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1 Introduction

FLAIM is a fast, flexible, reliable, cross-platform database engine.  Even though FLAIM provides many traditional database features, it was conceived with a broader view toward the greater flexibility and adaptability that is offered by an XML-like data model.  FLAIM is not new; various products have used it for nearly 15 years.  For instance, Novell’s scalable, reliable directory and collaboration products, eDirectory and GroupWise, both use FLAIM as the data store, with user licenses totaling well into the hundreds of millions.

2 Summary of FLAIM Features

The following is a brief summary of the features available in FLAIM.

2.1 Fields and Records

· Variable length fields, text and binary fields up to 64K per field.

· All fields are tagged - record is self-describing - no schema for record structure - structure is embedded in each record - XML-like.

· Nested sub-records, N-levels deep.

· Repeating fields and repeating sub-records.

· No storage used for omitted fields or to pad text fields to a fixed length.

· Unregistered fields (can store fields that are not defined in the dictionary).

· Data types: text, numeric, binary, context, blob.

· Text types: UNICODE.

2.2 Containers

· Allow user to partition data records physically and/or logically.

· Multiple containers per database.

2.3 Clustering

· Multiple record types per container.

· Multiple record types may be inserted into a single block.

2.4 Indexing

· Compound indexes, component fields may be any FLAIM data type except BLOB.

· Optional and/or required fields in compound indexes (key not generated if required field missing).

· Existence indexes (indexes the presence of a field versus the field’s content).

· Case insensitive and case sensitive collation.

· Case insensitive collation with case preserved (post indexes).

· White space compression, other special indexing rules.

· Cross-record type indexes.

· Counter indexes.

· Sub-string indexing.

· Each-word indexing.

· Unique indexes.

· Support for many international languages and collating sequences, including Arabic, Hebrew, Asian (Japanese, Korean, Chinese), etc.

· Each index in a database can have its own international language.

· Fast updating of large reference sets.

· Keys up to 640 bytes long, key truncation supported.

· Multiple indexes per container and/or per record type.

· Left-end compression of index keys.

· Compression of index reference sets.

· APIs for reading of indexes directly (keys and references).

· Dynamically updated when records are added, modified, or deleted.

· Background indexing threads.

· Suspend, resume indexing.  Can take indexes “offline.”

2.5 Dynamic Dictionary

· Add, modify, drop indexes, containers, field definitions.

· Comment fields allowed in ALL dictionary records.

2.6 Query Capabilities

· Rich set of query expression operators:

· Comparison operators (equal, not equal, less than, less than or equal, greater than, greater than or equal, match, match begin, contains, match end).  Text comparison operators include wild card matching.

· Arithmetic operators (unary minus, multiply, divide, mod, plus, minus).

· Logical operators (not, and, or).

· Parentheses (used to alter normal operator precedence).

· Simple, powerful mechanism for building up query expression programmatically:

· Expression does not have to be passed in as a string.

· Allows program to add operators, operands, and parentheses to the expression in infix order.

· Allows program to easily use program variables which contain comparison values or field names.

· Allows use of values that are not easily formatted into a string (such as binary).

· Advanced query optimization (FLAIM will automatically select a indexes, etc. based on cost estimation).

· Index specification - application may specify an index instead of letting FLAIM choose one.

· Embedded Predicates.

· Powerful navigational calls for retrieving and browsing through query results (retrieve first, last, next, previous, and current records).  Only records which satisfy query expression are retrieved.

2.7 Read and Update Operations

· Reading data records directly from containers (including dictionary container).

· Reading of indexes directly (keys and references).

· Advanced querying capabilities.

· Navigating forward and backward through containers and indexes.

· Update operations are: add, modify, and delete (including dictionary records).

2.8 Transactions

· Transaction begin, commit, abort.  Use of rollback log for transaction abort and for recovery after a crash.

· Transaction types:

· Update. Update, read, and query operations allowed.

· Read. Only read and query operations allowed.  Read transactions provide a read consistent snapshot of the database as of the point in time the transaction is started.

· Automatic. Single update operations may be told to automatically begin and end (commit or abort) a transaction if no transaction has been explicitly started.

· Automatic rollback of failed transactions (due to program aborts or CPU failures).

· Periodic checkpoints to minimize recovery time after a system crash.

· No limit on size of update transactions.

· ACID principles supported: Atomicity, Consistency, Isolation, Durability.

2.9 Roll-forward Logging

· Use of roll-forward log to minimize data that has to be written to commit a transaction. 

· Roll-forward log is used in automatic recovery after a crash.  Transactions that were committed since the last checkpoint will be “redone.”

· Multiple roll-forward log files may be used to support “continuous backup” feature.  Files are numbered sequentially and are also identified with serial numbers to guarantee proper sequencing - no spoofing.  Up to 4 billion log files supported - capacity is practically unlimited.

· Option to use only a single roll-forward log file - for applications that do not care about “continuous backup.”

