC 1323 TCP Extensions for High Performance May 1992

 Network B*8 B Twrap
 bits/sec bytes/sec secs
 _______ _______ ______ ______

 ARPANET 56kbps 7KBps 3*10**5 (˜3.6 days)

 DS1 1.5Mbps 190KBps 10**4 (˜3 hours)

 Ethernet 10Mbps 1.25MBps 1700 (˜30 mins)

 DS3 45Mbps 5.6MBps 380

 FDDI 100Mbps 12.5MBps 170

 Gigabit 1Gbps 125MBps 17

 It is clear that wrap-around of the sequence space is not a
 problem for 56kbps packet switching or even 10Mbps Ethernets. On
 the other hand, at DS3 and FDDI speeds, Twrap is comparable to the
 2 minute MSL assumed by the TCP specification [Postel81]. Moving
 towards gigabit speeds, Twrap becomes too small for reliable
 enforcement by the Internet TTL mechanism.

 The 16-bit window field of TCP limits the effective bandwidth B to
 2**16/RTT, where RTT is the round-trip time in seconds
 [McKenzie89]. If the RTT is large enough, this limits B to a
 value that meets the constraint [1] for a large MSL value. For
 example, consider a transcontinental backbone with an RTT of 60ms
 (set by the laws of physics). With the bandwidth*delay product
 limited to 64KB by the TCP window size, B is then limited to
 1.1MBps, no matter how high the theoretical transfer rate of the
 path. This corresponds to cycling the sequence number space in
 Twrap= 2000 secs, which is safe in today’s Internet.

 It is important to understand that the culprit is not the larger
 window but rather the high bandwidth. For example, consider a
 (very large) FDDI LAN with a diameter of 10km. Using the speed of
 light, we can compute the RTT across the ring as
 (2*10**4)/(3*10**8) = 67 microseconds, and the delay*bandwidth
 product is then 833 bytes. A TCP connection across this LAN using
 a window of only 833 bytes will run at the full 100mbps and can
 wrap the sequence space in about 3 minutes, very close to the MSL
 of TCP. Thus, high speed alone can cause a reliability problem
 with sequence number wrap-around, even without extended windows.

 Watson’s Delta-T protocol [Watson81] includes network-layer
 mechanisms for precise enforcement of an MSL. In contrast, the IP

Jacobson, Braden, & Borman [Page 6]

RFC 1323 TCP Extensions for High Performance May 1992

 mechanism for MSL enforcement is loosely defined and even more
 loosely implemented in the Internet. Therefore, it is unwise to
 depend upon active enforcement of MSL for TCP connections, and it
 is unrealistic to imagine setting MSL’s smaller than the current
 values (e.g., 120 seconds specified for TCP).

 A possible fix for the problem of cycling the sequence space would
 be to increase the size of the TCP sequence number field. For
 example, the sequence number field (and also the acknowledgment
 field) could be expanded to 64 bits. This could be done either by
 changing the TCP header or by means of an additional option.

 Section 5 presents a different mechanism, which we call PAWS
 (Protect Against Wrapped Sequence numbers), to extend TCP
 reliability to transfer rates well beyond the foreseeable upper
 limit of network bandwidths. PAWS uses the TCP Timestamps option
 defined in Section 4 to protect against old duplicates from the
 same connection.

 1.3 Using TCP options

 The extensions defined in this memo all use new TCP options. We
 must address two possible issues concerning the use of TCP
 options: (1) compatibility and (2) overhead.

 We must pay careful attention to compatibility, i.e., to
 interoperation with existing implementations. The only TCP option
 defined previously, MSS, may appear only on a SYN segment. Every
 implementation should (and we expect that most will) ignore
 unknown options on SYN segments. However, some buggy TCP
 implementation might be crashed by the first appearance of an
 option on a non-SYN segment. Therefore, for each of the
 extensions defined below, TCP options will be sent on non-SYN
 segments only when an exchange of options on the SYN segments has
 indicated that both sides understand the extension. Furthermore,
 an extension option will be sent in a <SYN,ACK> segment only if
 the corresponding option was received in the initial <SYN>
 segment.

 A question may be raised about the bandwidth and processing
 overhead for TCP options. Those options that occur on SYN
 segments are not likely to cause a performance concern. Opening a
 TCP connection requires execution of significant special-case
 code, and the processing of options is unlikely to increase that
 cost significantly.

 On the other hand, a Timestamps option may appear in any data or
 ACK segment, adding 12 bytes to the 20-byte TCP header. We

Jacobson, Braden, & Borman [Page 7]

RFC 1323 TCP Extensions for High Performance May 1992

 believe that the bandwidth saved by reducing unnecessary
 retransmissions will more than pay for the extra header bandwidth.

 There is also an issue about the processing overhead for parsing
 the variable byte-aligned format of options, particularly with a
 RISC-architecture CPU. To meet this concern, Appendix A contains
 a recommended layout of the options in TCP headers to achieve
 reasonable data field alignment. In the spirit of Header
 Prediction, a TCP can quickly test for this layout and if it is
 verified then use a fast path. Hosts that use this canonical
 layout will effectively use the options as a set of fixed-format
 fields appended to the TCP header. However, to retain the
 philosophical and protocol framework of TCP options, a TCP must be
 prepared to parse an arbitrary options field, albeit with less
 efficiency.

 Finally, we observe that most of the mechanisms defined in this
 memo are important for LFN’s and/or very high-speed networks. For
 low-speed networks, it might be a performance optimization to NOT
 use these mechanisms. A TCP vendor concerned about optimal
 performance over low-speed paths might consider turning these
 extensions off for low-speed paths, or allow a user or
 installation manager to disable them.

2. TCP WINDOW SCALE OPTION

 2.1 Introduction

 The window scale extension expands the definition of the TCP
 window to 32 bits and then uses a scale factor to carry this 32-
 bit value in the 16-bit Window field of the TCP header (SEG.WND in
 RFC-793). The scale factor is carried in a new TCP option, Window
 Scale. This option is sent only in a SYN segment (a segment with
 the SYN bit on), hence the window scale is fixed in each direction
 when a connection is opened. (Another design choice would be to
 specify the window scale in every TCP segment. It would be
 incorrect to send a window scale option only when the scale factor
 changed, since a TCP option in an acknowledgement segment will not
 be delivered reliably (unless the ACK happens to be piggy-backed
 on data in the other direction). Fixing the scale when the
 connection is opened has the advantage of lower overhead but the
 disadvantage that the scale factor cannot be changed during the
 connection.)

 The maximum receive window, and therefore the scale factor, is
 determined by the maximum receive buffer space. In a typical
 modern implementation, this maximum buffer space is set by default

Jacobson, Braden, & Borman [Page 8]

RFC 1323 TCP Extensions for High Performance May 1992

 but can be overridden by a user program before a TCP connection is
 opened. This determines the scale factor, and therefore no new
 user interface is needed for window scaling.

 2.2 Window Scale Option

 The three-byte Window Scale option may be sent in a SYN segment by
 a TCP. It has two purposes: (1) indicate that the TCP is prepared
 to do both send and receive window scaling, and (2) communicate a
 scale factor to be applied to its receive window. Thus, a TCP
 that is prepared to scale windows should send the option, even if
 its own scale factor is 1. The scale factor is limited to a power
 of two and encoded logarithmically, so it may be implemented by
 binary shift operations.

 TCP Window Scale Option (WSopt):

 Kind: 3 Length: 3 bytes

 +---------+---------+---------+
 | Kind=3 |Length=3 |shift.cnt|
 +---------+---------+---------+

 This option is an offer, not a promise; both sides must send
 Window Scale options in their SYN segments to enable window
 scaling in either direction. If window scaling is enabled,
 then the TCP that sent this option will right-shift its true
 receive-window values by ’shift.cnt’ bits for transmission in
 SEG.WND. The value ’shift.cnt’ may be zero (offering to scale,
 while applying a scale factor of 1 to the receive window).

 This option may be sent in an initial <SYN> segment (i.e., a
 segment with the SYN bit on and the ACK bit off). It may also
 be sent in a <SYN,ACK> segment, but only if a Window Scale op-
 tion was received in the initial <SYN> segment. A Window Scale
 option in a segment without a SYN bit should be ignored.

 The Window field in a SYN (i.e., a <SYN> or <SYN,ACK>) segment
 itself is never scaled.

 2.3 Using the Window Scale Option

 A model implementation of window scaling is as follows, using the
 notation of RFC-793 [Postel81]:

 * All windows are treated as 32-bit quantities for storage in

Jacobson, Braden, & Borman [Page 9]

RFC 1323 TCP Extensions for High Performance May 1992

 the connection control block and for local calculations.
 This includes the send-window (SND.WND) and the receive-
 window (RCV.WND) values, as well as the congestion window.

 * The connection state is augmented by two window shift counts,
 Snd.Wind.Scale and Rcv.Wind.Scale, to be applied to the
 incoming and outgoing window fields, respectively.

 * If a TCP receives a <SYN> segment containing a Window Scale
 option, it sends its own Window Scale option in the <SYN,ACK>
 segment.

 * The Window Scale option is sent with shift.cnt = R, where R
 is the value that the TCP would like to use for its receive
 window.

 * Upon receiving a SYN segment with a Window Scale option
 containing shift.cnt = S, a TCP sets Snd.Wind.Scale to S and
 sets Rcv.Wind.Scale to R; otherwise, it sets both
 Snd.Wind.Scale and Rcv.Wind.Scale to zero.

 * The window field (SEG.WND) in the header of every incoming
 segment, with the exception of SYN segments, is left-shifted
 by Snd.Wind.Scale bits before updating SND.WND:

 SND.WND = SEG.WND << Snd.Wind.Scale

 (assuming the other conditions of RFC793 are met, and using
 the "C" notation "<<" for left-shift).

 * The window field (SEG.WND) of every outgoing segment, with
 the exception of SYN segments, is right-shifted by
 Rcv.Wind.Scale bits:

 SEG.WND = RCV.WND >> Rcv.Wind.Scale.

 TCP determines if a data segment is "old" or "new" by testing
 whether its sequence number is within 2**31 bytes of the left edge
 of the window, and if it is not, discarding the data as "old". To
 insure that new data is never mistakenly considered old and vice-
 versa, the left edge of the sender’s window has to be at most
 2**31 away from the right edge of the receiver’s window.
 Similarly with the sender’s right edge and receiver’s left edge.
 Since the right and left edges of either the sender’s or
 receiver’s window differ by the window size, and since the sender
 and receiver windows can be out of phase by at most the window
 size, the above constraints imply that 2 * the max window size

Jacobson, Braden, & Borman [Page 10]

RFC 1323 TCP Extensions for High Performance May 1992

 must be less than 2**31, or

 max window < 2**30

 Since the max window is 2**S (where S is the scaling shift count)
 times at most 2**16 - 1 (the maximum unscaled window), the maximum
 window is guaranteed to be < 2*30 if S <= 14. Thus, the shift
 count must be limited to 14 (which allows windows of 2**30 = 1
 Gbyte). If a Window Scale option is received with a shift.cnt
 value exceeding 14, the TCP should log the error but use 14
 instead of the specified value.

 The scale factor applies only to the Window field as transmitted
 in the TCP header; each TCP using extended windows will maintain
 the window values locally as 32-bit numbers. For example, the
 "congestion window" computed by Slow Start and Congestion
 Avoidance is not affected by the scale factor, so window scaling
 will not introduce quantization into the congestion window.

3. RTTM: ROUND-TRIP TIME MEASUREMENT

 3.1 Introduction

 Accurate and current RTT estimates are necessary to adapt to
 changing traffic conditions and to avoid an instability known as
 "congestion collapse" [Nagle84] in a busy network. However,
 accurate measurement of RTT may be difficult both in theory and in
 implementation.

 Many TCP implementations base their RTT measurements upon a sample
 of only one packet per window. While this yields an adequate
 approximation to the RTT for small windows, it results in an
 unacceptably poor RTT estimate for an LFN. If we look at RTT
 estimation as a signal processing problem (which it is), a data
 signal at some frequency, the packet rate, is being sampled at a
 lower frequency, the window rate. This lower sampling frequency
 violates Nyquist’s criteria and may therefore introduce "aliasing"
 artifacts into the estimated RTT [Hamming77].

 A good RTT estimator with a conservative retransmission timeout
 calculation can tolerate aliasing when the sampling frequency is
 "close" to the data frequency. For example, with a window of 8
 packets, the sample rate is 1/8 the data frequency -- less than an
 order of magnitude different. However, when the window is tens or
 hundreds of packets, the RTT estimator may be seriously in error,
 resulting in spurious retransmissions.

 If there are dropped packets, the problem becomes worse. Zhang

Jacobson, Braden, & Borman [Page 11]

RFC 1323 TCP Extensions for High Performance May 1992

 [Zhang86], Jain [Jain86] and Karn [Karn87] have shown that it is
 not possible to accumulate reliable RTT estimates if retransmitted
 segments are included in the estimate. Since a full window of
 data will have been transmitted prior to a retransmission, all of
 the segments in that window will have to be ACKed before the next
 RTT sample can be taken. This means at least an additional
 window’s worth of time between RTT measurements and, as the error
 rate approaches one per window of data (e.g., 10**-6 errors per
 bit for the Wideband satellite network), it becomes effectively
 impossible to obtain a valid RTT measurement.

 A solution to these problems, which actually simplifies the sender
 substantially, is as follows: using TCP options, the sender places
 a timestamp in each data segment, and the receiver reflects these
 timestamps back in ACK segments. Then a single subtract gives the
 sender an accurate RTT measurement for every ACK segment (which
 will correspond to every other data segment, with a sensible
 receiver). We call this the RTTM (Round-Trip Time Measurement)
 mechanism.

 It is vitally important to use the RTTM mechanism with big
 windows; otherwise, the door is opened to some dangerous
 instabilities due to aliasing. Furthermore, the option is
 probably useful for all TCP’s, since it simplifies the sender.

 3.2 TCP Timestamps Option

 TCP is a symmetric protocol, allowing data to be sent at any time
 in either direction, and therefore timestamp echoing may occur in
 either direction. For simplicity and symmetry, we specify that
 timestamps always be sent and echoed in both directions. For
 efficiency, we combine the timestamp and timestamp reply fields
 into a single TCP Timestamps Option.

Jacobson, Braden, & Borman [Page 12]

RFC 1323 TCP Extensions for High Performance May 1992

 TCP Timestamps Option (TSopt):

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 4

 The Timestamps option carries two four-byte timestamp fields.
 The Timestamp Value field (TSval) contains the current value of
 the timestamp clock of the TCP sending the option.

 The Timestamp Echo Reply field (TSecr) is only valid if the ACK
 bit is set in the TCP header; if it is valid, it echos a times-
 tamp value that was sent by the remote TCP in the TSval field
 of a Timestamps option. When TSecr is not valid, its value
 must be zero. The TSecr value will generally be from the most
 recent Timestamp option that was received; however, there are
 exceptions that are explained below.

 A TCP may send the Timestamps option (TSopt) in an initial
 <SYN> segment (i.e., segment containing a SYN bit and no ACK
 bit), and may send a TSopt in other segments only if it re-
 ceived a TSopt in the initial <SYN> segment for the connection.

 3.3 The RTTM Mechanism

 The timestamp value to be sent in TSval is to be obtained from a
 (virtual) clock that we call the "timestamp clock". Its values
 must be at least approximately proportional to real time, in order
 to measure actual RTT.

 The following example illustrates a one-way data flow with
 segments arriving in sequence without loss. Here A, B, C...
 represent data blocks occupying successive blocks of sequence
 numbers, and ACK(A),... represent the corresponding cumulative
 acknowledgments. The two timestamp fields of the Timestamps
 option are shown symbolically as <TSval= x,TSecr=y>. Each TSecr
 field contains the value most recently received in a TSval field.

Jacobson, Braden, & Borman [Page 13]

RFC 1323 TCP Extensions for High Performance May 1992

 TCP A TCP B

 <A,TSval=1,TSecr=120> ------>

 <---- <ACK(A),TSval=127,TSecr=1>

 <B,TSval=5,TSecr=127> ------>

 <---- <ACK(B),TSval=131,TSecr=5>

 .

 <C,TSval=65,TSecr=131> ------>

 <---- <ACK(C),TSval=191,TSecr=65>

 (etc)

 The dotted line marks a pause (60 time units long) in which A had
 nothing to send. Note that this pause inflates the RTT which B
 could infer from receiving TSecr=131 in data segment C. Thus, in
 one-way data flows, RTTM in the reverse direction measures a value
 that is inflated by gaps in sending data. However, the following
 rule prevents a resulting inflation of the measured RTT:

 A TSecr value received in a segment is used to update the
 averaged RTT measurement only if the segment acknowledges
 some new data, i.e., only if it advances the left edge of the
 send window.

 Since TCP B is not sending data, the data segment C does not
 acknowledge any new data when it arrives at B. Thus, the inflated
 RTTM measurement is not used to update B’s RTTM measurement.

 3.4 Which Timestamp to Echo

 If more than one Timestamps option is received before a reply
 segment is sent, the TCP must choose only one of the TSvals to
 echo, ignoring the others. To minimize the state kept in the
 receiver (i.e., the number of unprocessed TSvals), the receiver
 should be required to retain at most one timestamp in the
 connection control block.

Jacobson, Braden, & Borman [Page 14]

RFC 1323 TCP Extensions for High Performance May 1992

 There are three situations to consider:

 (A) Delayed ACKs.

 Many TCP’s acknowledge only every Kth segment out of a group
 of segments arriving within a short time interval; this
 policy is known generally as "delayed ACKs". The data-sender
 TCP must measure the effective RTT, including the additional
 time due to delayed ACKs, or else it will retransmit
 unnecessarily. Thus, when delayed ACKs are in use, the
 receiver should reply with the TSval field from the earliest
 unacknowledged segment.

 (B) A hole in the sequence space (segment(s) have been lost).

 The sender will continue sending until the window is filled,
 and the receiver may be generating ACKs as these out-of-order
 segments arrive (e.g., to aid "fast retransmit").

 The lost segment is probably a sign of congestion, and in
 that situation the sender should be conservative about
 retransmission. Furthermore, it is better to overestimate
 than underestimate the RTT. An ACK for an out-of-order
 segment should therefore contain the timestamp from the most
 recent segment that advanced the window.

 The same situation occurs if segments are re-ordered by the
 network.

 (C) A filled hole in the sequence space.

 The segment that fills the hole represents the most recent
 measurement of the network characteristics. On the other
 hand, an RTT computed from an earlier segment would probably
 include the sender’s retransmit time-out, badly biasing the
 sender’s average RTT estimate. Thus, the timestamp from the
 latest segment (which filled the hole) must be echoed.

 An algorithm that covers all three cases is described in the
 following rules for Timestamps option processing on a synchronized
 connection:

 (1) The connection state is augmented with two 32-bit slots:
 TS.Recent holds a timestamp to be echoed in TSecr whenever a
 segment is sent, and Last.ACK.sent holds the ACK field from
 the last segment sent. Last.ACK.sent will equal RCV.NXT
 except when ACKs have been delayed.

Jacobson, Braden, & Borman [Page 15]

RFC 1323 TCP Extensions for High Performance May 1992

 (2) If Last.ACK.sent falls within the range of sequence numbers
 of an incoming segment:

 SEG.SEQ <= Last.ACK.sent < SEG.SEQ + SEG.LEN

 then the TSval from the segment is copied to TS.Recent;
 otherwise, the TSval is ignored.

 (3) When a TSopt is sent, its TSecr field is set to the current
 TS.Recent value.

 The following examples illustrate these rules. Here A, B, C...
 represent data segments occupying successive blocks of sequence
 numbers, and ACK(A),... represent the corresponding
 acknowledgment segments. Note that ACK(A) has the same sequence
 number as B. We show only one direction of timestamp echoing, for
 clarity.

 o Packets arrive in sequence, and some of the ACKs are delayed.

 By Case (A), the timestamp from the oldest unacknowledged
 segment is echoed.

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <B, TSval=2> ------------------->
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(C), TSecr=1>
 (etc)

 o Packets arrive out of order, and every packet is
 acknowledged.

 By Case (B), the timestamp from the last segment that
 advanced the left window edge is echoed, until the missing
 segment arrives; it is echoed according to Case (C). The
 same sequence would occur if segments B and D were lost and
 retransmitted..

Jacobson, Braden, & Borman [Page 16]

RFC 1323 TCP Extensions for High Performance May 1992

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <B, TSval=2> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <E, TSval=5> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <D, TSval=4> ------------------->
 4
 <---- <ACK(E), TSecr=4>
 (etc)

4. PAWS: PROTECT AGAINST WRAPPED SEQUENCE NUMBERS

 4.1 Introduction

 Section 4.2 describes a simple mechanism to reject old duplicate
 segments that might corrupt an open TCP connection; we call this
 mechanism PAWS (Protect Against Wrapped Sequence numbers). PAWS
 operates within a single TCP connection, using state that is saved
 in the connection control block. Section 4.3 and Appendix C
 discuss the implications of the PAWS mechanism for avoiding old
 duplicates from previous incarnations of the same connection.

 4.2 The PAWS Mechanism

 PAWS uses the same TCP Timestamps option as the RTTM mechanism
 described earlier, and assumes that every received TCP segment
 (including data and ACK segments) contains a timestamp SEG.TSval
 whose values are monotone non-decreasing in time. The basic idea
 is that a segment can be discarded as an old duplicate if it is
 received with a timestamp SEG.TSval less than some timestamp
 recently received on this connection.

 In both the PAWS and the RTTM mechanism, the "timestamps" are 32-

Jacobson, Braden, & Borman [Page 17]

RFC 1323 TCP Extensions for High Performance May 1992

 bit unsigned integers in a modular 32-bit space. Thus, "less
 than" is defined the same way it is for TCP sequence numbers, and
 the same implementation techniques apply. If s and t are
 timestamp values, s < t if 0 < (t - s) < 2**31, computed in
 unsigned 32-bit arithmetic.

 The choice of incoming timestamps to be saved for this comparison
 must guarantee a value that is monotone increasing. For example,
 we might save the timestamp from the segment that last advanced
 the left edge of the receive window, i.e., the most recent in-
 sequence segment. Instead, we choose the value TS.Recent
 introduced in Section 3.4 for the RTTM mechanism, since using a
 common value for both PAWS and RTTM simplifies the implementation
 of both. As Section 3.4 explained, TS.Recent differs from the
 timestamp from the last in-sequence segment only in the case of
 delayed ACKs, and therefore by less than one window. Either
 choice will therefore protect against sequence number wrap-around.

 RTTM was specified in a symmetrical manner, so that TSval
 timestamps are carried in both data and ACK segments and are
 echoed in TSecr fields carried in returning ACK or data segments.
 PAWS submits all incoming segments to the same test, and therefore
 protects against duplicate ACK segments as well as data segments.
 (An alternative un-symmetric algorithm would protect against old
 duplicate ACKs: the sender of data would reject incoming ACK
 segments whose TSecr values were less than the TSecr saved from
 the last segment whose ACK field advanced the left edge of the
 send window. This algorithm was deemed to lack economy of
 mechanism and symmetry.)

 TSval timestamps sent on {SYN} and {SYN,ACK} segments are used to
 initialize PAWS. PAWS protects against old duplicate non-SYN
 segments, and duplicate SYN segments received while there is a
 synchronized connection. Duplicate {SYN} and {SYN,ACK} segments
 received when there is no connection will be discarded by the
 normal 3-way handshake and sequence number checks of TCP.

 It is recommended that RST segments NOT carry timestamps, and that
 RST segments be acceptable regardless of their timestamp. Old
 duplicate RST segments should be exceedingly unlikely, and their
 cleanup function should take precedence over timestamps.

 4.2.1 Basic PAWS Algorithm

 The PAWS algorithm requires the following processing to be
 performed on all incoming segments for a synchronized
 connection:

Jacobson, Braden, & Borman [Page 18]

RFC 1323 TCP Extensions for High Performance May 1992

 R1) If there is a Timestamps option in the arriving segment
 and SEG.TSval < TS.Recent and if TS.Recent is valid (see
 later discussion), then treat the arriving segment as not
 acceptable:

 Send an acknowledgement in reply as specified in
 RFC-793 page 69 and drop the segment.

 Note: it is necessary to send an ACK segment in order
 to retain TCP’s mechanisms for detecting and
 recovering from half-open connections. For example,
 see Figure 10 of RFC-793.

 R2) If the segment is outside the window, reject it (normal
 TCP processing)

 R3) If an arriving segment satisfies: SEG.SEQ <= Last.ACK.sent
 (see Section 3.4), then record its timestamp in TS.Recent.

 R4) If an arriving segment is in-sequence (i.e., at the left
 window edge), then accept it normally.

 R5) Otherwise, treat the segment as a normal in-window, out-
 of-sequence TCP segment (e.g., queue it for later delivery
 to the user).

 Steps R2, R4, and R5 are the normal TCP processing steps
 specified by RFC-793.

 It is important to note that the timestamp is checked only when
 a segment first arrives at the receiver, regardless of whether
 it is in-sequence or it must be queued for later delivery.
 Consider the following example.

 Suppose the segment sequence: A.1, B.1, C.1, ..., Z.1 has
 been sent, where the letter indicates the sequence number
 and the digit represents the timestamp. Suppose also that
 segment B.1 has been lost. The timestamp in TS.TStamp is
 1 (from A.1), so C.1, ..., Z.1 are considered acceptable
 and are queued. When B is retransmitted as segment B.2
 (using the latest timestamp), it fills the hole and causes
 all the segments through Z to be acknowledged and passed
 to the user. The timestamps of the queued segments are
 not inspected again at this time, since they have
 already been accepted. When B.2 is accepted, TS.Stamp is
 set to 2.

 This rule allows reasonable performance under loss. A full

Jacobson, Braden, & Borman [Page 19]

RFC 1323 TCP Extensions for High Performance May 1992

 window of data is in transit at all times, and after a loss a
 full window less one packet will show up out-of-sequence to be
 queued at the receiver (e.g., up to ˜2**30 bytes of data); the
 timestamp option must not result in discarding this data.

 In certain unlikely circumstances, the algorithm of rules R1-R4
 could lead to discarding some segments unnecessarily, as shown
 in the following example:

 Suppose again that segments: A.1, B.1, C.1, ..., Z.1 have
 been sent in sequence and that segment B.1 has been lost.
 Furthermore, suppose delivery of some of C.1, ... Z.1 is
 delayed until AFTER the retransmission B.2 arrives at the
 receiver. These delayed segments will be discarded
 unnecessarily when they do arrive, since their timestamps
 are now out of date.

 This case is very unlikely to occur. If the retransmission was
 triggered by a timeout, some of the segments C.1, ... Z.1 must
 have been delayed longer than the RTO time. This is presumably
 an unlikely event, or there would be many spurious timeouts and
 retransmissions. If B’s retransmission was triggered by the
 "fast retransmit" algorithm, i.e., by duplicate ACKs, then the
 queued segments that caused these ACKs must have been received
 already.

 Even if a segment were delayed past the RTO, the Fast
 Retransmit mechanism [Jacobson90c] will cause the delayed
 packets to be retransmitted at the same time as B.2, avoiding
 an extra RTT and therefore causing a very small performance
 penalty.

 We know of no case with a significant probability of occurrence
 in which timestamps will cause performance degradation by
 unnecessarily discarding segments.

 4.2.2 Timestamp Clock

 It is important to understand that the PAWS algorithm does not
 require clock synchronization between sender and receiver. The
 sender’s timestamp clock is used to stamp the segments, and the
 sender uses the echoed timestamp to measure RTT’s. However,
 the receiver treats the timestamp as simply a monotone-
 increasing serial number, without any necessary connection to
 its clock. From the receiver’s viewpoint, the timestamp is
 acting as a logical extension of the high-order bits of the
 sequence number.

Jacobson, Braden, & Borman [Page 20]

RFC 1323 TCP Extensions for High Performance May 1992

 The receiver algorithm does place some requirements on the
 frequency of the timestamp clock.

 (a) The timestamp clock must not be "too slow".

 It must tick at least once for each 2**31 bytes sent. In
 fact, in order to be useful to the sender for round trip
 timing, the clock should tick at least once per window’s
 worth of data, and even with the RFC-1072 window
 extension, 2**31 bytes must be at least two windows.

 To make this more quantitative, any clock faster than 1
 tick/sec will reject old duplicate segments for link
 speeds of ˜8 Gbps. A 1ms timestamp clock will work at
 link speeds up to 8 Tbps (8*10**12) bps!

 (b) The timestamp clock must not be "too fast".

 Its recycling time must be greater than MSL seconds.
 Since the clock (timestamp) is 32 bits and the worst-case
 MSL is 255 seconds, the maximum acceptable clock frequency
 is one tick every 59 ns.

 However, it is desirable to establish a much longer
 recycle period, in order to handle outdated timestamps on
 idle connections (see Section 4.2.3), and to relax the MSL
 requirement for preventing sequence number wrap-around.
 With a 1 ms timestamp clock, the 32-bit timestamp will
 wrap its sign bit in 24.8 days. Thus, it will reject old
 duplicates on the same connection if MSL is 24.8 days or
 less. This appears to be a very safe figure; an MSL of
 24.8 days or longer can probably be assumed by the gateway
 system without requiring precise MSL enforcement by the
 TTL value in the IP layer.

 Based upon these considerations, we choose a timestamp clock
 frequency in the range 1 ms to 1 sec per tick. This range also
 matches the requirements of the RTTM mechanism, which does not
 need much more resolution than the granularity of the
 retransmit timer, e.g., tens or hundreds of milliseconds.

 The PAWS mechanism also puts a strong monotonicity requirement
 on the sender’s timestamp clock. The method of implementation
 of the timestamp clock to meet this requirement depends upon
 the system hardware and software.

 * Some hosts have a hardware clock that is guaranteed to be
 monotonic between hardware resets.

Jacobson, Braden, & Borman [Page 21]

RFC 1323 TCP Extensions for High Performance May 1992

 * A clock interrupt may be used to simply increment a binary
 integer by 1 periodically.

 * The timestamp clock may be derived from a system clock
 that is subject to being abruptly changed, by adding a
 variable offset value. This offset is initialized to
 zero. When a new timestamp clock value is needed, the
 offset can be adjusted as necessary to make the new value
 equal to or larger than the previous value (which was
 saved for this purpose).

 4.2.3 Outdated Timestamps

 If a connection remains idle long enough for the timestamp
 clock of the other TCP to wrap its sign bit, then the value
 saved in TS.Recent will become too old; as a result, the PAWS
 mechanism will cause all subsequent segments to be rejected,
 freezing the connection (until the timestamp clock wraps its
 sign bit again).

 With the chosen range of timestamp clock frequencies (1 sec to
 1 ms), the time to wrap the sign bit will be between 24.8 days
 and 24800 days. A TCP connection that is idle for more than 24
 days and then comes to life is exceedingly unusual. However,
 it is undesirable in principle to place any limitation on TCP
 connection lifetimes.

 We therefore require that an implementation of PAWS include a
 mechanism to "invalidate" the TS.Recent value when a connection
 is idle for more than 24 days. (An alternative solution to the
 problem of outdated timestamps would be to send keepalive
 segments at a very low rate, but still more often than the
 wrap-around time for timestamps, e.g., once a day. This would
 impose negligible overhead. However, the TCP specification has
 never included keepalives, so the solution based upon
 invalidation was chosen.)

 Note that a TCP does not know the frequency, and therefore, the
 wraparound time, of the other TCP, so it must assume the worst.
 The validity of TS.Recent needs to be checked only if the basic
 PAWS timestamp check fails, i.e., only if SEG.TSval <
 TS.Recent. If TS.Recent is found to be invalid, then the
 segment is accepted, regardless of the failure of the timestamp
 check, and rule R3 updates TS.Recent with the TSval from the
 new segment.

 To detect how long the connection has been idle, the TCP may

Jacobson, Braden, & Borman [Page 22]

RFC 1323 TCP Extensions for High Performance May 1992

 update a clock or timestamp value associated with the
 connection whenever TS.Recent is updated, for example. The
 details will be implementation-dependent.

 4.2.4 Header Prediction

 "Header prediction" [Jacobson90a] is a high-performance
 transport protocol implementation technique that is most
 important for high-speed links. This technique optimizes the
 code for the most common case, receiving a segment correctly
 and in order. Using header prediction, the receiver asks the
 question, "Is this segment the next in sequence?" This
 question can be answered in fewer machine instructions than the
 question, "Is this segment within the window?"

 Adding header prediction to our timestamp procedure leads to
 the following recommended sequence for processing an arriving
 TCP segment:

 H1) Check timestamp (same as step R1 above)

 H2) Do header prediction: if segment is next in sequence and
 if there are no special conditions requiring additional
 processing, accept the segment, record its timestamp, and
 skip H3.

 H3) Process the segment normally, as specified in RFC-793.
 This includes dropping segments that are outside the win-
 dow and possibly sending acknowledgments, and queueing
 in-window, out-of-sequence segments.

 Another possibility would be to interchange steps H1 and H2,
 i.e., to perform the header prediction step H2 FIRST, and
 perform H1 and H3 only when header prediction fails. This
 could be a performance improvement, since the timestamp check
 in step H1 is very unlikely to fail, and it requires interval
 arithmetic on a finite field, a relatively expensive operation.
 To perform this check on every single segment is contrary to
 the philosophy of header prediction. We believe that this
 change might reduce CPU time for TCP protocol processing by up
 to 5-10% on high-speed networks.

 However, putting H2 first would create a hazard: a segment from
 2**32 bytes in the past might arrive at exactly the wrong time
 and be accepted mistakenly by the header-prediction step. The
 following reasoning has been introduced [Jacobson90b] to show
 that the probability of this failure is negligible.

Jacobson, Braden, & Borman [Page 23]

RFC 1323 TCP Extensions for High Performance May 1992

 If all segments are equally likely to show up as old
 duplicates, then the probability of an old duplicate
 exactly matching the left window edge is the maximum
 segment size (MSS) divided by the size of the sequence
 space. This ratio must be less than 2**-16, since MSS
 must be < 2**16; for example, it will be (2**12)/(2**32) =
 2**-20 for an FDDI link. However, the older a segment is,
 the less likely it is to be retained in the Internet, and
 under any reasonable model of segment lifetime the
 probability of an old duplicate exactly at the left window
 edge must be much smaller than 2**-16.

 The 16 bit TCP checksum also allows a basic unreliability
 of one part in 2**16. A protocol mechanism whose
 reliability exceeds the reliability of the TCP checksum
 should be considered "good enough", i.e., it won’t
 contribute significantly to the overall error rate. We
 therefore believe we can ignore the problem of an old
 duplicate being accepted by doing header prediction before
 checking the timestamp.

 However, this probabilistic argument is not universally
 accepted, and the consensus at present is that the performance
 gain does not justify the hazard in the general case. It is
 therefore recommended that H2 follow H1.

 4.3. Duplicates from Earlier Incarnations of Connection

 The PAWS mechanism protects against errors due to sequence number
 wrap-around on high-speed connection. Segments from an earlier
 incarnation of the same connection are also a potential cause of
 old duplicate errors. In both cases, the TCP mechanisms to
 prevent such errors depend upon the enforcement of a maximum
 segment lifetime (MSL) by the Internet (IP) layer (see Appendix of
 RFC-1185 for a detailed discussion). Unlike the case of sequence
 space wrap-around, the MSL required to prevent old duplicate
 errors from earlier incarnations does not depend upon the transfer
 rate. If the IP layer enforces the recommended 2 minute MSL of
 TCP, and if the TCP rules are followed, TCP connections will be
 safe from earlier incarnations, no matter how high the network
 speed. Thus, the PAWS mechanism is not required for this case.

 We may still ask whether the PAWS mechanism can provide additional
 security against old duplicates from earlier connections, allowing
 us to relax the enforcement of MSL by the IP layer. Appendix B
 explores this question, showing that further assumptions and/or
 mechanisms are required, beyond those of PAWS. This is not part
 of the current extension.

Jacobson, Braden, & Borman [Page 24]

RFC 1323 TCP Extensions for High Performance May 1992

5. CONCLUSIONS AND ACKNOWLEDGMENTS

 This memo presented a set of extensions to TCP to provide efficient
 operation over large-bandwidth*delay-product paths and reliable
 operation over very high-speed paths. These extensions are designed
 to provide compatible interworking with TCP’s that do not implement
 the extensions.

 These mechanisms are implemented using new TCP options for scaled
 windows and timestamps. The timestamps are used for two distinct
 mechanisms: RTTM (Round Trip Time Measurement) and PAWS (Protect
 Against Wrapped Sequences).

 The Window Scale option was originally suggested by Mike St. Johns of
 USAF/DCA. The present form of the option was suggested by Mike
 Karels of UC Berkeley in response to a more cumbersome scheme defined
 by Van Jacobson. Lixia Zhang helped formulate the PAWS mechanism
 description in RFC-1185.

 Finally, much of this work originated as the result of discussions
 within the End-to-End Task Force on the theoretical limitations of
 transport protocols in general and TCP in particular. More recently,
 task force members and other on the end2end-interest list have made
 valuable contributions by pointing out flaws in the algorithms and
 the documentation. The authors are grateful for all these
 contributions.

6. REFERENCES

 [Clark87] Clark, D., Lambert, M., and L. Zhang, "NETBLT: A Bulk
 Data Transfer Protocol", RFC 998, MIT, March 1987.

 [Garlick77] Garlick, L., R. Rom, and J. Postel, "Issues in
 Reliable Host-to-Host Protocols", Proc. Second Berkeley Workshop
 on Distributed Data Management and Computer Networks, May 1977.

 [Hamming77] Hamming, R., "Digital Filters", ISBN 0-13-212571-4,
 Prentice Hall, Englewood Cliffs, N.J., 1977.

 [Cheriton88] Cheriton, D., "VMTP: Versatile Message Transaction
 Protocol", RFC 1045, Stanford University, February 1988.

 [Jacobson88a] Jacobson, V., "Congestion Avoidance and Control",
 SIGCOMM ’88, Stanford, CA., August 1988.

 [Jacobson88b] Jacobson, V., and R. Braden, "TCP Extensions for
 Long-Delay Paths", RFC-1072, LBL and USC/Information Sciences
 Institute, October 1988.

Jacobson, Braden, & Borman [Page 25]

RFC 1323 TCP Extensions for High Performance May 1992

 [Jacobson90a] Jacobson, V., "4BSD Header Prediction", ACM
 Computer Communication Review, April 1990.

 [Jacobson90b] Jacobson, V., Braden, R., and Zhang, L., "TCP
 Extension for High-Speed Paths", RFC-1185, LBL and USC/Information
 Sciences Institute, October 1990.

 [Jacobson90c] Jacobson, V., "Modified TCP congestion avoidance
 algorithm", Message to end2end-interest mailing list, April 1990.

 [Jain86] Jain, R., "Divergence of Timeout Algorithms for Packet
 Retransmissions", Proc. Fifth Phoenix Conf. on Comp. and Comm.,
 Scottsdale, Arizona, March 1986.

 [Karn87] Karn, P. and C. Partridge, "Estimating Round-Trip Times
 in Reliable Transport Protocols", Proc. SIGCOMM ’87, Stowe, VT,
 August 1987.

 [McKenzie89] McKenzie, A., "A Problem with the TCP Big Window
 Option", RFC 1110, BBN STC, August 1989.

 [Nagle84] Nagle, J., "Congestion Control in IP/TCP
 Internetworks", RFC 896, FACC, January 1984.

 [NBS85] Colella, R., Aronoff, R., and K. Mills, "Performance
 Improvements for ISO Transport", Ninth Data Comm Symposium,
 published in ACM SIGCOMM Comp Comm Review, vol. 15, no. 5,
 September 1985.

 [Postel81] Postel, J., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification", RFC 793, DARPA,
 September 1981.

 [Velten84] Velten, D., Hinden, R., and J. Sax, "Reliable Data
 Protocol", RFC 908, BBN, July 1984.

 [Watson81] Watson, R., "Timer-based Mechanisms in Reliable
 Transport Protocol Connection Management", Computer Networks, Vol.
 5, 1981.

 [Zhang86] Zhang, L., "Why TCP Timers Don’t Work Well", Proc.
 SIGCOMM ’86, Stowe, Vt., August 1986.

Jacobson, Braden, & Borman [Page 26]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX A: IMPLEMENTATION SUGGESTIONS

 The following layouts are recommended for sending options on non-SYN
 segments, to achieve maximum feasible alignment of 32-bit and 64-bit
 machines.

 +--------+--------+--------+--------+
 | NOP | NOP | TSopt | 10 |
 +--------+--------+--------+--------+
 | TSval timestamp |
 +--------+--------+--------+--------+
 | TSecr timestamp |
 +--------+--------+--------+--------+

APPENDIX B: DUPLICATES FROM EARLIER CONNECTION INCARNATIONS

 There are two cases to be considered: (1) a system crashing (and
 losing connection state) and restarting, and (2) the same connection
 being closed and reopened without a loss of host state. These will
 be described in the following two sections.