· Roll-forward log files may be stored on a separate disk from rest of database.

· Minimal transaction logging.  Only deltas logged for record modifies.  Only DRNs logged for record deletes.

· Aborted transactions can be logged for debug purposes, but default is to not log them.

· Support for logging of “application” data.  (This feature is used in SMI to log stream files).

2.10 Database Reliability and Recovery

· Automatic database recovery after a system crash.  Rollback log is used to roll database back to last consistent checkpointed state.  Then roll-forward log is used to “redo” transactions that were committed after the last checkpoint.

· Recovery is idempotent.  That is, if we crash during recovery, it will be resumed when the database is subsequently opened.

· Reliability has been tested using an automated “pull-the-plug” test, which randomly cycles the power on the server during high volume updates to test database recovery.  Thousands of “pull-the-plug” iterations have been performed on both Windows and NetWare.

· Handling of disk-full conditions and other disk errors.  Database attempts to “stall” new update transactions until disk-full condition is resolved - without requiring a shut down.

· Protection against media failure.  Customers can take hot backups and put roll-forward logs on a different volume than the database.  If they do these things, two simultaneous disk failures would be required to lose any data.

2.11 Concurrency

· One writer, multiple readers.

· Readers don't block writers (they NEVER lock items in the database).

· Writers don't block readers.

· Read consistency for readers (readers get a stable consistent snapshot of the database).  Rollback log is used to provide block multi-versioning.

· Uncommitted data is not visible to other transactions.

2.12 Caching

· Block cache, shared by all threads in a process - up to 4 GB on 32 bit machines, much more on 64 bit machines.

· Record cache.

· Cache poisoning prevention

· Cache statistics available - hits, faults, hit looks, fault looks.

2.13 Optimized Disk Reading/Writing

· Direct IO - bypass file system cache.

· Asynchronous writes.

· Sorting of blocks to optimize disk head movements.  Also attempt to coalesce adjacent dirty blocks into larger write buffers for improved performance.  Will fill write buffer with non-dirty blocks that are already in cache if it results in a more optimal write.

2.14 Database Validation and Repair

· Routine for checking physical structure of database.  Links between Blocks verified, B-Tree structure verified, block checksums verified, field and record structures verified, index keys and reference sets verified, data in fields verified.

· Routine for checking indexes.  Ensures that all keys that ought to be in an index are, in fact, in the indexes, and that no extra keys are in the indexes.  In-line repair of index problems is allowed during index checking.  Extra keys will be automatically deleted.  Missing keys will be added.

· Routine for repairing database.  Can rebuild from a totally trashed file - or even a zero length file!

· Callback facility in all functions to report progress.  Allows application to display progress and cancel out if desired.  Corruptions are also reported via the callback so that an application can create a detailed log of corruptions found if desired.

2.15 Backup/Restore

· Hot backup.  Backups can be performed without taking the database off-line and without stopping updates.

· Continuous backup.  Roll-forward logs can be managed in a way that allows them to serve as a “continuous” backup of the database.  No committed transaction will be lost.

· Incremental backups.  This minimizes what  must be backed up - only blocks changed since last backup.

· Capture of output during backup using callbacks.  This allows an application to capture backup output and stream it directly to tape or other backup medium without having to stage it to an intermediate disk file first.  An application could even choose to send backup data across a network connection to be stored on a remote device.  FLAIM uses double buffering so that an output device can be kept busy while FLAIM is fetching the next set of blocks to backup.  This would help prevent a streaming tape device from stalling, resulting in dramatically improved backup throughput.

· All blocks in backup include a checksum to ensure that data is reliable when restored.

· Simple block compression used to minimize size of backup.

· Use of serial numbers in roll-forward log files and backups to ensure “identifiability” when restoring.  Database also has a serial number.

· Restore from full backup, multiple incremental backups, and/or roll-forward logs - all in one call.

· Streaming input during restore using callbacks.  Allows an application to restore backed up data directly from tape or other backup medium without having to stage backed up data to an intermediate file first.  An application could also use this to restore directly from a remote location by bringing the data over a network connection. FLAIM uses double buffering so that an input device can be kept busy while FLAIM is writing out blocks from a backup to the database.  This would help prevent a streaming tape device from stalling, resulting in dramatically improved restore throughput.

· Status callbacks during backup/restore so that application can report progress and/or abort the backup or restore operation.

· Partial restore supported.  An application has the option of stopping a restore operation after either: 1) a full backup or incremental has been restored, or 2) after any transaction in the roll-forward log has been redone.

2.16 Database Monitoring, Statistics Collection

· Ability to collect detailed statistics on disk I/O activity and transaction activity.

· Ability to monitor cache utilization, including bytes used, number of blocks and records cached, cache hits, faults, etc.

· Ability to collect detailed information about queries - to see what indexes were used, how many keys were fetched, how many records were fetched, how many failed the criteria, etc.  This allows analyzing of query efficiency and troubleshooting of query performance problems.