 B.1 System Crash with Loss of State

 TCP’s quiet time of one MSL upon system startup handles the loss
 of connection state in a system crash/restart. For an
 explanation, see for example "When to Keep Quiet" in the TCP
 protocol specification [Postel81]. The MSL that is required here
 does not depend upon the transfer speed. The current TCP MSL of 2
 minutes seems acceptable as an operational compromise, as many
 host systems take this long to boot after a crash.

 However, the timestamp option may be used to ease the MSL
 requirements (or to provide additional security against data
 corruption). If timestamps are being used and if the timestamp
 clock can be guaranteed to be monotonic over a system
 crash/restart, i.e., if the first value of the sender’s timestamp
 clock after a crash/restart can be guaranteed to be greater than
 the last value before the restart, then a quiet time will be
 unnecessary.

 To dispense totally with the quiet time would require that the
 host clock be synchronized to a time source that is stable over
 the crash/restart period, with an accuracy of one timestamp clock
 tick or better. We can back off from this strict requirement to
 take advantage of approximate clock synchronization. Suppose that
 the clock is always re-synchronized to within N timestamp clock

Jacobson, Braden, & Borman [Page 27]

RFC 1323 TCP Extensions for High Performance May 1992

 ticks and that booting (extended with a quiet time, if necessary)
 takes more than N ticks. This will guarantee monotonicity of the
 timestamps, which can then be used to reject old duplicates even
 without an enforced MSL.

 B.2 Closing and Reopening a Connection

 When a TCP connection is closed, a delay of 2*MSL in TIME-WAIT
 state ties up the socket pair for 4 minutes (see Section 3.5 of
 [Postel81]. Applications built upon TCP that close one connection
 and open a new one (e.g., an FTP data transfer connection using
 Stream mode) must choose a new socket pair each time. The TIME-
 WAIT delay serves two different purposes:

 (a) Implement the full-duplex reliable close handshake of TCP.

 The proper time to delay the final close step is not really
 related to the MSL; it depends instead upon the RTO for the
 FIN segments and therefore upon the RTT of the path. (It
 could be argued that the side that is sending a FIN knows
 what degree of reliability it needs, and therefore it should
 be able to determine the length of the TIME-WAIT delay for
 the FIN’s recipient. This could be accomplished with an
 appropriate TCP option in FIN segments.)

 Although there is no formal upper-bound on RTT, common
 network engineering practice makes an RTT greater than 1
 minute very unlikely. Thus, the 4 minute delay in TIME-WAIT
 state works satisfactorily to provide a reliable full-duplex
 TCP close. Note again that this is independent of MSL
 enforcement and network speed.

 The TIME-WAIT state could cause an indirect performance
 problem if an application needed to repeatedly close one
 connection and open another at a very high frequency, since
 the number of available TCP ports on a host is less than
 2**16. However, high network speeds are not the major
 contributor to this problem; the RTT is the limiting factor
 in how quickly connections can be opened and closed.
 Therefore, this problem will be no worse at high transfer
 speeds.

 (b) Allow old duplicate segments to expire.

 To replace this function of TIME-WAIT state, a mechanism
 would have to operate across connections. PAWS is defined
 strictly within a single connection; the last timestamp is
 TS.Recent is kept in the connection control block, and

Jacobson, Braden, & Borman [Page 28]

RFC 1323 TCP Extensions for High Performance May 1992

 discarded when a connection is closed.

 An additional mechanism could be added to the TCP, a per-host
 cache of the last timestamp received from any connection.
 This value could then be used in the PAWS mechanism to reject
 old duplicate segments from earlier incarnations of the
 connection, if the timestamp clock can be guaranteed to have
 ticked at least once since the old connection was open. This
 would require that the TIME-WAIT delay plus the RTT together
 must be at least one tick of the sender’s timestamp clock.
 Such an extension is not part of the proposal of this RFC.

 Note that this is a variant on the mechanism proposed by
 Garlick, Rom, and Postel [Garlick77], which required each
 host to maintain connection records containing the highest
 sequence numbers on every connection. Using timestamps
 instead, it is only necessary to keep one quantity per remote
 host, regardless of the number of simultaneous connections to
 that host.

Jacobson, Braden, & Borman [Page 29]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX C: CHANGES FROM RFC-1072, RFC-1185

 The protocol extensions defined in this document differ in several
 important ways from those defined in RFC-1072 and RFC-1185.

 (a) SACK has been deferred to a later memo.

 (b) The detailed rules for sending timestamp replies (see Section
 3.4) differ in important ways. The earlier rules could result
 in an under-estimate of the RTT in certain cases (packets
 dropped or out of order).

 (c) The same value TS.Recent is now shared by the two distinct
 mechanisms RTTM and PAWS. This simplification became possible
 because of change (b).

 (d) An ambiguity in RFC-1185 was resolved in favor of putting
 timestamps on ACK as well as data segments. This supports the
 symmetry of the underlying TCP protocol.

 (e) The echo and echo reply options of RFC-1072 were combined into a
 single Timestamps option, to reflect the symmetry and to
 simplify processing.

 (f) The problem of outdated timestamps on long-idle connections,
 discussed in Section 4.2.2, was realized and resolved.

 (g) RFC-1185 recommended that header prediction take precedence over
 the timestamp check. Based upon some scepticism about the
 probabilistic arguments given in Section 4.2.4, it was decided
 to recommend that the timestamp check be performed first.

 (h) The spec was modified so that the extended options will be sent
 on <SYN,ACK> segments only when they are received in the
 corresponding <SYN> segments. This provides the most
 conservative possible conditions for interoperation with
 implementations without the extensions.

 In addition to these substantive changes, the present RFC attempts to
 specify the algorithms unambiguously by presenting modifications to
 the Event Processing rules of RFC-793; see Appendix E.

Jacobson, Braden, & Borman [Page 30]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX D: SUMMARY OF NOTATION

 The following notation has been used in this document.

 Options

 WSopt: TCP Window Scale Option
 TSopt: TCP Timestamps Option

 Option Fields

 shift.cnt: Window scale byte in WSopt.
 TSval: 32-bit Timestamp Value field in TSopt.
 TSecr: 32-bit Timestamp Reply field in TSopt.

 Option Fields in Current Segment

 SEG.TSval: TSval field from TSopt in current segment.
 SEG.TSecr: TSecr field from TSopt in current segment.
 SEG.WSopt: 8-bit value in WSopt

 Clock Values

 my.TSclock: Local source of 32-bit timestamp values
 my.TSclock.rate: Period of my.TSclock (1 ms to 1 sec).

 Per-Connection State Variables

 TS.Recent: Latest received Timestamp
 Last.ACK.sent: Last ACK field sent

 Snd.TS.OK: 1-bit flag
 Snd.WS.OK: 1-bit flag

 Rcv.Wind.Scale: Receive window scale power
 Snd.Wind.Scale: Send window scale power

Jacobson, Braden, & Borman [Page 31]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX E: EVENT PROCESSING

Event Processing

 OPEN Call

 ...
 An initial send sequence number (ISS) is selected. Send a SYN
 segment of the form:

 <SEQ=ISS><CTL=SYN><TSval=my.TSclock><WSopt=Rcv.Wind.Scale>

 ...

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 ...

 LISTEN STATE

 If the foreign socket is specified, then change the connection
 from passive to active, select an ISS. Send a SYN segment
 containing the options: <TSval=my.TSclock> and
 <WSopt=Rcv.Wind.Scale>. Set SND.UNA to ISS, SND.NXT to ISS+1.
 Enter SYN-SENT state. ...

 SYN-SENT STATE
 SYN-RECEIVED STATE

 ...

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). ...

 If the urgent flag is set ...

 If the Snd.TS.OK flag is set, then include the TCP Timestamps
 option <TSval=my.TSclock,TSecr=TS.Recent> in each data segment.

 Scale the receive window for transmission in the segment header:

 SEG.WND = (SND.WND >> Rcv.Wind.Scale).

Jacobson, Braden, & Borman [Page 32]

RFC 1323 TCP Extensions for High Performance May 1992

 SEGMENT ARRIVES

 ...

 If the state is LISTEN then

 first check for an RST

 ...

 second check for an ACK

 ...

 third check for a SYN

 if the SYN bit is set, check the security. If the ...

 ...

 If the SEG.PRC is less than the TCB.PRC then continue.

 Check for a Window Scale option (WSopt); if one is found, save
 SEG.WSopt in Snd.Wind.Scale and set Snd.WS.OK flag on.
 Otherwise, set both Snd.Wind.Scale and Rcv.Wind.Scale to zero
 and clear Snd.WS.OK flag.

 Check for a TSopt option; if one is found, save SEG.TSval in the
 variable TS.Recent and turn on the Snd.TS.OK bit.

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other
 control or text should be queued for processing later. ISS
 should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 If the Snd.WS.OK bit is on, include a WSopt option
 <WSopt=Rcv.Wind.Scale> in this segment. If the Snd.TS.OK bit is
 on, include a TSopt <TSval=my.TSclock,TSecr=TS.Recent> in this
 segment. Last.ACK.sent is set to RCV.NXT.

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any other
 incoming control or data (combined with SYN) will be processed
 in the SYN-RECEIVED state, but processing of SYN and ACK should
 not be repeated. If the listen was not fully specified (i.e.,
 the foreign socket was not fully specified), then the
 unspecified fields should be filled in now.

Jacobson, Braden, & Borman [Page 33]

RFC 1323 TCP Extensions for High Performance May 1992

 fourth other text or control

 ...

 If the state is SYN-SENT then

 first check the ACK bit

 ...

 fourth check the SYN bit

 ...

 If the SYN bit is on and the security/compartment and precedence
 are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
 SEG.SEQ, and any acknowledgements on the retransmission queue
 which are thereby acknowledged should be removed.

 Check for a Window Scale option (WSopt); if is found, save
 SEG.WSopt in Snd.Wind.Scale; otherwise, set both Snd.Wind.Scale
 and Rcv.Wind.Scale to zero.

 Check for a TSopt option; if one is found, save SEG.TSval in
 variable TS.Recent and turn on the Snd.TS.OK bit in the
 connection control block. If the ACK bit is set, use my.TSclock
 - SEG.TSecr as the initial RTT estimate.

 If SND.UNA > ISS (our SYN has been ACKed), change the connection
 state to ESTABLISHED, form an ACK segment:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 and send it. If the Snd.Echo.OK bit is on, include a TSopt
 option <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment.
 Last.ACK.sent is set to RCV.NXT.

 Data or controls which were queued for transmission may be
 included. If there are other controls or text in the segment
 then continue processing at the sixth step below where the URG
 bit is checked, otherwise return.

 Otherwise enter SYN-RECEIVED, form a SYN,ACK segment:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 and send it. If the Snd.Echo.OK bit is on, include a TSopt
 option <TSval=my.TSclock,TSecr=TS.Recent> in this segment. If

Jacobson, Braden, & Borman [Page 34]

RFC 1323 TCP Extensions for High Performance May 1992

 the Snd.WS.OK bit is on, include a WSopt option
 <WSopt=Rcv.Wind.Scale> in this segment. Last.ACK.sent is set to
 RCV.NXT.

 If there are other controls or text in the segment, queue them
 for processing after the ESTABLISHED state has been reached,
 return.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

 Otherwise,

 First, check sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Segments are processed in sequence. Initial tests on arrival
 are used to discard old duplicates, but further processing is
 done in SEG.SEQ order. If a segment’s contents straddle the
 boundary between old and new, only the new parts should be
 processed.

 Rescale the received window field:

 TrueWindow = SEG.WND << Snd.Wind.Scale,

 and use "TrueWindow" in place of SEG.WND in the following steps.

 Check whether the segment contains a Timestamps option and bit
 Snd.TS.OK is on. If so:

 If SEG.TSval < TS.Recent, then test whether connection has
 been idle less than 24 days; if both are true, then the
 segment is not acceptable; follow steps below for an
 unacceptable segment.

 If SEG.SEQ is equal to Last.ACK.sent, then save SEG.ECopt in
 variable TS.Recent.

Jacobson, Braden, & Borman [Page 35]

RFC 1323 TCP Extensions for High Performance May 1992

 There are four cases for the acceptability test for an incoming
 segment:

 ...

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so drop
 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 Last.ACK.sent is set to SEG.ACK of the acknowledgment. If the
 Snd.Echo.OK bit is on, include the Timestamps option
 <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment. Set
 Last.ACK.sent to SEG.ACK and send the ACK segment. After
 sending the acknowledgment, drop the unacceptable segment and
 return.

 ...

 fifth check the ACK field.

 if the ACK bit is off drop the segment and return.

 if the ACK bit is on

 ...

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
 Also compute a new estimate of round-trip time. If Snd.TS.OK
 bit is on, use my.TSclock - SEG.TSecr; otherwise use the
 elapsed time since the first segment in the retransmission
 queue was sent. Any segments on the retransmission queue
 which are thereby entirely acknowledged...

 ...

 Seventh, process the segment text.

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 ...

 Send an acknowledgment of the form:

Jacobson, Braden, & Borman [Page 36]

RFC 1323 TCP Extensions for High Performance May 1992

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 If the Snd.TS.OK bit is on, include Timestamps option
 <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment. Set
 Last.ACK.sent to SEG.ACK of the acknowledgment, and send it.
 This acknowledgment should be piggy-backed on a segment being
 transmitted if possible without incurring undue delay.

 ...

Security Considerations

 Security issues are not discussed in this memo.

Authors’ Addresses

 Van Jacobson
 University of California
 Lawrence Berkeley Laboratory
 Mail Stop 46A
 Berkeley, CA 94720

 Phone: (415) 486-6411
 EMail: van@CSAM.LBL.GOV

 Bob Braden
 University of Southern California
 Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (310) 822-1511
 EMail: Braden@ISI.EDU

 Dave Borman
 Cray Research
 655-E Lone Oak Drive
 Eagan, MN 55121

 Phone: (612) 683-5571
 Email: dab@cray.com

Jacobson, Braden, & Borman [Page 37]

RFC: 793

 TRANSMISSION CONTROL PROTOCOL

 DARPA INTERNET PROGRAM

 PROTOCOL SPECIFICATION

 September 1981

 prepared for

 Defense Advanced Research Projects Agency
 Information Processing Techniques Office
 1400 Wilson Boulevard
 Arlington, Virginia 22209

 by

 Information Sciences Institute
 University of Southern California
 4676 Admiralty Way
 Marina del Rey, California 90291

September 1981
 Transmission Control Protocol

 TABLE OF CONTENTS

 PREFACE .. iii

1. INTRODUCTION ... 1

 1.1 Motivation .. 1
 1.2 Scope ... 2
 1.3 About This Document ... 2
 1.4 Interfaces .. 3
 1.5 Operation ... 3

2. PHILOSOPHY ... 7

 2.1 Elements of the Internetwork System 7
 2.2 Model of Operation .. 7
 2.3 The Host Environment .. 8
 2.4 Interfaces .. 9
 2.5 Relation to Other Protocols 9
 2.6 Reliable Communication .. 9
 2.7 Connection Establishment and Clearing 10
 2.8 Data Communication ... 12
 2.9 Precedence and Security 13
 2.10 Robustness Principle ... 13

3. FUNCTIONAL SPECIFICATION .. 15

 3.1 Header Format .. 15
 3.2 Terminology .. 19
 3.3 Sequence Numbers ... 24
 3.4 Establishing a connection 30
 3.5 Closing a Connection ... 37
 3.6 Precedence and Security 40
 3.7 Data Communication ... 40
 3.8 Interfaces ... 44
 3.9 Event Processing ... 52

GLOSSARY .. 79

REFERENCES .. 85

 [Page i]

 September 1981
Transmission Control Protocol

[Page ii]

September 1981
 Transmission Control Protocol

 PREFACE

This document describes the DoD Standard Transmission Control Protocol
(TCP). There have been nine earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily from them. There have been many contributors to this work
both in terms of concepts and in terms of text. This edition clarifies
several details and removes the end-of-letter buffer-size adjustments,
and redescribes the letter mechanism as a push function.

 Jon Postel

 Editor

 [Page iii]

RFC: 793
Replaces: RFC 761
IENs: 129, 124, 112, 81,
55, 44, 40, 27, 21, 5

 TRANSMISSION CONTROL PROTOCOL

 DARPA INTERNET PROGRAM
 PROTOCOL SPECIFICATION

 1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer
communication networks, and in interconnected systems of such networks.

This document describes the functions to be performed by the
Transmission Control Protocol, the program that implements it, and its
interface to programs or users that require its services.

1.1. Motivation

 Computer communication systems are playing an increasingly important
 role in military, government, and civilian environments. This
 document focuses its attention primarily on military computer
 communication requirements, especially robustness in the presence of
 communication unreliability and availability in the presence of
 congestion, but many of these problems are found in the civilian and
 government sector as well.

 As strategic and tactical computer communication networks are
 developed and deployed, it is essential to provide means of
 interconnecting them and to provide standard interprocess
 communication protocols which can support a broad range of
 applications. In anticipation of the need for such standards, the
 Deputy Undersecretary of Defense for Research and Engineering has
 declared the Transmission Control Protocol (TCP) described herein to
 be a basis for DoD-wide inter-process communication protocol
 standardization.

 TCP is a connection-oriented, end-to-end reliable protocol designed to
 fit into a layered hierarchy of protocols which support multi-network
 applications. The TCP provides for reliable inter-process
 communication between pairs of processes in host computers attached to
 distinct but interconnected computer communication networks. Very few
 assumptions are made as to the reliability of the communication
 protocols below the TCP layer. TCP assumes it can obtain a simple,
 potentially unreliable datagram service from the lower level
 protocols. In principle, the TCP should be able to operate above a
 wide spectrum of communication systems ranging from hard-wired
 connections to packet-switched or circuit-switched networks.

 [Page 1]

 September 1981
Transmission Control Protocol
Introduction

 TCP is based on concepts first described by Cerf and Kahn in [1]. The
 TCP fits into a layered protocol architecture just above a basic
 Internet Protocol [2] which provides a way for the TCP to send and
 receive variable-length segments of information enclosed in internet
 datagram "envelopes". The internet datagram provides a means for
 addressing source and destination TCPs in different networks. The
 internet protocol also deals with any fragmentation or reassembly of
 the TCP segments required to achieve transport and delivery through
 multiple networks and interconnecting gateways. The internet protocol
 also carries information on the precedence, security classification
 and compartmentation of the TCP segments, so this information can be
 communicated end-to-end across multiple networks.

 Protocol Layering

 +---------------------+
 | higher-level |
 +---------------------+
 | TCP |
 +---------------------+
 | internet protocol |
 +---------------------+
 |communication network|
 +---------------------+

 Figure 1

 Much of this document is written in the context of TCP implementations
 which are co-resident with higher level protocols in the host
 computer. Some computer systems will be connected to networks via
 front-end computers which house the TCP and internet protocol layers,
 as well as network specific software. The TCP specification describes
 an interface to the higher level protocols which appears to be
 implementable even for the front-end case, as long as a suitable
 host-to-front end protocol is implemented.

1.2. Scope

 The TCP is intended to provide a reliable process-to-process
 communication service in a multinetwork environment. The TCP is
 intended to be a host-to-host protocol in common use in multiple
 networks.

1.3. About this Document

 This document represents a specification of the behavior required of
 any TCP implementation, both in its interactions with higher level
 protocols and in its interactions with other TCPs. The rest of this

[Page 2]

September 1981
 Transmission Control Protocol
 Introduction

 section offers a very brief view of the protocol interfaces and
 operation. Section 2 summarizes the philosophical basis for the TCP
 design. Section 3 offers both a detailed description of the actions
 required of TCP when various events occur (arrival of new segments,
 user calls, errors, etc.) and the details of the formats of TCP
 segments.

1.4. Interfaces

 The TCP interfaces on one side to user or application processes and on
 the other side to a lower level protocol such as Internet Protocol.

 The interface between an application process and the TCP is
 illustrated in reasonable detail. This interface consists of a set of
 calls much like the calls an operating system provides to an
 application process for manipulating files. For example, there are
 calls to open and close connections and to send and receive data on
 established connections. It is also expected that the TCP can
 asynchronously communicate with application programs. Although
 considerable freedom is permitted to TCP implementors to design
 interfaces which are appropriate to a particular operating system
 environment, a minimum functionality is required at the TCP/user
 interface for any valid implementation.

 The interface between TCP and lower level protocol is essentially
 unspecified except that it is assumed there is a mechanism whereby the
 two levels can asynchronously pass information to each other.
 Typically, one expects the lower level protocol to specify this
 interface. TCP is designed to work in a very general environment of
 interconnected networks. The lower level protocol which is assumed
 throughout this document is the Internet Protocol [2].

1.5. Operation

 As noted above, the primary purpose of the TCP is to provide reliable,
 securable logical circuit or connection service between pairs of
 processes. To provide this service on top of a less reliable internet
 communication system requires facilities in the following areas:

 Basic Data Transfer
 Reliability
 Flow Control
 Multiplexing
 Connections
 Precedence and Security

 The basic operation of the TCP in each of these areas is described in
 the following paragraphs.