2.17 Utilities

· Database checking utility (checkdb).

· Database rebuild utility (rebuild).

· Database browser/editor utility (dbshell).  Can retrieve, add, modify, and delete records, perform transactions, perform queries, etc.

· Low-level viewers: Physical structure viewer/editor (view) and roll-forward log viewer/searcher (rflview).

· Text interface (TUI) for all platforms - supports colors, rudimentary windowing, keyboard access, and multiple screens.  Have a common cross-platform abstraction for these services to hide platform specific details.

· All utilities build and work on all platforms and have the same look and feel.

2.18 Checksumming

· Block checksum set on all blocks in the database when writing to disk.

· Block checksum verified when reading blocks from disk.

· Checksum used to automatically detect corruption.

2.19 Database Size

· Database may grow up to 8 terabytes or 4 terabytes (depends on platform).  Up to 4096 files may be created. Each file is limited to either ~2GB or ~4GB, depending on operating system limitations.

· Number of records up to 4 billion per container.

· Database grows as needed.  No need to preallocate disk space.  However, when extending files, it is more optimal to extend by a large amount than a small amount, so we typically extend a file by 8 MB at a time (on Windows and NetWare).

· Routine for re-claiming unused database blocks and log areas and returning to OS.  Space may be reclaimed without taking database off-line.

· Benchmarks and comparisons show FLAIM database size to be smaller than other databases (25-40%).

· Database block size can be set on database creation to 4K or 8K.

· Sophisticated block splitting and block combining to maximize block utilization.

· Roughly 70% utilization in index blocks.

· Roughly 70-75% utilization in data blocks.

· Left end compression of index keys.

· Compression of index reference sets.

2.20 Testing

· Automated testing randomly varies parameters and calls to aggressively test millions and millions of possible combinations of usage.

· Simulations involving a large variety of random combinations of operations and data.

· Multiple continuous runs of days and weeks on multiple machines for high volume concurrency testing.

· Automated power failure testing to test database reliability and recovery.

2.21 Cross Platform

· Database file is binary portable to ALL supported platforms, no need for conversions when moving database file from platform to platform.  Little endian format used for most internal integer values.

· Platforms: Linux (Novell SuSE, RedHat, Ubuntu, etc.), NetWare, Windows (NT, 2000, XP-64 bit), various flavors of UNIX (Solaris, AIX, Mac OS X).

· Source code is developed in C++ programming language (one source for all platforms), allowing FLAIM to easily build libraries for other platforms – 64-bit Windows XP was built and ready to go in a few days.

· Operating System services are abstracted into common interfaces or C++ classes for upper layers of code so they don’t have to worry about operating system differences.  Code is maintained in a handful of files.  Abstractions exist for disk I/O, memory management, semaphores and mutexes, and so forth.

2.22 Application Programming Interfaces

· C++

· Startup/Shutdown.  FlmStartup, FlmShutdown.

· System management, configuration, monitoring.  FlmConfig, FlmGetConfig.

· Cache management, configuration, information.  FlmSetDynamicMemoryLimit, FlmSetHardMemoryLimit, FlmGetMemoryInfo.

· Statistics, monitoring.  FlmGetStats, FlmDbGetLockInfo.

· Create, open, close.  FlmDbCreate, FlmDbOpen, FlmDbClose.

· Copy, delete, rename.  FlmDbCopy, FlmDbDelete, FlmDbRename.

· Backup, restore.  FlmDbBackupBegin, FlmDbBackup, FlmDbBackupEnd, FlmBackupGetConfig, FlmDbRestore.

· Check, rebuild.  FlmDbCheck, FlmDbRebuild.

· Locking, transaction, checkpointing.  FlmDbLock, FlmDbUnlock, FlmDbTransBegin, FlmDbTransCommit, FlmDbTransAbort, FlmDbGetTransType, FlmDbGetTransId, FlmDbGetCommitCnt, FlmDbCheckpoint.

· Add, modify, delete records.  FlmRecordAdd, FlmRecordModify, FlmRecordDelete, FlmReserveNextDrn.

· Index control.  FlmIndexStatus, FlmIndexSuspend, FlmIndexResume.

· Queries.  FlmCursorInit, FlmCursorFree, FlmCursorClone, FlmCursorConfig, FlmCursorAddField, FlmCursorAddOp, FlmCursorAddValue, FlmCursorFirst, FlmCursorLast, FlmCursorNext, FlmCursorPrev, FlmCursorCurrent, and others.

· Other read operations.  FlmRecordRetrieve, FlmKeyRetrieve.

· Database configuration, information.  FlmDbConfig, FlmDbGetConfig.

· Space reclamation.  FlmDbReduceSize.

3 Concepts

This section presents various FLAIM features and concepts in detail.

3.1 Fields

The most basic unit of information in a FLAIM database is a field.  A field is comprised of a field identifier (sometimes referred to as a label), a data type, and a value (or content).  A field’s identifier typically conveys the creator’s intended meaning (or semantic) for the field.  It provides the context for interpreting and clarifying the content.  For example, city is the context for Denver (the content).  One might consider context to be the question, and content to be its answer.