 [Page 3]

 September 1981
Transmission Control Protocol
Introduction

 Basic Data Transfer:

 The TCP is able to transfer a continuous stream of octets in each
 direction between its users by packaging some number of octets into
 segments for transmission through the internet system. In general,
 the TCPs decide when to block and forward data at their own
 convenience.

 Sometimes users need to be sure that all the data they have
 submitted to the TCP has been transmitted. For this purpose a push
 function is defined. To assure that data submitted to a TCP is
 actually transmitted the sending user indicates that it should be
 pushed through to the receiving user. A push causes the TCPs to
 promptly forward and deliver data up to that point to the receiver.
 The exact push point might not be visible to the receiving user and
 the push function does not supply a record boundary marker.

 Reliability:

 The TCP must recover from data that is damaged, lost, duplicated, or
 delivered out of order by the internet communication system. This
 is achieved by assigning a sequence number to each octet
 transmitted, and requiring a positive acknowledgment (ACK) from the
 receiving TCP. If the ACK is not received within a timeout
 interval, the data is retransmitted. At the receiver, the sequence
 numbers are used to correctly order segments that may be received
 out of order and to eliminate duplicates. Damage is handled by
 adding a checksum to each segment transmitted, checking it at the
 receiver, and discarding damaged segments.

 As long as the TCPs continue to function properly and the internet
 system does not become completely partitioned, no transmission
 errors will affect the correct delivery of data. TCP recovers from
 internet communication system errors.

 Flow Control:

 TCP provides a means for the receiver to govern the amount of data
 sent by the sender. This is achieved by returning a "window" with
 every ACK indicating a range of acceptable sequence numbers beyond
 the last segment successfully received. The window indicates an
 allowed number of octets that the sender may transmit before
 receiving further permission.

[Page 4]

September 1981
 Transmission Control Protocol
 Introduction

 Multiplexing:

 To allow for many processes within a single Host to use TCP
 communication facilities simultaneously, the TCP provides a set of
 addresses or ports within each host. Concatenated with the network
 and host addresses from the internet communication layer, this forms
 a socket. A pair of sockets uniquely identifies each connection.
 That is, a socket may be simultaneously used in multiple
 connections.

 The binding of ports to processes is handled independently by each
 Host. However, it proves useful to attach frequently used processes
 (e.g., a "logger" or timesharing service) to fixed sockets which are
 made known to the public. These services can then be accessed
 through the known addresses. Establishing and learning the port
 addresses of other processes may involve more dynamic mechanisms.

 Connections:

 The reliability and flow control mechanisms described above require
 that TCPs initialize and maintain certain status information for
 each data stream. The combination of this information, including
 sockets, sequence numbers, and window sizes, is called a connection.
 Each connection is uniquely specified by a pair of sockets
 identifying its two sides.

 When two processes wish to communicate, their TCP’s must first
 establish a connection (initialize the status information on each
 side). When their communication is complete, the connection is
 terminated or closed to free the resources for other uses.

 Since connections must be established between unreliable hosts and
 over the unreliable internet communication system, a handshake
 mechanism with clock-based sequence numbers is used to avoid
 erroneous initialization of connections.

 Precedence and Security:

 The users of TCP may indicate the security and precedence of their
 communication. Provision is made for default values to be used when
 these features are not needed.

 [Page 5]

 September 1981
Transmission Control Protocol

[Page 6]

September 1981
 Transmission Control Protocol

 2. PHILOSOPHY

2.1. Elements of the Internetwork System

 The internetwork environment consists of hosts connected to networks
 which are in turn interconnected via gateways. It is assumed here
 that the networks may be either local networks (e.g., the ETHERNET) or
 large networks (e.g., the ARPANET), but in any case are based on
 packet switching technology. The active agents that produce and
 consume messages are processes. Various levels of protocols in the
 networks, the gateways, and the hosts support an interprocess
 communication system that provides two-way data flow on logical
 connections between process ports.

 The term packet is used generically here to mean the data of one
 transaction between a host and its network. The format of data blocks
 exchanged within the a network will generally not be of concern to us.

 Hosts are computers attached to a network, and from the communication
 network’s point of view, are the sources and destinations of packets.
 Processes are viewed as the active elements in host computers (in
 accordance with the fairly common definition of a process as a program
 in execution). Even terminals and files or other I/O devices are
 viewed as communicating with each other through the use of processes.
 Thus, all communication is viewed as inter-process communication.

 Since a process may need to distinguish among several communication
 streams between itself and another process (or processes), we imagine
 that each process may have a number of ports through which it
 communicates with the ports of other processes.

2.2. Model of Operation

 Processes transmit data by calling on the TCP and passing buffers of
 data as arguments. The TCP packages the data from these buffers into
 segments and calls on the internet module to transmit each segment to
 the destination TCP. The receiving TCP places the data from a segment
 into the receiving user’s buffer and notifies the receiving user. The
 TCPs include control information in the segments which they use to
 ensure reliable ordered data transmission.

 The model of internet communication is that there is an internet
 protocol module associated with each TCP which provides an interface
 to the local network. This internet module packages TCP segments
 inside internet datagrams and routes these datagrams to a destination
 internet module or intermediate gateway. To transmit the datagram
 through the local network, it is embedded in a local network packet.

 The packet switches may perform further packaging, fragmentation, or

 [Page 7]

 September 1981
Transmission Control Protocol
Philosophy

 other operations to achieve the delivery of the local packet to the
 destination internet module.

 At a gateway between networks, the internet datagram is "unwrapped"
 from its local packet and examined to determine through which network
 the internet datagram should travel next. The internet datagram is
 then "wrapped" in a local packet suitable to the next network and
 routed to the next gateway, or to the final destination.

 A gateway is permitted to break up an internet datagram into smaller
 internet datagram fragments if this is necessary for transmission
 through the next network. To do this, the gateway produces a set of
 internet datagrams; each carrying a fragment. Fragments may be
 further broken into smaller fragments at subsequent gateways. The
 internet datagram fragment format is designed so that the destination
 internet module can reassemble fragments into internet datagrams.

 A destination internet module unwraps the segment from the datagram
 (after reassembling the datagram, if necessary) and passes it to the
 destination TCP.

 This simple model of the operation glosses over many details. One
 important feature is the type of service. This provides information
 to the gateway (or internet module) to guide it in selecting the
 service parameters to be used in traversing the next network.
 Included in the type of service information is the precedence of the
 datagram. Datagrams may also carry security information to permit
 host and gateways that operate in multilevel secure environments to
 properly segregate datagrams for security considerations.

2.3. The Host Environment

 The TCP is assumed to be a module in an operating system. The users
 access the TCP much like they would access the file system. The TCP
 may call on other operating system functions, for example, to manage
 data structures. The actual interface to the network is assumed to be
 controlled by a device driver module. The TCP does not call on the
 network device driver directly, but rather calls on the internet
 datagram protocol module which may in turn call on the device driver.

 The mechanisms of TCP do not preclude implementation of the TCP in a
 front-end processor. However, in such an implementation, a
 host-to-front-end protocol must provide the functionality to support
 the type of TCP-user interface described in this document.

[Page 8]

September 1981
 Transmission Control Protocol
 Philosophy

2.4. Interfaces

 The TCP/user interface provides for calls made by the user on the TCP
 to OPEN or CLOSE a connection, to SEND or RECEIVE data, or to obtain
 STATUS about a connection. These calls are like other calls from user
 programs on the operating system, for example, the calls to open, read
 from, and close a file.

 The TCP/internet interface provides calls to send and receive
 datagrams addressed to TCP modules in hosts anywhere in the internet
 system. These calls have parameters for passing the address, type of
 service, precedence, security, and other control information.

2.5. Relation to Other Protocols

 The following diagram illustrates the place of the TCP in the protocol
 hierarchy:

 +------+ +-----+ +-----+ +-----+
 |Telnet| | FTP | |Voice| ... | | Application Level
 +------+ +-----+ +-----+ +-----+
 | | | |
 +-----+ +-----+ +-----+
 | TCP | | RTP | ... | | Host Level
 +-----+ +-----+ +-----+
 | | |
 +-------------------------------+
 | Internet Protocol & ICMP | Gateway Level
 +-------------------------------+
 |
 +---------------------------+
 | Local Network Protocol | Network Level
 +---------------------------+

 Protocol Relationships

 Figure 2.

 It is expected that the TCP will be able to support higher level
 protocols efficiently. It should be easy to interface higher level
 protocols like the ARPANET Telnet or AUTODIN II THP to the TCP.

2.6. Reliable Communication

 A stream of data sent on a TCP connection is delivered reliably and in
 order at the destination.

 [Page 9]

 September 1981
Transmission Control Protocol
Philosophy

 Transmission is made reliable via the use of sequence numbers and
 acknowledgments. Conceptually, each octet of data is assigned a
 sequence number. The sequence number of the first octet of data in a
 segment is transmitted with that segment and is called the segment
 sequence number. Segments also carry an acknowledgment number which
 is the sequence number of the next expected data octet of
 transmissions in the reverse direction. When the TCP transmits a
 segment containing data, it puts a copy on a retransmission queue and
 starts a timer; when the acknowledgment for that data is received, the
 segment is deleted from the queue. If the acknowledgment is not
 received before the timer runs out, the segment is retransmitted.

 An acknowledgment by TCP does not guarantee that the data has been
 delivered to the end user, but only that the receiving TCP has taken
 the responsibility to do so.

 To govern the flow of data between TCPs, a flow control mechanism is
 employed. The receiving TCP reports a "window" to the sending TCP.
 This window specifies the number of octets, starting with the
 acknowledgment number, that the receiving TCP is currently prepared to
 receive.

2.7. Connection Establishment and Clearing

 To identify the separate data streams that a TCP may handle, the TCP
 provides a port identifier. Since port identifiers are selected
 independently by each TCP they might not be unique. To provide for
 unique addresses within each TCP, we concatenate an internet address
 identifying the TCP with a port identifier to create a socket which
 will be unique throughout all networks connected together.

 A connection is fully specified by the pair of sockets at the ends. A
 local socket may participate in many connections to different foreign
 sockets. A connection can be used to carry data in both directions,
 that is, it is "full duplex".

 TCPs are free to associate ports with processes however they choose.
 However, several basic concepts are necessary in any implementation.
 There must be well-known sockets which the TCP associates only with
 the "appropriate" processes by some means. We envision that processes
 may "own" ports, and that processes can initiate connections only on
 the ports they own. (Means for implementing ownership is a local
 issue, but we envision a Request Port user command, or a method of
 uniquely allocating a group of ports to a given process, e.g., by
 associating the high order bits of a port name with a given process.)

 A connection is specified in the OPEN call by the local port and
 foreign socket arguments. In return, the TCP supplies a (short) local

[Page 10]

September 1981
 Transmission Control Protocol
 Philosophy

 connection name by which the user refers to the connection in
 subsequent calls. There are several things that must be remembered
 about a connection. To store this information we imagine that there
 is a data structure called a Transmission Control Block (TCB). One
 implementation strategy would have the local connection name be a
 pointer to the TCB for this connection. The OPEN call also specifies
 whether the connection establishment is to be actively pursued, or to
 be passively waited for.

 A passive OPEN request means that the process wants to accept incoming
 connection requests rather than attempting to initiate a connection.
 Often the process requesting a passive OPEN will accept a connection
 request from any caller. In this case a foreign socket of all zeros
 is used to denote an unspecified socket. Unspecified foreign sockets
 are allowed only on passive OPENs.

 A service process that wished to provide services for unknown other
 processes would issue a passive OPEN request with an unspecified
 foreign socket. Then a connection could be made with any process that
 requested a connection to this local socket. It would help if this
 local socket were known to be associated with this service.

 Well-known sockets are a convenient mechanism for a priori associating
 a socket address with a standard service. For instance, the
 "Telnet-Server" process is permanently assigned to a particular
 socket, and other sockets are reserved for File Transfer, Remote Job
 Entry, Text Generator, Echoer, and Sink processes (the last three
 being for test purposes). A socket address might be reserved for
 access to a "Look-Up" service which would return the specific socket
 at which a newly created service would be provided. The concept of a
 well-known socket is part of the TCP specification, but the assignment
 of sockets to services is outside this specification. (See [4].)

 Processes can issue passive OPENs and wait for matching active OPENs
 from other processes and be informed by the TCP when connections have
 been established. Two processes which issue active OPENs to each
 other at the same time will be correctly connected. This flexibility
 is critical for the support of distributed computing in which
 components act asynchronously with respect to each other.

 There are two principal cases for matching the sockets in the local
 passive OPENs and an foreign active OPENs. In the first case, the
 local passive OPENs has fully specified the foreign socket. In this
 case, the match must be exact. In the second case, the local passive
 OPENs has left the foreign socket unspecified. In this case, any
 foreign socket is acceptable as long as the local sockets match.
 Other possibilities include partially restricted matches.

 [Page 11]

 September 1981
Transmission Control Protocol
Philosophy

 If there are several pending passive OPENs (recorded in TCBs) with the
 same local socket, an foreign active OPEN will be matched to a TCB
 with the specific foreign socket in the foreign active OPEN, if such a
 TCB exists, before selecting a TCB with an unspecified foreign socket.

 The procedures to establish connections utilize the synchronize (SYN)
 control flag and involves an exchange of three messages. This
 exchange has been termed a three-way hand shake [3].

 A connection is initiated by the rendezvous of an arriving segment
 containing a SYN and a waiting TCB entry each created by a user OPEN
 command. The matching of local and foreign sockets determines when a
 connection has been initiated. The connection becomes "established"
 when sequence numbers have been synchronized in both directions.

 The clearing of a connection also involves the exchange of segments,
 in this case carrying the FIN control flag.

2.8. Data Communication

 The data that flows on a connection may be thought of as a stream of
 octets. The sending user indicates in each SEND call whether the data
 in that call (and any preceeding calls) should be immediately pushed
 through to the receiving user by the setting of the PUSH flag.

 A sending TCP is allowed to collect data from the sending user and to
 send that data in segments at its own convenience, until the push
 function is signaled, then it must send all unsent data. When a
 receiving TCP sees the PUSH flag, it must not wait for more data from
 the sending TCP before passing the data to the receiving process.

 There is no necessary relationship between push functions and segment
 boundaries. The data in any particular segment may be the result of a
 single SEND call, in whole or part, or of multiple SEND calls.

 The purpose of push function and the PUSH flag is to push data through
 from the sending user to the receiving user. It does not provide a
 record service.

 There is a coupling between the push function and the use of buffers
 of data that cross the TCP/user interface. Each time a PUSH flag is
 associated with data placed into the receiving user’s buffer, the
 buffer is returned to the user for processing even if the buffer is
 not filled. If data arrives that fills the user’s buffer before a
 PUSH is seen, the data is passed to the user in buffer size units.

 TCP also provides a means to communicate to the receiver of data that
 at some point further along in the data stream than the receiver is

[Page 12]

September 1981
 Transmission Control Protocol
 Philosophy

 currently reading there is urgent data. TCP does not attempt to
 define what the user specifically does upon being notified of pending
 urgent data, but the general notion is that the receiving process will
 take action to process the urgent data quickly.

2.9. Precedence and Security

 The TCP makes use of the internet protocol type of service field and
 security option to provide precedence and security on a per connection
 basis to TCP users. Not all TCP modules will necessarily function in
 a multilevel secure environment; some may be limited to unclassified
 use only, and others may operate at only one security level and
 compartment. Consequently, some TCP implementations and services to
 users may be limited to a subset of the multilevel secure case.

 TCP modules which operate in a multilevel secure environment must
 properly mark outgoing segments with the security, compartment, and
 precedence. Such TCP modules must also provide to their users or
 higher level protocols such as Telnet or THP an interface to allow
 them to specify the desired security level, compartment, and
 precedence of connections.

2.10. Robustness Principle

 TCP implementations will follow a general principle of robustness: be
 conservative in what you do, be liberal in what you accept from
 others.

 [Page 13]

 September 1981
Transmission Control Protocol

[Page 14]

September 1981
 Transmission Control Protocol

 3. FUNCTIONAL SPECIFICATION

3.1. Header Format

 TCP segments are sent as internet datagrams. The Internet Protocol
 header carries several information fields, including the source and
 destination host addresses [2]. A TCP header follows the internet
 header, supplying information specific to the TCP protocol. This
 division allows for the existence of host level protocols other than
 TCP.

 TCP Header Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

 TCP Header Format

 Note that one tick mark represents one bit position.

 Figure 3.

 Source Port: 16 bits

 The source port number.

 Destination Port: 16 bits

 The destination port number.

 [Page 15]

 September 1981
Transmission Control Protocol
Functional Specification

 Sequence Number: 32 bits

 The sequence number of the first data octet in this segment (except
 when SYN is present). If SYN is present the sequence number is the
 initial sequence number (ISN) and the first data octet is ISN+1.

 Acknowledgment Number: 32 bits

 If the ACK control bit is set this field contains the value of the
 next sequence number the sender of the segment is expecting to
 receive. Once a connection is established this is always sent.

 Data Offset: 4 bits

 The number of 32 bit words in the TCP Header. This indicates where
 the data begins. The TCP header (even one including options) is an
 integral number of 32 bits long.

 Reserved: 6 bits

 Reserved for future use. Must be zero.

 Control Bits: 6 bits (from left to right):

 URG: Urgent Pointer field significant
 ACK: Acknowledgment field significant
 PSH: Push Function
 RST: Reset the connection
 SYN: Synchronize sequence numbers
 FIN: No more data from sender

 Window: 16 bits

 The number of data octets beginning with the one indicated in the
 acknowledgment field which the sender of this segment is willing to
 accept.

 Checksum: 16 bits

 The checksum field is the 16 bit one’s complement of the one’s
 complement sum of all 16 bit words in the header and text. If a
 segment contains an odd number of header and text octets to be
 checksummed, the last octet is padded on the right with zeros to
 form a 16 bit word for checksum purposes. The pad is not
 transmitted as part of the segment. While computing the checksum,
 the checksum field itself is replaced with zeros.

 The checksum also covers a 96 bit pseudo header conceptually

[Page 16]

September 1981
 Transmission Control Protocol
 Functional Specification

 prefixed to the TCP header. This pseudo header contains the Source
 Address, the Destination Address, the Protocol, and TCP length.
 This gives the TCP protection against misrouted segments. This
 information is carried in the Internet Protocol and is transferred
 across the TCP/Network interface in the arguments or results of
 calls by the TCP on the IP.

 +--------+--------+--------+--------+
 | Source Address |
 +--------+--------+--------+--------+
 | Destination Address |
 +--------+--------+--------+--------+
 | zero | PTCL | TCP Length |
 +--------+--------+--------+--------+

 The TCP Length is the TCP header length plus the data length in
 octets (this is not an explicitly transmitted quantity, but is
 computed), and it does not count the 12 octets of the pseudo
 header.

 Urgent Pointer: 16 bits

 This field communicates the current value of the urgent pointer as a
 positive offset from the sequence number in this segment. The
 urgent pointer points to the sequence number of the octet following
 the urgent data. This field is only be interpreted in segments with
 the URG control bit set.

 Options: variable

 Options may occupy space at the end of the TCP header and are a
 multiple of 8 bits in length. All options are included in the
 checksum. An option may begin on any octet boundary. There are two
 cases for the format of an option:

 Case 1: A single octet of option-kind.

 Case 2: An octet of option-kind, an octet of option-length, and
 the actual option-data octets.

 The option-length counts the two octets of option-kind and
 option-length as well as the option-data octets.

 Note that the list of options may be shorter than the data offset
 field might imply. The content of the header beyond the
 End-of-Option option must be header padding (i.e., zero).

 A TCP must implement all options.

 [Page 17]

 September 1981
Transmission Control Protocol
Functional Specification

 Currently defined options include (kind indicated in octal):

 Kind Length Meaning
 ---- ------ -------
 0 - End of option list.
 1 - No-Operation.
 2 4 Maximum Segment Size.

 Specific Option Definitions

 End of Option List

 +--------+
 |00000000|
 +--------+
 Kind=0

 This option code indicates the end of the option list. This
 might not coincide with the end of the TCP header according to
 the Data Offset field. This is used at the end of all options,
 not the end of each option, and need only be used if the end of
 the options would not otherwise coincide with the end of the TCP
 header.

 No-Operation

 +--------+
 |00000001|
 +--------+
 Kind=1

 This option code may be used between options, for example, to
 align the beginning of a subsequent option on a word boundary.
 There is no guarantee that senders will use this option, so
 receivers must be prepared to process options even if they do
 not begin on a word boundary.