3.1.1 Field Identifier

 INHALT "Field Identifier" \l 3 In FLAIM, a field’s identifier is a number with a corresponding name, both of which are assigned by the creator of the field.  For performance reasons, FLAIM’s APIs use the numeric identifier to reference a field.  However, it is recognized that some applications may desire to use names instead of numbers.  To support this method of access, FLAIM provides interfaces that allow an application to list names of fields that are defined in the database, as well as interfaces that map name identifiers to the corresponding numeric identifiers and vice versa.

3.1.2 Field Data Type

 INHALT "Field Data Type" \l 3 A field’s data type (e.g. text, number, etc.) defines intrinsic characteristics that are applicable to the field’s value.  As such, a field’s data type tells FLAIM how to store, index, validate, and otherwise manipulate the field’s value.

3.1.3 Field Value

 INHALT "Field Value" \l 3 A field’s value (content) is always variable length, regardless of the data type.  When storing a field’s value, whether in memory or on disk, only the actual space required is allocated.  Although FLAIM stores information per field not normally found in traditional databases (including value length, field ID, etc.), great care has been taken to minimize the per-field overhead.  Interestingly, and perhaps contrary to what might be supposed given this fact, FLAIM’s overall data storage efficiency is superior to similar commercial products.  This is primarily due to the fact that FLAIM does not allocate fixed size units for storing field values, thus wasting unused space.  The savings in disk space translates directly into performance benefits, because it takes fewer disk hits to retrieve the same amount of data.

3.2 Records

Application data stored in a FLAIM database is organized into records.  A record (or combination of records) in a database generally represents an object or a concept in the real world (a product, a customer, an employee, a business division, etc.).  As such, a record consists of a collection of fields that represent attributes of the object.

In FLAIM, there is no requirement that records conform to a pre-defined template or type.  Traditional databases use schemas to define record “types” or object classes.  In such databases, a record type (or object class) is an abstraction or generalization about the collection of records in the database that represent the same “kind” of real world object.  A record type (or object class) typically defines the relevant attributes and/or behavior that are to be found in instances of that record type (or object class).  For example, the record type “person” may specify that a “person” record contains attributes of height, weight, hair color, phone number, etc.

In contrast to databases that require all records to conform strictly to a record type definition, FLAIM supports the creation of arbitrarily structured records.  In traditional databases, the creator of a record cannot add new attributes to a record or otherwise alter its makeup, because the makeup of the record is predetermined by a record type definition.  The creator of a record is limited to assigning content (or values) to the defined attributes.  No such constraints exist for arbitrarily structured records.  The creator of an arbitrarily structured record is not only allowed to determine the contents of attributes within the record but is allowed to determine the structure of the record as well.

3.2.1 Hierarchical Structure

In a FLAIM record, a field can be placed subordinate to another field.  The fields are then said to have a parent/child relationship.  A field may have at most one parent field.  Fields that have the same parent are said to be siblings.

Each field in a FLAIM record is said to exist at some level in the record’s hierarchy.  The outermost level of a record is, by definition, level zero.  Every record in a FLAIM database has one and only one field at level zero.

3.2.2 Other Features of Records

Besides the ability to create a hierarchical record, FLAIM also provides a number of other liberties in creating records that are not generally allowed in other databases.  These are:

3.2.2.1 Repeating Fields

FLAIM places no implicit restriction on the number of times a field may be repeated at any given level within a record.

3.2.2.2 Non-Occurring Fields

FLAIM does not require that any particular field exist in a record.  No space is consumed in the database for place holders for non-occurring fields.

3.2.2.3 Flexible Field Ordering

FLAIM does not require any particular ordering of fields.  However, the order of the fields specified by the application is preserved.  When a record is retrieved, the fields will ALWAYS be returned in the same order and organization in which they were stored.

3.3 Containers

Most databases provide some means for defining collections of records.  For example, in relational databases, a collection of records is represented as a table.  In FLAIM, records are organized into containers.  Each container may hold a heterogeneous collection of  records, meaning that a container may store many different types of records.  Containers may be added to a database at any time.  A container may also be dropped (deleted) from a database.

3.3.1 DRN (Data Record Number)

 INHALT "DRNs (Data Record Number)" \l 3 Within a container, records are uniquely identified by 32-bit DRNs (Data Record Numbers).  All numbers from 1 through 4294967294 (0xFFFFFFFE) are valid candidate DRNs.  Note that the numbers 0 (zero) and 4294967295 (0xFFFFFFFF) are not valid DRNs; they are reserved for special uses within FLAIM.  Once assigned, any given record will always be associated with the same DRN.  When creating a record, an application may assign the DRN, or it may choose to have FLAIM assign the DRN.  In the latter case, FLAIM keeps track of the highest DRN ever assigned within a container (either by FLAIM or by an application) and assigns the next DRN following the highest DRN.  Even if ALL of the records in a container are deleted, previously used DRNs are NOT reassigned by FLAIM.  An application, however, may assign a DRN that has been previously used if the DRN is currently unused.  Whether the DRN is assigned by FLAIM or by an application, FLAIM ensures that all records in a container have a unique DRN.