 Maximum Segment Size

 +--------+--------+---------+--------+
 |00000010|00000100| max seg size |
 +--------+--------+---------+--------+
 Kind=2 Length=4

[Page 18]

September 1981
 Transmission Control Protocol
 Functional Specification

 Maximum Segment Size Option Data: 16 bits

 If this option is present, then it communicates the maximum
 receive segment size at the TCP which sends this segment.
 This field must only be sent in the initial connection request
 (i.e., in segments with the SYN control bit set). If this
 option is not used, any segment size is allowed.

 Padding: variable

 The TCP header padding is used to ensure that the TCP header ends
 and data begins on a 32 bit boundary. The padding is composed of
 zeros.

3.2. Terminology

 Before we can discuss very much about the operation of the TCP we need
 to introduce some detailed terminology. The maintenance of a TCP
 connection requires the remembering of several variables. We conceive
 of these variables being stored in a connection record called a
 Transmission Control Block or TCB. Among the variables stored in the
 TCB are the local and remote socket numbers, the security and
 precedence of the connection, pointers to the user’s send and receive
 buffers, pointers to the retransmit queue and to the current segment.
 In addition several variables relating to the send and receive
 sequence numbers are stored in the TCB.

 Send Sequence Variables

 SND.UNA - send unacknowledged
 SND.NXT - send next
 SND.WND - send window
 SND.UP - send urgent pointer
 SND.WL1 - segment sequence number used for last window update
 SND.WL2 - segment acknowledgment number used for last window
 update
 ISS - initial send sequence number

 Receive Sequence Variables

 RCV.NXT - receive next
 RCV.WND - receive window
 RCV.UP - receive urgent pointer
 IRS - initial receive sequence number

 [Page 19]

 September 1981
Transmission Control Protocol
Functional Specification

 The following diagrams may help to relate some of these variables to
 the sequence space.

 Send Sequence Space

 1 2 3 4
 ----------|----------|----------|----------
 SND.UNA SND.NXT SND.UNA
 +SND.WND

 1 - old sequence numbers which have been acknowledged
 2 - sequence numbers of unacknowledged data
 3 - sequence numbers allowed for new data transmission
 4 - future sequence numbers which are not yet allowed

 Send Sequence Space

 Figure 4.

 The send window is the portion of the sequence space labeled 3 in
 figure 4.

 Receive Sequence Space

 1 2 3
 ----------|----------|----------
 RCV.NXT RCV.NXT
 +RCV.WND

 1 - old sequence numbers which have been acknowledged
 2 - sequence numbers allowed for new reception
 3 - future sequence numbers which are not yet allowed

 Receive Sequence Space

 Figure 5.

 The receive window is the portion of the sequence space labeled 2 in
 figure 5.

 There are also some variables used frequently in the discussion that
 take their values from the fields of the current segment.

[Page 20]

September 1981
 Transmission Control Protocol
 Functional Specification

 Current Segment Variables

 SEG.SEQ - segment sequence number
 SEG.ACK - segment acknowledgment number
 SEG.LEN - segment length
 SEG.WND - segment window
 SEG.UP - segment urgent pointer
 SEG.PRC - segment precedence value

 A connection progresses through a series of states during its
 lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
 ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
 TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional
 because it represents the state when there is no TCB, and therefore,
 no connection. Briefly the meanings of the states are:

 LISTEN - represents waiting for a connection request from any remote
 TCP and port.

 SYN-SENT - represents waiting for a matching connection request
 after having sent a connection request.

 SYN-RECEIVED - represents waiting for a confirming connection
 request acknowledgment after having both received and sent a
 connection request.

 ESTABLISHED - represents an open connection, data received can be
 delivered to the user. The normal state for the data transfer phase
 of the connection.

 FIN-WAIT-1 - represents waiting for a connection termination request
 from the remote TCP, or an acknowledgment of the connection
 termination request previously sent.

 FIN-WAIT-2 - represents waiting for a connection termination request
 from the remote TCP.

 CLOSE-WAIT - represents waiting for a connection termination request
 from the local user.

 CLOSING - represents waiting for a connection termination request
 acknowledgment from the remote TCP.

 LAST-ACK - represents waiting for an acknowledgment of the
 connection termination request previously sent to the remote TCP
 (which includes an acknowledgment of its connection termination
 request).

 [Page 21]

 September 1981
Transmission Control Protocol
Functional Specification

 TIME-WAIT - represents waiting for enough time to pass to be sure
 the remote TCP received the acknowledgment of its connection
 termination request.

 CLOSED - represents no connection state at all.

 A TCP connection progresses from one state to another in response to
 events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
 ABORT, and STATUS; the incoming segments, particularly those
 containing the SYN, ACK, RST and FIN flags; and timeouts.

 The state diagram in figure 6 illustrates only state changes, together
 with the causing events and resulting actions, but addresses neither
 error conditions nor actions which are not connected with state
 changes. In a later section, more detail is offered with respect to
 the reaction of the TCP to events.

 NOTE BENE: this diagram is only a summary and must not be taken as
 the total specification.

[Page 22]

September 1981
 Transmission Control Protocol
 Functional Specification

 +---------+ ---------\ active OPEN
 | CLOSED | \ -----------
 +---------+<---------\ \ create TCB
 | ^ \ \ snd SYN
 passive OPEN | | CLOSE \ \
 ------------ | | ---------- \ \
 create TCB | | delete TCB \ \
 V | \ \
 +---------+ CLOSE | \
 | LISTEN | ---------- | |
 +---------+ delete TCB | |
 rcv SYN | | SEND | |
 ----------- | | ------- | V
 +---------+ snd SYN,ACK / \ snd SYN +---------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd ACK	
	------------------ -------------------	
+---------+ rcv ACK of SYN \ / rcv SYN,ACK +---------+		
--------------		-----------
x		snd ACK
V V		
CLOSE +---------+		
-------	ESTAB	
snd FIN +---------+		
CLOSE		rcv FIN
V -------		-------
+---------+ snd FIN / \ snd ACK +---------+		
FIN	<----------------- ------------------>	CLOSE
WAIT-1	------------------	WAIT
+---------+ rcv FIN \ +---------+		
rcv ACK of FIN -------	CLOSE	
-------------- snd ACK	-------	
V x V snd FIN V		
+---------+ +---------+ +---------+		
FINWAIT-2		CLOSING
+---------+ +---------+ +---------+		
rcv ACK of FIN	rcv ACK of FIN	
rcv FIN --------------	Timeout=2MSL --------------	
------- x V ------------ x V		
 \ snd ACK +---------+delete TCB +---------+
 ------------------------>|TIME WAIT|------------------>| CLOSED |
 +---------+ +---------+

 TCP Connection State Diagram
 Figure 6.

 [Page 23]

 September 1981
Transmission Control Protocol
Functional Specification

3.3. Sequence Numbers

 A fundamental notion in the design is that every octet of data sent
 over a TCP connection has a sequence number. Since every octet is
 sequenced, each of them can be acknowledged. The acknowledgment
 mechanism employed is cumulative so that an acknowledgment of sequence
 number X indicates that all octets up to but not including X have been
 received. This mechanism allows for straight-forward duplicate
 detection in the presence of retransmission. Numbering of octets
 within a segment is that the first data octet immediately following
 the header is the lowest numbered, and the following octets are
 numbered consecutively.

 It is essential to remember that the actual sequence number space is
 finite, though very large. This space ranges from 0 to 2**32 - 1.
 Since the space is finite, all arithmetic dealing with sequence
 numbers must be performed modulo 2**32. This unsigned arithmetic
 preserves the relationship of sequence numbers as they cycle from
 2**32 - 1 to 0 again. There are some subtleties to computer modulo
 arithmetic, so great care should be taken in programming the
 comparison of such values. The symbol "=<" means "less than or equal"
 (modulo 2**32).

 The typical kinds of sequence number comparisons which the TCP must
 perform include:

 (a) Determining that an acknowledgment refers to some sequence
 number sent but not yet acknowledged.

 (b) Determining that all sequence numbers occupied by a segment
 have been acknowledged (e.g., to remove the segment from a
 retransmission queue).

 (c) Determining that an incoming segment contains sequence numbers
 which are expected (i.e., that the segment "overlaps" the
 receive window).

[Page 24]

September 1981
 Transmission Control Protocol
 Functional Specification

 In response to sending data the TCP will receive acknowledgments. The
 following comparisons are needed to process the acknowledgments.

 SND.UNA = oldest unacknowledged sequence number

 SND.NXT = next sequence number to be sent

 SEG.ACK = acknowledgment from the receiving TCP (next sequence
 number expected by the receiving TCP)

 SEG.SEQ = first sequence number of a segment

 SEG.LEN = the number of octets occupied by the data in the segment
 (counting SYN and FIN)

 SEG.SEQ+SEG.LEN-1 = last sequence number of a segment

 A new acknowledgment (called an "acceptable ack"), is one for which
 the inequality below holds:

 SND.UNA < SEG.ACK =< SND.NXT

 A segment on the retransmission queue is fully acknowledged if the sum
 of its sequence number and length is less or equal than the
 acknowledgment value in the incoming segment.

 When data is received the following comparisons are needed:

 RCV.NXT = next sequence number expected on an incoming segments, and
 is the left or lower edge of the receive window

 RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming
 segment, and is the right or upper edge of the receive window

 SEG.SEQ = first sequence number occupied by the incoming segment

 SEG.SEQ+SEG.LEN-1 = last sequence number occupied by the incoming
 segment

 A segment is judged to occupy a portion of valid receive sequence
 space if

 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or

 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 [Page 25]

 September 1981
Transmission Control Protocol
Functional Specification

 The first part of this test checks to see if the beginning of the
 segment falls in the window, the second part of the test checks to see
 if the end of the segment falls in the window; if the segment passes
 either part of the test it contains data in the window.

 Actually, it is a little more complicated than this. Due to zero
 windows and zero length segments, we have four cases for the
 acceptability of an incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 Note that when the receive window is zero no segments should be
 acceptable except ACK segments. Thus, it is be possible for a TCP to
 maintain a zero receive window while transmitting data and receiving
 ACKs. However, even when the receive window is zero, a TCP must
 process the RST and URG fields of all incoming segments.

 We have taken advantage of the numbering scheme to protect certain
 control information as well. This is achieved by implicitly including
 some control flags in the sequence space so they can be retransmitted
 and acknowledged without confusion (i.e., one and only one copy of the
 control will be acted upon). Control information is not physically
 carried in the segment data space. Consequently, we must adopt rules
 for implicitly assigning sequence numbers to control. The SYN and FIN
 are the only controls requiring this protection, and these controls
 are used only at connection opening and closing. For sequence number
 purposes, the SYN is considered to occur before the first actual data
 octet of the segment in which it occurs, while the FIN is considered
 to occur after the last actual data octet in a segment in which it
 occurs. The segment length (SEG.LEN) includes both data and sequence
 space occupying controls. When a SYN is present then SEG.SEQ is the
 sequence number of the SYN.

[Page 26]

September 1981
 Transmission Control Protocol
 Functional Specification

 Initial Sequence Number Selection

 The protocol places no restriction on a particular connection being
 used over and over again. A connection is defined by a pair of
 sockets. New instances of a connection will be referred to as
 incarnations of the connection. The problem that arises from this is
 -- "how does the TCP identify duplicate segments from previous
 incarnations of the connection?" This problem becomes apparent if the
 connection is being opened and closed in quick succession, or if the
 connection breaks with loss of memory and is then reestablished.

 To avoid confusion we must prevent segments from one incarnation of a
 connection from being used while the same sequence numbers may still
 be present in the network from an earlier incarnation. We want to
 assure this, even if a TCP crashes and loses all knowledge of the
 sequence numbers it has been using. When new connections are created,
 an initial sequence number (ISN) generator is employed which selects a
 new 32 bit ISN. The generator is bound to a (possibly fictitious) 32
 bit clock whose low order bit is incremented roughly every 4
 microseconds. Thus, the ISN cycles approximately every 4.55 hours.
 Since we assume that segments will stay in the network no more than
 the Maximum Segment Lifetime (MSL) and that the MSL is less than 4.55
 hours we can reasonably assume that ISN’s will be unique.

 For each connection there is a send sequence number and a receive
 sequence number. The initial send sequence number (ISS) is chosen by
 the data sending TCP, and the initial receive sequence number (IRS) is
 learned during the connection establishing procedure.

 For a connection to be established or initialized, the two TCPs must
 synchronize on each other’s initial sequence numbers. This is done in
 an exchange of connection establishing segments carrying a control bit
 called "SYN" (for synchronize) and the initial sequence numbers. As a
 shorthand, segments carrying the SYN bit are also called "SYNs".
 Hence, the solution requires a suitable mechanism for picking an
 initial sequence number and a slightly involved handshake to exchange
 the ISN’s.

 The synchronization requires each side to send it’s own initial
 sequence number and to receive a confirmation of it in acknowledgment
 from the other side. Each side must also receive the other side’s
 initial sequence number and send a confirming acknowledgment.

 1) A --> B SYN my sequence number is X
 2) A <-- B ACK your sequence number is X
 3) A <-- B SYN my sequence number is Y
 4) A --> B ACK your sequence number is Y

 [Page 27]

 September 1981
Transmission Control Protocol
Functional Specification

 Because steps 2 and 3 can be combined in a single message this is
 called the three way (or three message) handshake.

 A three way handshake is necessary because sequence numbers are not
 tied to a global clock in the network, and TCPs may have different
 mechanisms for picking the ISN’s. The receiver of the first SYN has
 no way of knowing whether the segment was an old delayed one or not,
 unless it remembers the last sequence number used on the connection
 (which is not always possible), and so it must ask the sender to
 verify this SYN. The three way handshake and the advantages of a
 clock-driven scheme are discussed in [3].

 Knowing When to Keep Quiet

 To be sure that a TCP does not create a segment that carries a
 sequence number which may be duplicated by an old segment remaining in
 the network, the TCP must keep quiet for a maximum segment lifetime
 (MSL) before assigning any sequence numbers upon starting up or
 recovering from a crash in which memory of sequence numbers in use was
 lost. For this specification the MSL is taken to be 2 minutes. This
 is an engineering choice, and may be changed if experience indicates
 it is desirable to do so. Note that if a TCP is reinitialized in some
 sense, yet retains its memory of sequence numbers in use, then it need
 not wait at all; it must only be sure to use sequence numbers larger
 than those recently used.

 The TCP Quiet Time Concept

 This specification provides that hosts which "crash" without
 retaining any knowledge of the last sequence numbers transmitted on
 each active (i.e., not closed) connection shall delay emitting any
 TCP segments for at least the agreed Maximum Segment Lifetime (MSL)
 in the internet system of which the host is a part. In the
 paragraphs below, an explanation for this specification is given.
 TCP implementors may violate the "quiet time" restriction, but only
 at the risk of causing some old data to be accepted as new or new
 data rejected as old duplicated by some receivers in the internet
 system.

 TCPs consume sequence number space each time a segment is formed and
 entered into the network output queue at a source host. The
 duplicate detection and sequencing algorithm in the TCP protocol
 relies on the unique binding of segment data to sequence space to
 the extent that sequence numbers will not cycle through all 2**32
 values before the segment data bound to those sequence numbers has
 been delivered and acknowledged by the receiver and all duplicate
 copies of the segments have "drained" from the internet. Without
 such an assumption, two distinct TCP segments could conceivably be

[Page 28]

September 1981
 Transmission Control Protocol
 Functional Specification

 assigned the same or overlapping sequence numbers, causing confusion
 at the receiver as to which data is new and which is old. Remember
 that each segment is bound to as many consecutive sequence numbers
 as there are octets of data in the segment.

 Under normal conditions, TCPs keep track of the next sequence number
 to emit and the oldest awaiting acknowledgment so as to avoid
 mistakenly using a sequence number over before its first use has
 been acknowledged. This alone does not guarantee that old duplicate
 data is drained from the net, so the sequence space has been made
 very large to reduce the probability that a wandering duplicate will
 cause trouble upon arrival. At 2 megabits/sec. it takes 4.5 hours
 to use up 2**32 octets of sequence space. Since the maximum segment
 lifetime in the net is not likely to exceed a few tens of seconds,
 this is deemed ample protection for foreseeable nets, even if data
 rates escalate to l0’s of megabits/sec. At 100 megabits/sec, the
 cycle time is 5.4 minutes which may be a little short, but still
 within reason.

 The basic duplicate detection and sequencing algorithm in TCP can be
 defeated, however, if a source TCP does not have any memory of the
 sequence numbers it last used on a given connection. For example, if
 the TCP were to start all connections with sequence number 0, then
 upon crashing and restarting, a TCP might re-form an earlier
 connection (possibly after half-open connection resolution) and emit
 packets with sequence numbers identical to or overlapping with
 packets still in the network which were emitted on an earlier
 incarnation of the same connection. In the absence of knowledge
 about the sequence numbers used on a particular connection, the TCP
 specification recommends that the source delay for MSL seconds
 before emitting segments on the connection, to allow time for
 segments from the earlier connection incarnation to drain from the
 system.

 Even hosts which can remember the time of day and used it to select
 initial sequence number values are not immune from this problem
 (i.e., even if time of day is used to select an initial sequence
 number for each new connection incarnation).

 Suppose, for example, that a connection is opened starting with
 sequence number S. Suppose that this connection is not used much
 and that eventually the initial sequence number function (ISN(t))
 takes on a value equal to the sequence number, say S1, of the last
 segment sent by this TCP on a particular connection. Now suppose,
 at this instant, the host crashes, recovers, and establishes a new
 incarnation of the connection. The initial sequence number chosen is
 S1 = ISN(t) -- last used sequence number on old incarnation of
 connection! If the recovery occurs quickly enough, any old

 [Page 29]

 September 1981
Transmission Control Protocol
Functional Specification

 duplicates in the net bearing sequence numbers in the neighborhood
 of S1 may arrive and be treated as new packets by the receiver of
 the new incarnation of the connection.

 The problem is that the recovering host may not know for how long it
 crashed nor does it know whether there are still old duplicates in
 the system from earlier connection incarnations.

 One way to deal with this problem is to deliberately delay emitting
 segments for one MSL after recovery from a crash- this is the "quite
 time" specification. Hosts which prefer to avoid waiting are
 willing to risk possible confusion of old and new packets at a given
 destination may choose not to wait for the "quite time".
 Implementors may provide TCP users with the ability to select on a
 connection by connection basis whether to wait after a crash, or may
 informally implement the "quite time" for all connections.
 Obviously, even where a user selects to "wait," this is not
 necessary after the host has been "up" for at least MSL seconds.

 To summarize: every segment emitted occupies one or more sequence
 numbers in the sequence space, the numbers occupied by a segment are
 "busy" or "in use" until MSL seconds have passed, upon crashing a
 block of space-time is occupied by the octets of the last emitted
 segment, if a new connection is started too soon and uses any of the
 sequence numbers in the space-time footprint of the last segment of
 the previous connection incarnation, there is a potential sequence
 number overlap area which could cause confusion at the receiver.

3.4. Establishing a connection

 The "three-way handshake" is the procedure used to establish a
 connection. This procedure normally is initiated by one TCP and
 responded to by another TCP. The procedure also works if two TCP
 simultaneously initiate the procedure. When simultaneous attempt
 occurs, each TCP receives a "SYN" segment which carries no
 acknowledgment after it has sent a "SYN". Of course, the arrival of
 an old duplicate "SYN" segment can potentially make it appear, to the
 recipient, that a simultaneous connection initiation is in progress.
 Proper use of "reset" segments can disambiguate these cases.

 Several examples of connection initiation follow. Although these
 examples do not show connection synchronization using data-carrying
 segments, this is perfectly legitimate, so long as the receiving TCP
 doesn’t deliver the data to the user until it is clear the data is
 valid (i.e., the data must be buffered at the receiver until the
 connection reaches the ESTABLISHED state). The three-way handshake
 reduces the possibility of false connections. It is the

[Page 30]

September 1981
 Transmission Control Protocol
 Functional Specification

 implementation of a trade-off between memory and messages to provide
 information for this checking.

 The simplest three-way handshake is shown in figure 7 below. The
 figures should be interpreted in the following way. Each line is
 numbered for reference purposes. Right arrows (-->) indicate
 departure of a TCP segment from TCP A to TCP B, or arrival of a
 segment at B from A. Left arrows (<--), indicate the reverse.
 Ellipsis (...) indicates a segment which is still in the network
 (delayed). An "XXX" indicates a segment which is lost or rejected.
 Comments appear in parentheses. TCP states represent the state AFTER
 the departure or arrival of the segment (whose contents are shown in
 the center of each line). Segment contents are shown in abbreviated
 form, with sequence number, control flags, and ACK field. Other
 fields such as window, addresses, lengths, and text have been left out
 in the interest of clarity.