3.3.2 Predefined Containers

When a new database is created, three default containers are added automatically.  These have special purposes and cannot be removed by the application.

3.3.2.1 Dictionary Container

Within every database, FLAIM maintains a local dictionary container that keeps track of all field, index, and user container definitions.  The container number for the local dictionary is 32000 (defined in FLAIM.H as FLM_DICT_CONTAINER).

3.3.2.2 Tracker Container

The tracker container keeps track of miscellaneous information for index management.  The container number of the tracker container is 32002 (defined in FLAIM.H as FLM_TRACKER_CONTAINER).  Records in this container cannot be directly updated by an application, but are available for reading.

3.3.2.3 Default Data Container

The default data container is provided as a default place for storing user data.  FLAIM makes no internal use of  this container.  The container number of the default data container is 32001 (defined in FLAIM.H as FLM_DATA_CONTAINER).

3.4 Indexes

All database applications retrieve records from the database.  The task of finding the desired records can be accomplished by sequentially scanning a container until the desired records are located.  However, in containers with large numbers of records, this may be extremely slow.  Indexes are provided as a means for finding records more efficiently.

In FLAIM, an index is associated with one or more containers and each container may have many indexes.  Indexes may be created or dropped at any time.  An index is essentially a set of keys that are arranged in a way that significantly speeds up the task of finding any particular key within the index.  Index keys are constructed by extracting the contents of one or more fields from records. Each key in an index references the record or records from which it was constructed.  Note that a key may reference more than one record; it is possible for multiple records to have field contents that result in identical keys in the index.  It is also possible to define unique indexes where each key in the index is not permitted to reference more than one record.  The list of references associated with a key is called the key’s reference set.  The reference set is a list of DRNs.

3.4.1 Background Indexing

FLAIM allows indexes to be added in the background.  When this option is selected, a thread is created that scans records within the scope of the index being created.  A small number of records is selected for each iteration of the background thread and each record’s keys is added to the new index.  Once all of the candidate records have been indexed, the new index will come on-line automatically and will be available for use in queries.

3.4.2 Suspending Indexes

FLAIM also allows indexes to be taken off line (suspended).  This makes an index unavailable for use and the index to stop updating its keys when new records are added to the database.  Suspending indexes can be useful during a batch load of records because the overhead of adding records is reduced.

3.4.3 Resuming Indexes

Of course, a suspended index can be resumed.  When a resume of a suspended index is requested, FLAIM starts a background indexing thread to bring the index up-to-date.  Only records that were added to the database after the index was suspended are scanned.  All other records will be correctly represented in the index already.  When the background thread completes its work, the index is brought back on-line automatically.

3.5 Dictionary

The overall design and logical structure of a database is often called the database schema.  In FLAIM, database schemas are specified by a set of definition records, which are stored in a special type of container called a dictionary container.  Thus, a dictionary is a repository of definitive and descriptive metadata (i.e., “data about data”) that provides information about the overall design and logical structure of the database.  It provides the information needed by FLAIM to properly store, retrieve, and index application data.

Dictionary definition records may be constructed using the same methods that are used to construct user data records, but their specific structures, syntaxes, and semantics are predefined.

Dictionary definition records can be dynamically added, modified, and deleted at run time (with some restrictions) using the same APIs that are used to add, modify, and delete user data records.  Indexes, for example, may be dynamically added or deleted at run time simply by adding or deleting the appropriate index definition records.  Dictionary definition records may be read using the same APIs used to read user data records.

3.5.1 Dictionary Definition Identifier

Every definition record within the dictionary is assigned an identifier, which consists of a number and a corresponding name.  Because a dictionary is a container, definition records are assigned a DRN when they are added to the container (either by FLAIM or by the application).  A definition record’s assigned DRN becomes the definition record’s numeric identifier.  Numeric identifiers for dictionary definition records range between 1 and 31999, inclusive.

A definition record’s name is always assigned by the application.  It is part of the syntax of the specific type of record being created (see Appendix A for a complete specification of dictionary definition syntaxes).

A definition record’s assigned numeric identifier is used in FLAIM’s APIs to reference the defined item.  For example, a field whose numeric identifier is 12 is referenced using the numeric value 12; an index whose numeric identifier is 15 is referenced using the numeric value 15; and so forth.  Some applications may desire to use names instead of numbers.  To support this method of access,  FLAIM provides interfaces that allow an application to list names of items in the database (field names, index names, etc.), as well as interfaces that map a name identifier to the corresponding numeric identifier and vice versa.

3.5.2 Registered Fields

 INHALT "Registered Fields" \l 3 Registered fields are fields that are defined in the dictionary.  Field definitions describe each registered field and include the field’s identifier (name and number), as well as its data type. A registered field’s numeric identifier must be a number between 1 and 31999.

There are three primary reasons for using registered fields.  The first is that registered fields are the ONLY fields that can be indexed in a FLAIM database.  In order for FLAIM to be able to index a field, it must be assured that the field’s data type will be consistent for all instances of the field that occur within the scope of the index.  Thus, when adding or modifying records in the database, FLAIM checks each field in the record and, for fields that are registered, verifies that the field's data type is, in fact, the data type declared in the field’s definition record in the dictionary.  An error occurs if the field’s data type does not match the declared data type. 

The second reason for using registered fields is that the storage overhead per field is smaller for registered fields than it is for unregistered fields.  This is because the data type for registered fields is stored in the data dictionary; hence, the data type does not need to be stored with each instance of the field.

The third reason for using registered fields is that only registered fields can be given a name identifier as well as a numeric identifier.

3.5.3 Unregistered Fields

 INHALT "Unregistered Fields" \l 3 Unregistered fields are fields that are NOT defined in the dictionary.  A field identifier for an unregistered field consists only of a numeric identifier, there is no name. The only valid numeric identifiers for unregistered fields are 32769 to 65535.  Unlike registered fields, unregistered fields do not have a predefined data type.  In fact, every instance of an unregistered field with the same numeric identifier can actually be a different data type.  Because of this freedom, FLAIM makes no attempt to validate data types of unregistered fields.  This also means that unregistered fields cannot be indexed, because there is no guarantee that all instances of unregistered fields with the same numeric identifier will have the same data type throughout the database.  Unregistered fields have additional overhead for storing the data type in each instance where the field is used.

3.5.4 Reserved Fields

 INHALT "Reserved Fields" \l 3 Reserved fields are fields whose numeric identifiers have been reserved for use in dictionary definition records.  As such, these fields have pre-defined semantics that are intrinsically understood by FLAIM.  All of the numbers in the range of 32000 through 32768 are reserved as identifiers for these fields.  NOTE: Not all of these numbers are reserved as field identifiers.  Some of the numbers are reserved for future use; some have uses other than as field identifiers.  The main point to be understood is that this is a reserved range of identifiers.

3.5.5 Definition Record Types

The types of definition records that are available in FLAIM are: 1) field definitions, 2) container definitions, and 3) index definitions.

3.5.6 Field Definitions

 INHALT "Field Definitions" \l 3 Field definitions define fields that may be indexed.  These fields are also called the database’s registered fields.  The field’s name and data type are specified in the field definition.  The field’s data type tells FLAIM how a field’s data is to be stored, used, converted, and collated (if used in an index).  FLAIM also verifies that the data type of a field in a record matches the type specified in the field definition when an application submits a record to be added or modified.

A field definition record may be added or modified at any time.  When modifying a field definition record, only the field’s name may be changed.  It is illegal to change the field’s data type.  A field definition may only be deleted if FLAIM has verified that there are no instances of the field in the database.

3.5.6.1.1 Data Types

A field’s data type defines intrinsic characteristics that are applicable to the field’s value.  As such, a field’s data type tells FLAIM how to store, index, validate, and otherwise manipulate the field’s value.  One fundamental reason for FLAIM to intrinsically define a data type is so that it can perform some intrinsic operation on that type of data.  At present, the only operations that FLAIM performs on data are indexing and querying.  These operations require FLAIM to know how to do comparisons on values (equal, less-than, greater-than, etc.). 

Currently, there are five fundamental data types in FLAIM.

3.5.6.1.1.1 Number

This data type encompasses 32-bit signed and unsigned integers.

3.5.6.1.1.2 Text

The text data type provides support for 16-bit Unicode characters.  Up to 64K of text data may be stored in a text field.

3.5.6.1.1.3 Binary

A binary field is used when storing raw binary data.  FLAIM makes no attempt to interpret binary data.  An application can index fields of this type, but sorting is done by performing a byte-for-byte comparison of the data.  Up to 64K of data may be stored in a binary field.

3.5.6.1.1.4 Context

A context field is used as a contextual placeholder.  Fields that have subordinates typically (but not necessarily) have a data type of context.

3.5.6.1.1.5 BLOB

The BLOB data type is used to store potentially large data objects.  FLAIM does not own or manage BLOBs.  Rather, a BLOB field simply references a file in the file system.

3.5.7 Container Definitions

Container definitions are used to create additional containers for application data.  At present, the only information specified in a container definition is the container’s name.

A container definition record may be added, modified, or deleted at any time.  The only thing that can be changed in a container definition is the container’s name.  A container definition record may not be deleted if there are container-specific indexes still defined on the container.  When a container is deleted, all records in the container are automatically deleted.

3.5.8 Index Definitions

Index definitions describe indexes on a database.  An index definition specifies the scope of the index (either a specific container or all containers), the fields to be indexed, and various indexing options.  Note that only fields defined in the dictionary can be indexed.  Indexing of unregistered fields is not supported.

An index definition may be added, modified, or deleted at any time.  Adding or modifying an index definition causes the index to be generated or re-generated, which can be done in the foreground or background.

If the index is generated in the foreground, the add or modify operation will not return until the index has been built.  If the data set being indexed is large, the operation could take a significant amount of time.  The disadvantage to allowing a large index to be built in the foreground is that all other update operations are held off until the index has been generated.

If the index is generated in the background, FLAIM will create a background thread that will build the index by starting and committing a series of small update transactions.  Each of these transactions will scan a portion of the records being indexed and will generate the corresponding index keys.  Once the thread has visited all records within the scope of the index, the index is automatically brought on-line.  Until the index comes on-line it is unavailable for use by the application.

Deleting an index definition for the dictionary causes the index to be removed and all blocks previously allocated to the index are put into a free list for re-use.

It is important to note that once an index is on-line, FLAIM automatically keeps it up-to-date as records are added, modified, or deleted.  When a record is added to a container, FLAIM scans the fields in the record and adds the necessary key values and references to all appropriate indexes.  When a record is modified, FLAIM scans the fields in the old version of the record and the new version.  After scanning the old and new records, FLAIM adds or deletes key values and references in the appropriate indexes.  When a record is deleted from a container, FLAIM scans the fields in the record and deletes the necessary key values and/or references from the appropriate indexes.

3.5.8.1 Index Types

FLAIM supports indexing of all field types, except BLOBs.  Several different types of indexes may be created, each of which is suited to a particular type of query.

3.5.8.1.1 Single Field Index

A single field index is one in which only one field is indexed.  This type of index is useful when records need to be retrieved based on the value of a single field.  The index can help when using operators such as <, <=, >, or >=.  

3.5.8.1.2 Compound (Multi-Field) Index

A compound index is one in which multiple fields are concatenated to create a single key in the index.  The fields are concatenated in the order they are specified in the index definition.  In a compound index, each component field is said to be either required or optional.  A required field is one that must be present in each key in the index.  An optional field is one that is not required to be present.  If an optional field is not present, a null value is used to hold the field’s place in the key.  Records that contain all of the required fields will be indexed.  If all of the fields in the index are optional, all records that contain at least one of the optional fields will be indexed.  Thus, a record that contains none of the fields will not be indexed.

A compound index is useful when records need to be retrieved based on values contained in multiple fields.  If all of the relevant fields are indexed in a compound index, the query processor may be able to perform most of its work without having to retrieve records for evaluation. 

3.5.8.2 Index Options

There are several options that may be specified when defining an index.

3.5.8.2.1 Field Paths

When specifying the fields that are to be indexed, the user may opt to specify a field path rather than a simple field identifier.  A field path is a list of fields that defines a more specific context for a field being indexed.  When a field path is specified, the field is indexed only when it is found in the specific context defined by the path.  When determining if a record should be referenced from a particular index, FLAIM checks the entire path.  This allows an index definition to be specific about exactly when a particular field should be indexed, thus allowing it to be indexed only when it appears in certain contexts.

3.5.8.2.2 Unique

A unique index is one where every key has only one reference.  If an application attempts to add or modify a record that violates this requirement, the operation is refused and an error is returned.  It is important to understand that it is NOT a violation of uniqueness for a single record that has two or more fields with the same value to be indexed in a unique index.  The reference set of the key that is generated in the index will still have only one reference to the record, even though there are multiple fields in the record with the same key value.

3.5.8.2.3 International Languages

FLAIM provides support for 38 international text collations (see Appendix B for a complete list).  This feature allows applications to support multiple languages within a single database simply by specifying the desired collation language on the index definition.

3.5.8.2.4 Each Word

This option indicates that key values of text fields should be generated from each of the words contained within the text, as opposed to using the full value of the text field.

3.5.8.2.5 Substring

This option indicates that key values should be generated by using the text string to produce a set of sub-string values.  The set of sub-strings is generated by removing the left-most character of the text value in an iterative process until the string is empty.

3.5.8.2.6  Case-Insensitive Collation

For indexes that include text fields, FLAIM allows the collation to be performed with or without sensitivity to case.

3.5.8.2.7 Post Case-Sensitive Collation

When comparing two compound keys to determine the proper collation order, each component field is compared separately.  The collation order is determined as soon as a difference is detected in one of the component fields.  If all component fields in the keys are equal, this collation method can sometimes yield unwanted results when the component fields are text fields.  A post-case sensitive index preserves the case attributes of the text fields, but postpones the comparison of the case attributes until after each component field has been compared.  Only if each of the fields are exactly identical will the upper/lower case attributes be used to differentiate between keys.  This causes a collation that is very similar to a case-insensitive index.  However, because a post case-sensitive index preserves the case attributes of text fields, it produces separate keys whenever there are differences in the case attributes, whereas the case-insensitive index does not.