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

 Basic 3-Way Handshake for Connection Synchronization

 Figure 7.

 In line 2 of figure 7, TCP A begins by sending a SYN segment
 indicating that it will use sequence numbers starting with sequence
 number 100. In line 3, TCP B sends a SYN and acknowledges the SYN it
 received from TCP A. Note that the acknowledgment field indicates TCP
 B is now expecting to hear sequence 101, acknowledging the SYN which
 occupied sequence 100.

 At line 4, TCP A responds with an empty segment containing an ACK for
 TCP B’s SYN; and in line 5, TCP A sends some data. Note that the
 sequence number of the segment in line 5 is the same as in line 4
 because the ACK does not occupy sequence number space (if it did, we
 would wind up ACKing ACK’s!).

 [Page 31]

 September 1981
Transmission Control Protocol
Functional Specification

 Simultaneous initiation is only slightly more complex, as is shown in
 figure 8. Each TCP cycles from CLOSED to SYN-SENT to SYN-RECEIVED to
 ESTABLISHED.

 TCP A TCP B

 1. CLOSED CLOSED

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

 4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 5. SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 6. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 7. ... <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 Simultaneous Connection Synchronization

 Figure 8.

 The principle reason for the three-way handshake is to prevent old
 duplicate connection initiations from causing confusion. To deal with
 this, a special control message, reset, has been devised. If the
 receiving TCP is in a non-synchronized state (i.e., SYN-SENT,
 SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
 If the TCP is in one of the synchronized states (ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
 aborts the connection and informs its user. We discuss this latter
 case under "half-open" connections below.

[Page 32]

September 1981
 Transmission Control Protocol
 Functional Specification

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN-RECEIVED

 4. SYN-SENT <-- <SEQ=300><ACK=91><CTL=SYN,ACK> <-- SYN-RECEIVED

 5. SYN-SENT --> <SEQ=91><CTL=RST> --> LISTEN

 6. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 7. SYN-SENT <-- <SEQ=400><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 8. ESTABLISHED --> <SEQ=101><ACK=401><CTL=ACK> --> ESTABLISHED

 Recovery from Old Duplicate SYN

 Figure 9.

 As a simple example of recovery from old duplicates, consider
 figure 9. At line 3, an old duplicate SYN arrives at TCP B. TCP B
 cannot tell that this is an old duplicate, so it responds normally
 (line 4). TCP A detects that the ACK field is incorrect and returns a
 RST (reset) with its SEQ field selected to make the segment
 believable. TCP B, on receiving the RST, returns to the LISTEN state.
 When the original SYN (pun intended) finally arrives at line 6, the
 synchronization proceeds normally. If the SYN at line 6 had arrived
 before the RST, a more complex exchange might have occurred with RST’s
 sent in both directions.

 Half-Open Connections and Other Anomalies

 An established connection is said to be "half-open" if one of the
 TCPs has closed or aborted the connection at its end without the
 knowledge of the other, or if the two ends of the connection have
 become desynchronized owing to a crash that resulted in loss of
 memory. Such connections will automatically become reset if an
 attempt is made to send data in either direction. However, half-open
 connections are expected to be unusual, and the recovery procedure is
 mildly involved.

 If at site A the connection no longer exists, then an attempt by the

 [Page 33]

 September 1981
Transmission Control Protocol
Functional Specification

 user at site B to send any data on it will result in the site B TCP
 receiving a reset control message. Such a message indicates to the
 site B TCP that something is wrong, and it is expected to abort the
 connection.

 Assume that two user processes A and B are communicating with one
 another when a crash occurs causing loss of memory to A’s TCP.
 Depending on the operating system supporting A’s TCP, it is likely
 that some error recovery mechanism exists. When the TCP is up again,
 A is likely to start again from the beginning or from a recovery
 point. As a result, A will probably try to OPEN the connection again
 or try to SEND on the connection it believes open. In the latter
 case, it receives the error message "connection not open" from the
 local (A’s) TCP. In an attempt to establish the connection, A’s TCP
 will send a segment containing SYN. This scenario leads to the
 example shown in figure 10. After TCP A crashes, the user attempts to
 re-open the connection. TCP B, in the meantime, thinks the connection
 is open.

 TCP A TCP B

 1. (CRASH) (send 300,receive 100)

 2. CLOSED ESTABLISHED

 3. SYN-SENT --> <SEQ=400><CTL=SYN> --> (??)

 4. (!!) <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLISHED

 5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)

 6. SYN-SENT CLOSED

 7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

 Half-Open Connection Discovery

 Figure 10.

 When the SYN arrives at line 3, TCP B, being in a synchronized state,
 and the incoming segment outside the window, responds with an
 acknowledgment indicating what sequence it next expects to hear (ACK
 100). TCP A sees that this segment does not acknowledge anything it
 sent and, being unsynchronized, sends a reset (RST) because it has
 detected a half-open connection. TCP B aborts at line 5. TCP A will

[Page 34]

September 1981
 Transmission Control Protocol
 Functional Specification

 continue to try to establish the connection; the problem is now
 reduced to the basic 3-way handshake of figure 7.

 An interesting alternative case occurs when TCP A crashes and TCP B
 tries to send data on what it thinks is a synchronized connection.
 This is illustrated in figure 11. In this case, the data arriving at
 TCP A from TCP B (line 2) is unacceptable because no such connection
 exists, so TCP A sends a RST. The RST is acceptable so TCP B
 processes it and aborts the connection.

 TCP A TCP B

 1. (CRASH) (send 300,receive 100)

 2. (??) <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLISHED

 3. --> <SEQ=100><CTL=RST> --> (ABORT!!)

 Active Side Causes Half-Open Connection Discovery

 Figure 11.

 In figure 12, we find the two TCPs A and B with passive connections
 waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
 into action. A SYN-ACK is returned (line 3) and causes TCP A to
 generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
 the reset and returns to its passive LISTEN state.

 TCP A TCP B

 1. LISTEN LISTEN

 2. ... <SEQ=Z><CTL=SYN> --> SYN-RECEIVED

 3. (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. --> <SEQ=Z+1><CTL=RST> --> (return to LISTEN!)

 5. LISTEN LISTEN

 Old Duplicate SYN Initiates a Reset on two Passive Sockets

 Figure 12.

 [Page 35]

 September 1981
Transmission Control Protocol
Functional Specification

 A variety of other cases are possible, all of which are accounted for
 by the following rules for RST generation and processing.

 Reset Generation

 As a general rule, reset (RST) must be sent whenever a segment arrives
 which apparently is not intended for the current connection. A reset
 must not be sent if it is not clear that this is the case.

 There are three groups of states:

 1. If the connection does not exist (CLOSED) then a reset is sent
 in response to any incoming segment except another reset. In
 particular, SYNs addressed to a non-existent connection are rejected
 by this means.

 If the incoming segment has an ACK field, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the CLOSED state.

 2. If the connection is in any non-synchronized state (LISTEN,
 SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
 something not yet sent (the segment carries an unacceptable ACK), or
 if an incoming segment has a security level or compartment which
 does not exactly match the level and compartment requested for the
 connection, a reset is sent.

 If our SYN has not been acknowledged and the precedence level of the
 incoming segment is higher than the precedence level requested then
 either raise the local precedence level (if allowed by the user and
 the system) or send a reset; or if the precedence level of the
 incoming segment is lower than the precedence level requested then
 continue as if the precedence matched exactly (if the remote TCP
 cannot raise the precedence level to match ours this will be
 detected in the next segment it sends, and the connection will be
 terminated then). If our SYN has been acknowledged (perhaps in this
 incoming segment) the precedence level of the incoming segment must
 match the local precedence level exactly, if it does not a reset
 must be sent.

 If the incoming segment has an ACK field, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the same state.

[Page 36]

September 1981
 Transmission Control Protocol
 Functional Specification

 3. If the connection is in a synchronized state (ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
 any unacceptable segment (out of window sequence number or
 unacceptible acknowledgment number) must elicit only an empty
 acknowledgment segment containing the current send-sequence number
 and an acknowledgment indicating the next sequence number expected
 to be received, and the connection remains in the same state.

 If an incoming segment has a security level, or compartment, or
 precedence which does not exactly match the level, and compartment,
 and precedence requested for the connection,a reset is sent and
 connection goes to the CLOSED state. The reset takes its sequence
 number from the ACK field of the incoming segment.

 Reset Processing

 In all states except SYN-SENT, all reset (RST) segments are validated
 by checking their SEQ-fields. A reset is valid if its sequence number
 is in the window. In the SYN-SENT state (a RST received in response
 to an initial SYN), the RST is acceptable if the ACK field
 acknowledges the SYN.

 The receiver of a RST first validates it, then changes state. If the
 receiver was in the LISTEN state, it ignores it. If the receiver was
 in SYN-RECEIVED state and had previously been in the LISTEN state,
 then the receiver returns to the LISTEN state, otherwise the receiver
 aborts the connection and goes to the CLOSED state. If the receiver
 was in any other state, it aborts the connection and advises the user
 and goes to the CLOSED state.

3.5. Closing a Connection

 CLOSE is an operation meaning "I have no more data to send." The
 notion of closing a full-duplex connection is subject to ambiguous
 interpretation, of course, since it may not be obvious how to treat
 the receiving side of the connection. We have chosen to treat CLOSE
 in a simplex fashion. The user who CLOSEs may continue to RECEIVE
 until he is told that the other side has CLOSED also. Thus, a program
 could initiate several SENDs followed by a CLOSE, and then continue to
 RECEIVE until signaled that a RECEIVE failed because the other side
 has CLOSED. We assume that the TCP will signal a user, even if no
 RECEIVEs are outstanding, that the other side has closed, so the user
 can terminate his side gracefully. A TCP will reliably deliver all
 buffers SENT before the connection was CLOSED so a user who expects no
 data in return need only wait to hear the connection was CLOSED
 successfully to know that all his data was received at the destination
 TCP. Users must keep reading connections they close for sending until
 the TCP says no more data.

 [Page 37]

 September 1981
Transmission Control Protocol
Functional Specification

 There are essentially three cases:

 1) The user initiates by telling the TCP to CLOSE the connection

 2) The remote TCP initiates by sending a FIN control signal

 3) Both users CLOSE simultaneously

 Case 1: Local user initiates the close

 In this case, a FIN segment can be constructed and placed on the
 outgoing segment queue. No further SENDs from the user will be
 accepted by the TCP, and it enters the FIN-WAIT-1 state. RECEIVEs
 are allowed in this state. All segments preceding and including FIN
 will be retransmitted until acknowledged. When the other TCP has
 both acknowledged the FIN and sent a FIN of its own, the first TCP
 can ACK this FIN. Note that a TCP receiving a FIN will ACK but not
 send its own FIN until its user has CLOSED the connection also.

 Case 2: TCP receives a FIN from the network

 If an unsolicited FIN arrives from the network, the receiving TCP
 can ACK it and tell the user that the connection is closing. The
 user will respond with a CLOSE, upon which the TCP can send a FIN to
 the other TCP after sending any remaining data. The TCP then waits
 until its own FIN is acknowledged whereupon it deletes the
 connection. If an ACK is not forthcoming, after the user timeout
 the connection is aborted and the user is told.

 Case 3: both users close simultaneously

 A simultaneous CLOSE by users at both ends of a connection causes
 FIN segments to be exchanged. When all segments preceding the FINs
 have been processed and acknowledged, each TCP can ACK the FIN it
 has received. Both will, upon receiving these ACKs, delete the
 connection.

[Page 38]

September 1981
 Transmission Control Protocol
 Functional Specification

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSE-WAIT

 3. FIN-WAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK> <-- CLOSE-WAIT

 4. (Close)
 TIME-WAIT <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <-- LAST-ACK

 5. TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> CLOSED

 6. (2 MSL)
 CLOSED

 Normal Close Sequence

 Figure 13.

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (Close) (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> ... FIN-WAIT-1
 <-- <SEQ=300><ACK=100><CTL=FIN,ACK> <--
 ... <SEQ=100><ACK=300><CTL=FIN,ACK> -->

 3. CLOSING --> <SEQ=101><ACK=301><CTL=ACK> ... CLOSING
 <-- <SEQ=301><ACK=101><CTL=ACK> <--
 ... <SEQ=101><ACK=301><CTL=ACK> -->

 4. TIME-WAIT TIME-WAIT
 (2 MSL) (2 MSL)
 CLOSED CLOSED

 Simultaneous Close Sequence

 Figure 14.

 [Page 39]

 September 1981
Transmission Control Protocol
Functional Specification

3.6. Precedence and Security

 The intent is that connection be allowed only between ports operating
 with exactly the same security and compartment values and at the
 higher of the precedence level requested by the two ports.

 The precedence and security parameters used in TCP are exactly those
 defined in the Internet Protocol (IP) [2]. Throughout this TCP
 specification the term "security/compartment" is intended to indicate
 the security parameters used in IP including security, compartment,
 user group, and handling restriction.

 A connection attempt with mismatched security/compartment values or a
 lower precedence value must be rejected by sending a reset. Rejecting
 a connection due to too low a precedence only occurs after an
 acknowledgment of the SYN has been received.

 Note that TCP modules which operate only at the default value of
 precedence will still have to check the precedence of incoming
 segments and possibly raise the precedence level they use on the
 connection.

 The security paramaters may be used even in a non-secure environment
 (the values would indicate unclassified data), thus hosts in
 non-secure environments must be prepared to receive the security
 parameters, though they need not send them.

3.7. Data Communication

 Once the connection is established data is communicated by the
 exchange of segments. Because segments may be lost due to errors
 (checksum test failure), or network congestion, TCP uses
 retransmission (after a timeout) to ensure delivery of every segment.
 Duplicate segments may arrive due to network or TCP retransmission.
 As discussed in the section on sequence numbers the TCP performs
 certain tests on the sequence and acknowledgment numbers in the
 segments to verify their acceptability.

 The sender of data keeps track of the next sequence number to use in
 the variable SND.NXT. The receiver of data keeps track of the next
 sequence number to expect in the variable RCV.NXT. The sender of data
 keeps track of the oldest unacknowledged sequence number in the
 variable SND.UNA. If the data flow is momentarily idle and all data
 sent has been acknowledged then the three variables will be equal.

 When the sender creates a segment and transmits it the sender advances
 SND.NXT. When the receiver accepts a segment it advances RCV.NXT and
 sends an acknowledgment. When the data sender receives an

[Page 40]

September 1981
 Transmission Control Protocol
 Functional Specification

 acknowledgment it advances SND.UNA. The extent to which the values of
 these variables differ is a measure of the delay in the communication.
 The amount by which the variables are advanced is the length of the
 data in the segment. Note that once in the ESTABLISHED state all
 segments must carry current acknowledgment information.

 The CLOSE user call implies a push function, as does the FIN control
 flag in an incoming segment.

 Retransmission Timeout

 Because of the variability of the networks that compose an
 internetwork system and the wide range of uses of TCP connections the
 retransmission timeout must be dynamically determined. One procedure
 for determining a retransmission time out is given here as an
 illustration.

 An Example Retransmission Timeout Procedure

 Measure the elapsed time between sending a data octet with a
 particular sequence number and receiving an acknowledgment that
 covers that sequence number (segments sent do not have to match
 segments received). This measured elapsed time is the Round Trip
 Time (RTT). Next compute a Smoothed Round Trip Time (SRTT) as:

 SRTT = (ALPHA * SRTT) + ((1-ALPHA) * RTT)

 and based on this, compute the retransmission timeout (RTO) as:

 RTO = min[UBOUND,max[LBOUND,(BETA*SRTT)]]

 where UBOUND is an upper bound on the timeout (e.g., 1 minute),
 LBOUND is a lower bound on the timeout (e.g., 1 second), ALPHA is
 a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
 factor (e.g., 1.3 to 2.0).

 The Communication of Urgent Information

 The objective of the TCP urgent mechanism is to allow the sending user
 to stimulate the receiving user to accept some urgent data and to
 permit the receiving TCP to indicate to the receiving user when all
 the currently known urgent data has been received by the user.

 This mechanism permits a point in the data stream to be designated as
 the end of urgent information. Whenever this point is in advance of
 the receive sequence number (RCV.NXT) at the receiving TCP, that TCP
 must tell the user to go into "urgent mode"; when the receive sequence
 number catches up to the urgent pointer, the TCP must tell user to go

 [Page 41]

 September 1981
Transmission Control Protocol
Functional Specification

 into "normal mode". If the urgent pointer is updated while the user
 is in "urgent mode", the update will be invisible to the user.

 The method employs a urgent field which is carried in all segments
 transmitted. The URG control flag indicates that the urgent field is
 meaningful and must be added to the segment sequence number to yield
 the urgent pointer. The absence of this flag indicates that there is
 no urgent data outstanding.

 To send an urgent indication the user must also send at least one data
 octet. If the sending user also indicates a push, timely delivery of
 the urgent information to the destination process is enhanced.

 Managing the Window

 The window sent in each segment indicates the range of sequence
 numbers the sender of the window (the data receiver) is currently
 prepared to accept. There is an assumption that this is related to
 the currently available data buffer space available for this
 connection.

 Indicating a large window encourages transmissions. If more data
 arrives than can be accepted, it will be discarded. This will result
 in excessive retransmissions, adding unnecessarily to the load on the
 network and the TCPs. Indicating a small window may restrict the
 transmission of data to the point of introducing a round trip delay
 between each new segment transmitted.

 The mechanisms provided allow a TCP to advertise a large window and to
 subsequently advertise a much smaller window without having accepted
 that much data. This, so called "shrinking the window," is strongly
 discouraged. The robustness principle dictates that TCPs will not
 shrink the window themselves, but will be prepared for such behavior
 on the part of other TCPs.

 The sending TCP must be prepared to accept from the user and send at
 least one octet of new data even if the send window is zero. The
 sending TCP must regularly retransmit to the receiving TCP even when
 the window is zero. Two minutes is recommended for the retransmission
 interval when the window is zero. This retransmission is essential to
 guarantee that when either TCP has a zero window the re-opening of the
 window will be reliably reported to the other.

 When the receiving TCP has a zero window and a segment arrives it must
 still send an acknowledgment showing its next expected sequence number
 and current window (zero).

 The sending TCP packages the data to be transmitted into segments

[Page 42]

September 1981
 Transmission Control Protocol
 Functional Specification

 which fit the current window, and may repackage segments on the
 retransmission queue. Such repackaging is not required, but may be
 helpful.

 In a connection with a one-way data flow, the window information will
 be carried in acknowledgment segments that all have the same sequence
 number so there will be no way to reorder them if they arrive out of
 order. This is not a serious problem, but it will allow the window
 information to be on occasion temporarily based on old reports from
 the data receiver. A refinement to avoid this problem is to act on
 the window information from segments that carry the highest
 acknowledgment number (that is segments with acknowledgment number
 equal or greater than the highest previously received).

 The window management procedure has significant influence on the
 communication performance. The following comments are suggestions to
 implementers.

 Window Management Suggestions

 Allocating a very small window causes data to be transmitted in
 many small segments when better performance is achieved using
 fewer large segments.

 One suggestion for avoiding small windows is for the receiver to
 defer updating a window until the additional allocation is at
 least X percent of the maximum allocation possible for the
 connection (where X might be 20 to 40).

 Another suggestion is for the sender to avoid sending small
 segments by waiting until the window is large enough before
 sending data. If the the user signals a push function then the
 data must be sent even if it is a small segment.

 Note that the acknowledgments should not be delayed or unnecessary
 retransmissions will result. One strategy would be to send an
 acknowledgment when a small segment arrives (with out updating the
 window information), and then to send another acknowledgment with
 new window information when the window is larger.

 The segment sent to probe a zero window may also begin a break up
 of transmitted data into smaller and smaller segments. If a
 segment containing a single data octet sent to probe a zero window
 is accepted, it consumes one octet of the window now available.
 If the sending TCP simply sends as much as it can whenever the
 window is non zero, the transmitted data will be broken into
 alternating big and small segments. As time goes on, occasional
 pauses in the receiver making window allocation available will

 [Page 43]

 September 1981
Transmission Control Protocol
Functional Specification

 result in breaking the big segments into a small and not quite so
 big pair. And after a while the data transmission will be in
 mostly small segments.

 The suggestion here is that the TCP implementations need to
 actively attempt to combine small window allocations into larger
 windows, since the mechanisms for managing the window tend to lead
 to many small windows in the simplest minded implementations.

3.8. Interfaces

 There are of course two interfaces of concern: the user/TCP interface
 and the TCP/lower-level interface. We have a fairly elaborate model
 of the user/TCP interface, but the interface to the lower level
 protocol module is left unspecified here, since it will be specified
 in detail by the specification of the lowel level protocol. For the
 case that the lower level is IP we note some of the parameter values
 that TCPs might use.

 User/TCP Interface

 The following functional description of user commands to the TCP is,
 at best, fictional, since every operating system will have different
 facilities. Consequently, we must warn readers that different TCP
 implementations may have different user interfaces. However, all
 TCPs must provide a certain minimum set of services to guarantee
 that all TCP implementations can support the same protocol
 hierarchy. This section specifies the functional interfaces
 required of all TCP implementations.

 TCP User Commands

 The following sections functionally characterize a USER/TCP
 interface. The notation used is similar to most procedure or
 function calls in high level languages, but this usage is not
 meant to rule out trap type service calls (e.g., SVCs, UUOs,
 EMTs).

 The user commands described below specify the basic functions the
 TCP must perform to support interprocess communication.
 Individual implementations must define their own exact format, and
 may provide combinations or subsets of the basic functions in
 single calls. In particular, some implementations may wish to
 automatically OPEN a connection on the first SEND or RECEIVE
 issued by the user for a given connection.

[Page 44]

September 1981
 Transmission Control Protocol
 Functional Specification

 In providing interprocess communication facilities, the TCP must
 not only accept commands, but must also return information to the
 processes it serves. The latter consists of:

 (a) general information about a connection (e.g., interrupts,
 remote close, binding of unspecified foreign socket).

 (b) replies to specific user commands indicating success or
 various types of failure.

 Open

 Format: OPEN (local port, foreign socket, active/passive
 [, timeout] [, precedence] [, security/compartment] [, options])
 -> local connection name

 We assume that the local TCP is aware of the identity of the
 processes it serves and will check the authority of the process
 to use the connection specified. Depending upon the
 implementation of the TCP, the local network and TCP identifiers
 for the source address will either be supplied by the TCP or the
 lower level protocol (e.g., IP). These considerations are the
 result of concern about security, to the extent that no TCP be
 able to masquerade as another one, and so on. Similarly, no
 process can masquerade as another without the collusion of the
 TCP.

 If the active/passive flag is set to passive, then this is a
 call to LISTEN for an incoming connection. A passive open may
 have either a fully specified foreign socket to wait for a
 particular connection or an unspecified foreign socket to wait
 for any call. A fully specified passive call can be made active
 by the subsequent execution of a SEND.

 A transmission control block (TCB) is created and partially
 filled in with data from the OPEN command parameters.

 On an active OPEN command, the TCP will begin the procedure to
 synchronize (i.e., establish) the connection at once.

 The timeout, if present, permits the caller to set up a timeout
 for all data submitted to TCP. If data is not successfully
 delivered to the destination within the timeout period, the TCP
 will abort the connection. The present global default is five
 minutes.

 The TCP or some component of the operating system will verify
 the users authority to open a connection with the specified

 [Page 45]

 September 1981
Transmission Control Protocol
Functional Specification

 precedence or security/compartment. The absence of precedence
 or security/compartment specification in the OPEN call indicates
 the default values must be used.

 TCP will accept incoming requests as matching only if the
 security/compartment information is exactly the same and only if
 the precedence is equal to or higher than the precedence
 requested in the OPEN call.

 The precedence for the connection is the higher of the values
 requested in the OPEN call and received from the incoming
 request, and fixed at that value for the life of the
 connection.Implementers may want to give the user control of
 this precedence negotiation. For example, the user might be
 allowed to specify that the precedence must be exactly matched,
 or that any attempt to raise the precedence be confirmed by the
 user.

 A local connection name will be returned to the user by the TCP.
 The local connection name can then be used as a short hand term
 for the connection defined by the <local socket, foreign socket>
 pair.

 Send

 Format: SEND (local connection name, buffer address, byte
 count, PUSH flag, URGENT flag [,timeout])

 This call causes the data contained in the indicated user buffer
 to be sent on the indicated connection. If the connection has
 not been opened, the SEND is considered an error. Some
 implementations may allow users to SEND first; in which case, an
 automatic OPEN would be done. If the calling process is not
 authorized to use this connection, an error is returned.

 If the PUSH flag is set, the data must be transmitted promptly
 to the receiver, and the PUSH bit will be set in the last TCP
 segment created from the buffer. If the PUSH flag is not set,
 the data may be combined with data from subsequent SENDs for
 transmission efficiency.

 If the URGENT flag is set, segments sent to the destination TCP
 will have the urgent pointer set. The receiving TCP will signal
 the urgent condition to the receiving process if the urgent
 pointer indicates that data preceding the urgent pointer has not
 been consumed by the receiving process. The purpose of urgent
 is to stimulate the receiver to process the urgent data and to
 indicate to the receiver when all the currently known urgent

[Page 46]

September 1981
 Transmission Control Protocol
 Functional Specification

 data has been received. The number of times the sending user’s
 TCP signals urgent will not necessarily be equal to the number
 of times the receiving user will be notified of the presence of
 urgent data.

 If no foreign socket was specified in the OPEN, but the
 connection is established (e.g., because a LISTENing connection
 has become specific due to a foreign segment arriving for the
 local socket), then the designated buffer is sent to the implied
 foreign socket. Users who make use of OPEN with an unspecified
 foreign socket can make use of SEND without ever explicitly
 knowing the foreign socket address.

 However, if a SEND is attempted before the foreign socket
 becomes specified, an error will be returned. Users can use the
 STATUS call to determine the status of the connection. In some
 implementations the TCP may notify the user when an unspecified
 socket is bound.

 If a timeout is specified, the current user timeout for this
 connection is changed to the new one.

 In the simplest implementation, SEND would not return control to
 the sending process until either the transmission was complete
 or the timeout had been exceeded. However, this simple method
 is both subject to deadlocks (for example, both sides of the
 connection might try to do SENDs before doing any RECEIVEs) and
 offers poor performance, so it is not recommended. A more
 sophisticated implementation would return immediately to allow
 the process to run concurrently with network I/O, and,
 furthermore, to allow multiple SENDs to be in progress.
 Multiple SENDs are served in first come, first served order, so
 the TCP will queue those it cannot service immediately.

 We have implicitly assumed an asynchronous user interface in
 which a SEND later elicits some kind of SIGNAL or
 pseudo-interrupt from the serving TCP. An alternative is to
 return a response immediately. For instance, SENDs might return
 immediate local acknowledgment, even if the segment sent had not
 been acknowledged by the distant TCP. We could optimistically
 assume eventual success. If we are wrong, the connection will
 close anyway due to the timeout. In implementations of this
 kind (synchronous), there will still be some asynchronous
 signals, but these will deal with the connection itself, and not
 with specific segments or buffers.

 In order for the process to distinguish among error or success
 indications for different SENDs, it might be appropriate for the

 [Page 47]

 September 1981
Transmission Control Protocol
Functional Specification

 buffer address to be returned along with the coded response to
 the SEND request. TCP-to-user signals are discussed below,
 indicating the information which should be returned to the
 calling process.

 Receive

 Format: RECEIVE (local connection name, buffer address, byte
 count) -> byte count, urgent flag, push flag

 This command allocates a receiving buffer associated with the
 specified connection. If no OPEN precedes this command or the
 calling process is not authorized to use this connection, an
 error is returned.

 In the simplest implementation, control would not return to the
 calling program until either the buffer was filled, or some
 error occurred, but this scheme is highly subject to deadlocks.
 A more sophisticated implementation would permit several
 RECEIVEs to be outstanding at once. These would be filled as
 segments arrive. This strategy permits increased throughput at
 the cost of a more elaborate scheme (possibly asynchronous) to
 notify the calling program that a PUSH has been seen or a buffer
 filled.

 If enough data arrive to fill the buffer before a PUSH is seen,
 the PUSH flag will not be set in the response to the RECEIVE.
 The buffer will be filled with as much data as it can hold. If
 a PUSH is seen before the buffer is filled the buffer will be
 returned partially filled and PUSH indicated.

 If there is urgent data the user will have been informed as soon
 as it arrived via a TCP-to-user signal. The receiving user
 should thus be in "urgent mode". If the URGENT flag is on,
 additional urgent data remains. If the URGENT flag is off, this
 call to RECEIVE has returned all the urgent data, and the user
 may now leave "urgent mode". Note that data following the
 urgent pointer (non-urgent data) cannot be delivered to the user
 in the same buffer with preceeding urgent data unless the
 boundary is clearly marked for the user.

 To distinguish among several outstanding RECEIVEs and to take
 care of the case that a buffer is not completely filled, the
 return code is accompanied by both a buffer pointer and a byte
 count indicating the actual length of the data received.

 Alternative implementations of RECEIVE might have the TCP

[Page 48]

September 1981
 Transmission Control Protocol
 Functional Specification

 allocate buffer storage, or the TCP might share a ring buffer
 with the user.

 Close

 Format: CLOSE (local connection name)

 This command causes the connection specified to be closed. If
 the connection is not open or the calling process is not
 authorized to use this connection, an error is returned.
 Closing connections is intended to be a graceful operation in
 the sense that outstanding SENDs will be transmitted (and
 retransmitted), as flow control permits, until all have been
 serviced. Thus, it should be acceptable to make several SEND
 calls, followed by a CLOSE, and expect all the data to be sent
 to the destination. It should also be clear that users should
 continue to RECEIVE on CLOSING connections, since the other side
 may be trying to transmit the last of its data. Thus, CLOSE
 means "I have no more to send" but does not mean "I will not
 receive any more." It may happen (if the user level protocol is
 not well thought out) that the closing side is unable to get rid
 of all its data before timing out. In this event, CLOSE turns
 into ABORT, and the closing TCP gives up.

 The user may CLOSE the connection at any time on his own
 initiative, or in response to various prompts from the TCP
 (e.g., remote close executed, transmission timeout exceeded,
 destination inaccessible).

 Because closing a connection requires communication with the
 foreign TCP, connections may remain in the closing state for a
 short time. Attempts to reopen the connection before the TCP
 replies to the CLOSE command will result in error responses.

 Close also implies push function.

 Status

 Format: STATUS (local connection name) -> status data

 This is an implementation dependent user command and could be
 excluded without adverse effect. Information returned would
 typically come from the TCB associated with the connection.

 This command returns a data block containing the following
 information:

 local socket,

 [Page 49]

 September 1981
Transmission Control Protocol
Functional Specification

 foreign socket,
 local connection name,
 receive window,
 send window,
 connection state,
 number of buffers awaiting acknowledgment,
 number of buffers pending receipt,
 urgent state,
 precedence,
 security/compartment,
 and transmission timeout.

 Depending on the state of the connection, or on the
 implementation itself, some of this information may not be
 available or meaningful. If the calling process is not
 authorized to use this connection, an error is returned. This
 prevents unauthorized processes from gaining information about a
 connection.

 Abort

 Format: ABORT (local connection name)

 This command causes all pending SENDs and RECEIVES to be
 aborted, the TCB to be removed, and a special RESET message to
 be sent to the TCP on the other side of the connection.
 Depending on the implementation, users may receive abort
 indications for each outstanding SEND or RECEIVE, or may simply
 receive an ABORT-acknowledgment.

 TCP-to-User Messages

 It is assumed that the operating system environment provides a
 means for the TCP to asynchronously signal the user program. When
 the TCP does signal a user program, certain information is passed
 to the user. Often in the specification the information will be
 an error message. In other cases there will be information
 relating to the completion of processing a SEND or RECEIVE or
 other user call.

 The following information is provided:

 Local Connection Name Always
 Response String Always
 Buffer Address Send & Receive
 Byte count (counts bytes received) Receive
 Push flag Receive
 Urgent flag Receive

[Page 50]

September 1981
 Transmission Control Protocol
 Functional Specification

 TCP/Lower-Level Interface

 The TCP calls on a lower level protocol module to actually send and
 receive information over a network. One case is that of the ARPA
 internetwork system where the lower level module is the Internet
 Protocol (IP) [2].

 If the lower level protocol is IP it provides arguments for a type
 of service and for a time to live. TCP uses the following settings
 for these parameters:

 Type of Service = Precedence: routine, Delay: normal, Throughput:
 normal, Reliability: normal; or 00000000.

 Time to Live = one minute, or 00111100.

 Note that the assumed maximum segment lifetime is two minutes.
 Here we explicitly ask that a segment be destroyed if it cannot
 be delivered by the internet system within one minute.

 If the lower level is IP (or other protocol that provides this
 feature) and source routing is used, the interface must allow the
 route information to be communicated. This is especially important
 so that the source and destination addresses used in the TCP
 checksum be the originating source and ultimate destination. It is
 also important to preserve the return route to answer connection
 requests.

 Any lower level protocol will have to provide the source address,
 destination address, and protocol fields, and some way to determine
 the "TCP length", both to provide the functional equivlent service
 of IP and to be used in the TCP checksum.

 [Page 51]

 September 1981
Transmission Control Protocol
Functional Specification

3.9. Event Processing

 The processing depicted in this section is an example of one possible
 implementation. Other implementations may have slightly different
 processing sequences, but they should differ from those in this
 section only in detail, not in substance.

 The activity of the TCP can be characterized as responding to events.
 The events that occur can be cast into three categories: user calls,
 arriving segments, and timeouts. This section describes the
 processing the TCP does in response to each of the events. In many
 cases the processing required depends on the state of the connection.

 Events that occur:

 User Calls

 OPEN
 SEND
 RECEIVE
 CLOSE
 ABORT
 STATUS

 Arriving Segments

 SEGMENT ARRIVES

 Timeouts

 USER TIMEOUT
 RETRANSMISSION TIMEOUT
 TIME-WAIT TIMEOUT

 The model of the TCP/user interface is that user commands receive an
 immediate return and possibly a delayed response via an event or
 pseudo interrupt. In the following descriptions, the term "signal"
 means cause a delayed response.

 Error responses are given as character strings. For example, user
 commands referencing connections that do not exist receive "error:
 connection not open".

 Please note in the following that all arithmetic on sequence numbers,
 acknowledgment numbers, windows, et cetera, is modulo 2**32 the size
 of the sequence number space. Also note that "=<" means less than or
 equal to (modulo 2**32).

[Page 52]

September 1981
 Transmission Control Protocol
 Functional Specification

 A natural way to think about processing incoming segments is to
 imagine that they are first tested for proper sequence number (i.e.,
 that their contents lie in the range of the expected "receive window"
 in the sequence number space) and then that they are generally queued
 and processed in sequence number order.

 When a segment overlaps other already received segments we reconstruct
 the segment to contain just the new data, and adjust the header fields
 to be consistent.

 Note that if no state change is mentioned the TCP stays in the same
 state.

 [Page 53]

 September 1981
Transmission Control Protocol
Functional Specification
 OPEN Call

 OPEN Call

 CLOSED STATE (i.e., TCB does not exist)

 Create a new transmission control block (TCB) to hold connection
 state information. Fill in local socket identifier, foreign
 socket, precedence, security/compartment, and user timeout
 information. Note that some parts of the foreign socket may be
 unspecified in a passive OPEN and are to be filled in by the
 parameters of the incoming SYN segment. Verify the security and
 precedence requested are allowed for this user, if not return
 "error: precedence not allowed" or "error: security/compartment
 not allowed." If passive enter the LISTEN state and return. If
 active and the foreign socket is unspecified, return "error:
 foreign socket unspecified"; if active and the foreign socket is
 specified, issue a SYN segment. An initial send sequence number
 (ISS) is selected. A SYN segment of the form <SEQ=ISS><CTL=SYN>
 is sent. Set SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT
 state, and return.

 If the caller does not have access to the local socket specified,
 return "error: connection illegal for this process". If there is
 no room to create a new connection, return "error: insufficient
 resources".

 LISTEN STATE

 If active and the foreign socket is specified, then change the
 connection from passive to active, select an ISS. Send a SYN
 segment, set SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT
 state. Data associated with SEND may be sent with SYN segment or
 queued for transmission after entering ESTABLISHED state. The
 urgent bit if requested in the command must be sent with the data
 segments sent as a result of this command. If there is no room to
 queue the request, respond with "error: insufficient resources".
 If Foreign socket was not specified, then return "error: foreign
 socket unspecified".

[Page 54]

September 1981
 Transmission Control Protocol
 Functional Specification
OPEN Call

 SYN-SENT STATE
 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection already exists".

 [Page 55]

 September 1981
Transmission Control Protocol
Functional Specification
 SEND Call

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, then return
 "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 If the foreign socket is specified, then change the connection
 from passive to active, select an ISS. Send a SYN segment, set
 SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data
 associated with SEND may be sent with SYN segment or queued for
 transmission after entering ESTABLISHED state. The urgent bit if
 requested in the command must be sent with the data segments sent
 as a result of this command. If there is no room to queue the
 request, respond with "error: insufficient resources". If
 Foreign socket was not specified, then return "error: foreign
 socket unspecified".

 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue the data for transmission after entering ESTABLISHED state.
 If no space to queue, respond with "error: insufficient
 resources".

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). If there is
 insufficient space to remember this buffer, simply return "error:
 insufficient resources".

 If the urgent flag is set, then SND.UP <- SND.NXT-1 and set the
 urgent pointer in the outgoing segments.

[Page 56]

September 1981
 Transmission Control Protocol
 Functional Specification
SEND Call

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection closing" and do not service request.

 [Page 57]

 September 1981
Transmission Control Protocol
Functional Specification
 RECEIVE Call

 RECEIVE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE
 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue for processing after entering ESTABLISHED state. If there
 is no room to queue this request, respond with "error:
 insufficient resources".

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If insufficient incoming segments are queued to satisfy the
 request, queue the request. If there is no queue space to
 remember the RECEIVE, respond with "error: insufficient
 resources".

 Reassemble queued incoming segments into receive buffer and return
 to user. Mark "push seen" (PUSH) if this is the case.

 If RCV.UP is in advance of the data currently being passed to the
 user notify the user of the presence of urgent data.

 When the TCP takes responsibility for delivering data to the user
 that fact must be communicated to the sender via an
 acknowledgment. The formation of such an acknowledgment is
 described below in the discussion of processing an incoming
 segment.

[Page 58]

September 1981
 Transmission Control Protocol
 Functional Specification
RECEIVE Call

 CLOSE-WAIT STATE

 Since the remote side has already sent FIN, RECEIVEs must be
 satisfied by text already on hand, but not yet delivered to the
 user. If no text is awaiting delivery, the RECEIVE will get a
 "error: connection closing" response. Otherwise, any remaining
 text can be used to satisfy the RECEIVE.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection closing".

 [Page 59]

 September 1981
Transmission Control Protocol
Functional Specification
 CLOSE Call

 CLOSE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs are returned with "error: closing"
 responses. Delete TCB, enter CLOSED state, and return.

 SYN-SENT STATE

 Delete the TCB and return "error: closing" responses to any
 queued SENDs, or RECEIVEs.

 SYN-RECEIVED STATE

 If no SENDs have been issued and there is no pending data to send,
 then form a FIN segment and send it, and enter FIN-WAIT-1 state;
 otherwise queue for processing after entering ESTABLISHED state.

 ESTABLISHED STATE

 Queue this until all preceding SENDs have been segmentized, then
 form a FIN segment and send it. In any case, enter FIN-WAIT-1
 state.

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Strictly speaking, this is an error and should receive a "error:
 connection closing" response. An "ok" response would be
 acceptable, too, as long as a second FIN is not emitted (the first
 FIN may be retransmitted though).

[Page 60]

September 1981
 Transmission Control Protocol
 Functional Specification
CLOSE Call

 CLOSE-WAIT STATE

 Queue this request until all preceding SENDs have been
 segmentized; then send a FIN segment, enter CLOSING state.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Respond with "error: connection closing".

 [Page 61]

 September 1981
Transmission Control Protocol
Functional Specification
 ABORT Call

 ABORT Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs should be returned with "error:
 connection reset" responses. Delete TCB, enter CLOSED state, and
 return.

 SYN-SENT STATE

 All queued SENDs and RECEIVEs should be given "connection reset"
 notification, delete the TCB, enter CLOSED state, and return.

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE

 Send a reset segment:

 <SEQ=SND.NXT><CTL=RST>

 All queued SENDs and RECEIVEs should be given "connection reset"
 notification; all segments queued for transmission (except for the
 RST formed above) or retransmission should be flushed, delete the
 TCB, enter CLOSED state, and return.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Respond with "ok" and delete the TCB, enter CLOSED state, and
 return.

[Page 62]

September 1981
 Transmission Control Protocol
 Functional Specification
STATUS Call

 STATUS Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Return "state = LISTEN", and the TCB pointer.

 SYN-SENT STATE

 Return "state = SYN-SENT", and the TCB pointer.

 SYN-RECEIVED STATE

 Return "state = SYN-RECEIVED", and the TCB pointer.

 ESTABLISHED STATE

 Return "state = ESTABLISHED", and the TCB pointer.

 FIN-WAIT-1 STATE

 Return "state = FIN-WAIT-1", and the TCB pointer.