3.5.8.2.8 Field Identifier Indexing

Keys in an index are normally constructed using the indexed field’s value.  FLAIM also allows a field’s numeric identifier to be indexed instead of its value.  This allows the creation of a “presence” index that is useful for optimizing queries that have criteria on the existence of a particular field.

3.5.8.3 Using an Index to Provide Sorted Result Sets

A very useful side-effect of using an index in a query is that the result set produced by the query will be streamed back to the application according to the order of the index keys.  Although FLAIM has the ability to perform a cost-based analysis to determine the best index(es) for use in a query, it is sometimes advantageous to use a less optimal index if it provides the desired sort order.  For this reason, FLAIM allows the application to override the index selection during query optimization.

3.6 Querying the Database

Any application that relies on a database system to store its data obviously also needs mechanisms for finding and retrieving that data.  In brief, a few of FLAIM’s query capabilities include:

· Specification of complex selection criteria with existential, arithmetic, comparison, logical, and text operators.

· A streaming result set interface, which includes methods to move to the first, last, next, and previous records in the result set.

· In most cases, the result set does not have to be fully generated before FLAIM can start returning results to the application.

· Cost-based, multiple-index optimization of the query is performed.

3.6.1 Cursor

In FLAIM, an application poses a query by creating and configuring an object called a cursor.  A cursor collects the selection criteria for a query, including the container that is being queried, and interprets and optimizes this information so that the requested records can be retrieved efficiently.

3.6.1.1 Selection Criteria

FLAIM has well-defined rules and grammar for expressing selection criteria.  The syntax of FLAIM’s selection criteria follows standard practices for constructing boolean expressions and a set of functions that allow boolean expressions to be built without using text strings are provided.  FLAIM provides functions for adding operands, operators, parentheses, fields, and values to the selection criteria. 

3.6.1.1.1 Operators

The supported operators include: exists, logical not, unary minus, multiply, divide, mod, plus, minus, not-equal, equal, less-than, less-than-or-equal, greater-than, greater-than-or-equal, logical and, logical or, bitwise and, bitwise or, bitwise xor, match, match begin, and contains.  These operators have the same precedence as defined by the C programming language specification.  Parentheses may be used to change operator precedence.  The operators are added to the selection criteria in infix order.  This allows a query to be expressed in a format that is familiar to C and C++ programmers.

3.6.1.1.2 Operands

Operands may be atomic or complex.  An atomic operand is either a field identifier or a constant.  A complex operand is merely another expression.  Whenever an expression is an operand, the expression is evaluated and the result is used as the value of the operand.

3.6.2 Evaluating Arbitrarily Structured Records

Arbitrarily structured records pose an interesting problem for querying, because they are, by definition, unpredictable in their makeup.  The query engine must be capable of dealing with missing fields, repeating fields, and a hierarchical record structure.

3.6.2.1 Missing Fields

A missing field is one that is referenced in the selection criteria but is not present in the record currently being evaluated.  FLAIM cannot predetermine whether or not a given field will be present in every record that will be evaluated; thus it must include mechanisms to deal with the possibility of missing fields.  These include a capability to explicitly test for field existence and also the adaptation of operator semantics to deal with “unknown” values in their operands.

3.6.2.1.1 Field Existence Predicate

In FLAIM, the syntax for formulating selection criteria includes a mechanism that allows the framer of the query to test for the presence of a field in a record.  Supplying a field identifier as an operand to a logical operator does this.  When FLAIM sees a field identifier used in this way, it automatically treats it as a field-existence predicate.

3.6.2.1.2 Unknown Values

Since a field used in the selection criteria may not be present in the record being evaluated, FLAIM can use either a special value of UNKNOWN for the field’s value or some other default value appropriate to the type of field.

3.6.2.2 Repeating Fields

 INHALT "Repeating Fields" \l 4 A repeating field is one that occurs more than once in a record.  If such a field is used in a field-existence predicate, the multiple values are irrelevant because FLAIM simply tests for field existence.  In this case, the field-existence predicate returns a TRUE.  However, in all other cases, a repeating field can potentially yield multiple distinct values.  Each distinct value represents a distinct potential evaluation path for the record.

3.6.2.2.1 Adapting Operators for Multi-Valued Operands

 INHALT "Adapting Operators For Multi-Value Operands" \l 5 Because arbitrarily structured records can have multiple occurrences of a field, all FLAIM query operators have been adapted to deal with multi-value operands arising either directly or indirectly from repeating fields.

When evaluating operators within a selection criteria, if one or both operands is multi-valued, the combinations of values contained in the operator’s operands are evaluated one at a time to produce a set of result values.  Each distinct result value is kept, and the result of the operation is, in effect, multi-valued.  More specifically, a binary operator that has n values in one operand and m values in the other operand may yield anywhere from 1 to n*m distinct values.  A unary operator that has n distinct values in its operand may yield anywhere from 1 to n distinct values.

3.6.2.2.2 Field