 FIN-WAIT-2 STATE

 Return "state = FIN-WAIT-2", and the TCB pointer.

 CLOSE-WAIT STATE

 Return "state = CLOSE-WAIT", and the TCB pointer.

 CLOSING STATE

 Return "state = CLOSING", and the TCB pointer.

 LAST-ACK STATE

 Return "state = LAST-ACK", and the TCB pointer.

 [Page 63]

 September 1981
Transmission Control Protocol
Functional Specification
 STATUS Call

 TIME-WAIT STATE

 Return "state = TIME-WAIT", and the TCB pointer.

[Page 64]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 SEGMENT ARRIVES

 If the state is CLOSED (i.e., TCB does not exist) then

 all data in the incoming segment is discarded. An incoming
 segment containing a RST is discarded. An incoming segment not
 containing a RST causes a RST to be sent in response. The
 acknowledgment and sequence field values are selected to make the
 reset sequence acceptable to the TCP that sent the offending
 segment.

 If the ACK bit is off, sequence number zero is used,

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the ACK bit is on,

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 If the state is LISTEN then

 first check for an RST

 An incoming RST should be ignored. Return.

 second check for an ACK

 Any acknowledgment is bad if it arrives on a connection still in
 the LISTEN state. An acceptable reset segment should be formed
 for any arriving ACK-bearing segment. The RST should be
 formatted as follows:

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 third check for a SYN

 If the SYN bit is set, check the security. If the
 security/compartment on the incoming segment does not exactly
 match the security/compartment in the TCB then send a reset and
 return.

 <SEQ=SEG.ACK><CTL=RST>

 [Page 65]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 If the SEG.PRC is greater than the TCB.PRC then if allowed by
 the user and the system set TCB.PRC<-SEG.PRC, if not allowed
 send a reset and return.

 <SEQ=SEG.ACK><CTL=RST>

 If the SEG.PRC is less than the TCB.PRC then continue.

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other
 control or text should be queued for processing later. ISS
 should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any other
 incoming control or data (combined with SYN) will be processed
 in the SYN-RECEIVED state, but processing of SYN and ACK should
 not be repeated. If the listen was not fully specified (i.e.,
 the foreign socket was not fully specified), then the
 unspecified fields should be filled in now.

 fourth other text or control

 Any other control or text-bearing segment (not containing SYN)
 must have an ACK and thus would be discarded by the ACK
 processing. An incoming RST segment could not be valid, since
 it could not have been sent in response to anything sent by this
 incarnation of the connection. So you are unlikely to get here,
 but if you do, drop the segment, and return.

 If the state is SYN-SENT then

 first check the ACK bit

 If the ACK bit is set

 If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless
 the RST bit is set, if so drop the segment and return)

 <SEQ=SEG.ACK><CTL=RST>

 and discard the segment. Return.

 If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable.

 second check the RST bit

[Page 66]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 If the RST bit is set

 If the ACK was acceptable then signal the user "error:
 connection reset", drop the segment, enter CLOSED state,
 delete TCB, and return. Otherwise (no ACK) drop the segment
 and return.

 third check the security and precedence

 If the security/compartment in the segment does not exactly
 match the security/compartment in the TCB, send a reset

 If there is an ACK

 <SEQ=SEG.ACK><CTL=RST>

 Otherwise

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If there is an ACK

 The precedence in the segment must match the precedence in the
 TCB, if not, send a reset

 <SEQ=SEG.ACK><CTL=RST>

 If there is no ACK

 If the precedence in the segment is higher than the precedence
 in the TCB then if allowed by the user and the system raise
 the precedence in the TCB to that in the segment, if not
 allowed to raise the prec then send a reset.

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the precedence in the segment is lower than the precedence
 in the TCB continue.

 If a reset was sent, discard the segment and return.

 fourth check the SYN bit

 This step should be reached only if the ACK is ok, or there is
 no ACK, and it the segment did not contain a RST.

 If the SYN bit is on and the security/compartment and precedence

 [Page 67]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
 SEG.SEQ. SND.UNA should be advanced to equal SEG.ACK (if there
 is an ACK), and any segments on the retransmission queue which
 are thereby acknowledged should be removed.

 If SND.UNA > ISS (our SYN has been ACKed), change the connection
 state to ESTABLISHED, form an ACK segment

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 and send it. Data or controls which were queued for
 transmission may be included. If there are other controls or
 text in the segment then continue processing at the sixth step
 below where the URG bit is checked, otherwise return.

 Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 and send it. If there are other controls or text in the
 segment, queue them for processing after the ESTABLISHED state
 has been reached, return.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

[Page 68]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 Otherwise,

 first check sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Segments are processed in sequence. Initial tests on arrival
 are used to discard old duplicates, but further processing is
 done in SEG.SEQ order. If a segment’s contents straddle the
 boundary between old and new, only the new parts should be
 processed.

 There are four cases for the acceptability test for an incoming
 segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If the RCV.WND is zero, no segments will be acceptable, but
 special allowance should be made to accept valid ACKs, URGs and
 RSTs.

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so drop
 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable segment
 and return.

 [Page 69]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 In the following it is assumed that the segment is the idealized
 segment that begins at RCV.NXT and does not exceed the window.
 One could tailor actual segments to fit this assumption by
 trimming off any portions that lie outside the window (including
 SYN and FIN), and only processing further if the segment then
 begins at RCV.NXT. Segments with higher begining sequence
 numbers may be held for later processing.

 second check the RST bit,

 SYN-RECEIVED STATE

 If the RST bit is set

 If this connection was initiated with a passive OPEN (i.e.,
 came from the LISTEN state), then return this connection to
 LISTEN state and return. The user need not be informed. If
 this connection was initiated with an active OPEN (i.e., came
 from SYN-SENT state) then the connection was refused, signal
 the user "connection refused". In either case, all segments
 on the retransmission queue should be removed. And in the
 active OPEN case, enter the CLOSED state and delete the TCB,
 and return.

 ESTABLISHED
 FIN-WAIT-1
 FIN-WAIT-2
 CLOSE-WAIT

 If the RST bit is set then, any outstanding RECEIVEs and SEND
 should receive "reset" responses. All segment queues should be
 flushed. Users should also receive an unsolicited general
 "connection reset" signal. Enter the CLOSED state, delete the
 TCB, and return.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 If the RST bit is set then, enter the CLOSED state, delete the
 TCB, and return.

[Page 70]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 third check security and precedence

 SYN-RECEIVED

 If the security/compartment and precedence in the segment do not
 exactly match the security/compartment and precedence in the TCB
 then send a reset, and return.

 ESTABLISHED STATE

 If the security/compartment and precedence in the segment do not
 exactly match the security/compartment and precedence in the TCB
 then send a reset, any outstanding RECEIVEs and SEND should
 receive "reset" responses. All segment queues should be
 flushed. Users should also receive an unsolicited general
 "connection reset" signal. Enter the CLOSED state, delete the
 TCB, and return.

 Note this check is placed following the sequence check to prevent
 a segment from an old connection between these ports with a
 different security or precedence from causing an abort of the
 current connection.

 fourth, check the SYN bit,

 SYN-RECEIVED
 ESTABLISHED STATE
 FIN-WAIT STATE-1
 FIN-WAIT STATE-2
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 If the SYN is in the window it is an error, send a reset, any
 outstanding RECEIVEs and SEND should receive "reset" responses,
 all segment queues should be flushed, the user should also
 receive an unsolicited general "connection reset" signal, enter
 the CLOSED state, delete the TCB, and return.

 If the SYN is not in the window this step would not be reached
 and an ack would have been sent in the first step (sequence
 number check).

 [Page 71]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 fifth check the ACK field,

 if the ACK bit is off drop the segment and return

 if the ACK bit is on

 SYN-RECEIVED STATE

 If SND.UNA =< SEG.ACK =< SND.NXT then enter ESTABLISHED state
 and continue processing.

 If the segment acknowledgment is not acceptable, form a
 reset segment,

 <SEQ=SEG.ACK><CTL=RST>

 and send it.

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
 Any segments on the retransmission queue which are thereby
 entirely acknowledged are removed. Users should receive
 positive acknowledgments for buffers which have been SENT and
 fully acknowledged (i.e., SEND buffer should be returned with
 "ok" response). If the ACK is a duplicate
 (SEG.ACK < SND.UNA), it can be ignored. If the ACK acks
 something not yet sent (SEG.ACK > SND.NXT) then send an ACK,
 drop the segment, and return.

 If SND.UNA < SEG.ACK =< SND.NXT, the send window should be
 updated. If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and
 SND.WL2 =< SEG.ACK)), set SND.WND <- SEG.WND, set
 SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK.

 Note that SND.WND is an offset from SND.UNA, that SND.WL1
 records the sequence number of the last segment used to update
 SND.WND, and that SND.WL2 records the acknowledgment number of
 the last segment used to update SND.WND. The check here
 prevents using old segments to update the window.

[Page 72]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 FIN-WAIT-1 STATE

 In addition to the processing for the ESTABLISHED state, if
 our FIN is now acknowledged then enter FIN-WAIT-2 and continue
 processing in that state.

 FIN-WAIT-2 STATE

 In addition to the processing for the ESTABLISHED state, if
 the retransmission queue is empty, the user’s CLOSE can be
 acknowledged ("ok") but do not delete the TCB.

 CLOSE-WAIT STATE

 Do the same processing as for the ESTABLISHED state.

 CLOSING STATE

 In addition to the processing for the ESTABLISHED state, if
 the ACK acknowledges our FIN then enter the TIME-WAIT state,
 otherwise ignore the segment.

 LAST-ACK STATE

 The only thing that can arrive in this state is an
 acknowledgment of our FIN. If our FIN is now acknowledged,
 delete the TCB, enter the CLOSED state, and return.

 TIME-WAIT STATE

 The only thing that can arrive in this state is a
 retransmission of the remote FIN. Acknowledge it, and restart
 the 2 MSL timeout.

 sixth, check the URG bit,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and signal
 the user that the remote side has urgent data if the urgent
 pointer (RCV.UP) is in advance of the data consumed. If the
 user has already been signaled (or is still in the "urgent
 mode") for this continuous sequence of urgent data, do not
 signal the user again.

 [Page 73]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 This should not occur, since a FIN has been received from the
 remote side. Ignore the URG.

 seventh, process the segment text,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Once in the ESTABLISHED state, it is possible to deliver segment
 text to user RECEIVE buffers. Text from segments can be moved
 into buffers until either the buffer is full or the segment is
 empty. If the segment empties and carries an PUSH flag, then
 the user is informed, when the buffer is returned, that a PUSH
 has been received.

 When the TCP takes responsibility for delivering the data to the
 user it must also acknowledge the receipt of the data.

 Once the TCP takes responsibility for the data it advances
 RCV.NXT over the data accepted, and adjusts RCV.WND as
 apporopriate to the current buffer availability. The total of
 RCV.NXT and RCV.WND should not be reduced.

 Please note the window management suggestions in section 3.7.

 Send an acknowledgment of the form:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 This acknowledgment should be piggybacked on a segment being
 transmitted if possible without incurring undue delay.

[Page 74]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 This should not occur, since a FIN has been received from the
 remote side. Ignore the segment text.

 eighth, check the FIN bit,

 Do not process the FIN if the state is CLOSED, LISTEN or SYN-SENT
 since the SEG.SEQ cannot be validated; drop the segment and
 return.

 If the FIN bit is set, signal the user "connection closing" and
 return any pending RECEIVEs with same message, advance RCV.NXT
 over the FIN, and send an acknowledgment for the FIN. Note that
 FIN implies PUSH for any segment text not yet delivered to the
 user.

 SYN-RECEIVED STATE
 ESTABLISHED STATE

 Enter the CLOSE-WAIT state.

 FIN-WAIT-1 STATE

 If our FIN has been ACKed (perhaps in this segment), then
 enter TIME-WAIT, start the time-wait timer, turn off the other
 timers; otherwise enter the CLOSING state.

 FIN-WAIT-2 STATE

 Enter the TIME-WAIT state. Start the time-wait timer, turn
 off the other timers.

 CLOSE-WAIT STATE

 Remain in the CLOSE-WAIT state.

 CLOSING STATE

 Remain in the CLOSING state.

 LAST-ACK STATE

 Remain in the LAST-ACK state.

 [Page 75]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 TIME-WAIT STATE

 Remain in the TIME-WAIT state. Restart the 2 MSL time-wait
 timeout.

 and return.

[Page 76]

September 1981
 Transmission Control Protocol
 Functional Specification
USER TIMEOUT

 USER TIMEOUT

 For any state if the user timeout expires, flush all queues, signal
 the user "error: connection aborted due to user timeout" in general
 and for any outstanding calls, delete the TCB, enter the CLOSED
 state and return.

 RETRANSMISSION TIMEOUT

 For any state if the retransmission timeout expires on a segment in
 the retransmission queue, send the segment at the front of the
 retransmission queue again, reinitialize the retransmission timer,
 and return.

 TIME-WAIT TIMEOUT

 If the time-wait timeout expires on a connection delete the TCB,
 enter the CLOSED state and return.

 [Page 77]

 September 1981
Transmission Control Protocol

[Page 78]

September 1981
 Transmission Control Protocol

 GLOSSARY

1822
 BBN Report 1822, "The Specification of the Interconnection of
 a Host and an IMP". The specification of interface between a
 host and the ARPANET.

ACK
 A control bit (acknowledge) occupying no sequence space, which
 indicates that the acknowledgment field of this segment
 specifies the next sequence number the sender of this segment
 is expecting to receive, hence acknowledging receipt of all
 previous sequence numbers.

ARPANET message
 The unit of transmission between a host and an IMP in the
 ARPANET. The maximum size is about 1012 octets (8096 bits).

ARPANET packet
 A unit of transmission used internally in the ARPANET between
 IMPs. The maximum size is about 126 octets (1008 bits).

connection
 A logical communication path identified by a pair of sockets.

datagram
 A message sent in a packet switched computer communications
 network.

Destination Address
 The destination address, usually the network and host
 identifiers.

FIN
 A control bit (finis) occupying one sequence number, which
 indicates that the sender will send no more data or control
 occupying sequence space.

fragment
 A portion of a logical unit of data, in particular an internet
 fragment is a portion of an internet datagram.

FTP
 A file transfer protocol.

 [Page 79]

 September 1981
Transmission Control Protocol
Glossary

header
 Control information at the beginning of a message, segment,
 fragment, packet or block of data.

host
 A computer. In particular a source or destination of messages
 from the point of view of the communication network.

Identification
 An Internet Protocol field. This identifying value assigned
 by the sender aids in assembling the fragments of a datagram.

IMP
 The Interface Message Processor, the packet switch of the
 ARPANET.

internet address
 A source or destination address specific to the host level.

internet datagram
 The unit of data exchanged between an internet module and the
 higher level protocol together with the internet header.

internet fragment
 A portion of the data of an internet datagram with an internet
 header.

IP
 Internet Protocol.

IRS
 The Initial Receive Sequence number. The first sequence
 number used by the sender on a connection.

ISN
 The Initial Sequence Number. The first sequence number used
 on a connection, (either ISS or IRS). Selected on a clock
 based procedure.

ISS
 The Initial Send Sequence number. The first sequence number
 used by the sender on a connection.

leader
 Control information at the beginning of a message or block of
 data. In particular, in the ARPANET, the control information
 on an ARPANET message at the host-IMP interface.

[Page 80]

September 1981
 Transmission Control Protocol
 Glossary

left sequence
 This is the next sequence number to be acknowledged by the
 data receiving TCP (or the lowest currently unacknowledged
 sequence number) and is sometimes referred to as the left edge
 of the send window.

local packet
 The unit of transmission within a local network.

module
 An implementation, usually in software, of a protocol or other
 procedure.

MSL
 Maximum Segment Lifetime, the time a TCP segment can exist in
 the internetwork system. Arbitrarily defined to be 2 minutes.

octet
 An eight bit byte.

Options
 An Option field may contain several options, and each option
 may be several octets in length. The options are used
 primarily in testing situations; for example, to carry
 timestamps. Both the Internet Protocol and TCP provide for
 options fields.

packet
 A package of data with a header which may or may not be
 logically complete. More often a physical packaging than a
 logical packaging of data.

port
 The portion of a socket that specifies which logical input or
 output channel of a process is associated with the data.

process
 A program in execution. A source or destination of data from
 the point of view of the TCP or other host-to-host protocol.

PUSH
 A control bit occupying no sequence space, indicating that
 this segment contains data that must be pushed through to the
 receiving user.

RCV.NXT
 receive next sequence number

 [Page 81]

 September 1981
Transmission Control Protocol
Glossary

RCV.UP
 receive urgent pointer

RCV.WND
 receive window

receive next sequence number
 This is the next sequence number the local TCP is expecting to
 receive.

receive window
 This represents the sequence numbers the local (receiving) TCP
 is willing to receive. Thus, the local TCP considers that
 segments overlapping the range RCV.NXT to
 RCV.NXT + RCV.WND - 1 carry acceptable data or control.
 Segments containing sequence numbers entirely outside of this
 range are considered duplicates and discarded.

RST
 A control bit (reset), occupying no sequence space, indicating
 that the receiver should delete the connection without further
 interaction. The receiver can determine, based on the
 sequence number and acknowledgment fields of the incoming
 segment, whether it should honor the reset command or ignore
 it. In no case does receipt of a segment containing RST give
 rise to a RST in response.

RTP
 Real Time Protocol: A host-to-host protocol for communication
 of time critical information.

SEG.ACK
 segment acknowledgment

SEG.LEN
 segment length

SEG.PRC
 segment precedence value

SEG.SEQ
 segment sequence

SEG.UP
 segment urgent pointer field

[Page 82]

September 1981
 Transmission Control Protocol
 Glossary

SEG.WND
 segment window field

segment
 A logical unit of data, in particular a TCP segment is the
 unit of data transfered between a pair of TCP modules.

segment acknowledgment
 The sequence number in the acknowledgment field of the
 arriving segment.

segment length
 The amount of sequence number space occupied by a segment,
 including any controls which occupy sequence space.

segment sequence
 The number in the sequence field of the arriving segment.

send sequence
 This is the next sequence number the local (sending) TCP will
 use on the connection. It is initially selected from an
 initial sequence number curve (ISN) and is incremented for
 each octet of data or sequenced control transmitted.

send window
 This represents the sequence numbers which the remote
 (receiving) TCP is willing to receive. It is the value of the
 window field specified in segments from the remote (data
 receiving) TCP. The range of new sequence numbers which may
 be emitted by a TCP lies between SND.NXT and
 SND.UNA + SND.WND - 1. (Retransmissions of sequence numbers
 between SND.UNA and SND.NXT are expected, of course.)

SND.NXT
 send sequence

SND.UNA
 left sequence

SND.UP
 send urgent pointer

SND.WL1
 segment sequence number at last window update

SND.WL2
 segment acknowledgment number at last window update

 [Page 83]

 September 1981
Transmission Control Protocol
Glossary

SND.WND
 send window

socket
 An address which specifically includes a port identifier, that
 is, the concatenation of an Internet Address with a TCP port.

Source Address
 The source address, usually the network and host identifiers.

SYN
 A control bit in the incoming segment, occupying one sequence
 number, used at the initiation of a connection, to indicate
 where the sequence numbering will start.

TCB
 Transmission control block, the data structure that records
 the state of a connection.

TCB.PRC
 The precedence of the connection.

TCP
 Transmission Control Protocol: A host-to-host protocol for
 reliable communication in internetwork environments.

TOS
 Type of Service, an Internet Protocol field.

Type of Service
 An Internet Protocol field which indicates the type of service
 for this internet fragment.

URG
 A control bit (urgent), occupying no sequence space, used to
 indicate that the receiving user should be notified to do
 urgent processing as long as there is data to be consumed with
 sequence numbers less than the value indicated in the urgent
 pointer.

urgent pointer
 A control field meaningful only when the URG bit is on. This
 field communicates the value of the urgent pointer which
 indicates the data octet associated with the sending user’s
 urgent call.

[Page 84]

September 1981
 Transmission Control Protocol

 REFERENCES

[1] Cerf, V., and R. Kahn, "A Protocol for Packet Network
 Intercommunication", IEEE Transactions on Communications,
 Vol. COM-22, No. 5, pp 637-648, May 1974.

[2] Postel, J. (ed.), "Internet Protocol - DARPA Internet Program
 Protocol Specification", RFC 791, USC/Information Sciences
 Institute, September 1981.

[3] Dalal, Y. and C. Sunshine, "Connection Management in Transport
 Protocols", Computer Networks, Vol. 2, No. 6, pp. 454-473,
 December 1978.

[4] Postel, J., "Assigned Numbers", RFC 790, USC/Information Sciences
 Institute, September 1981.

 [Page 85]

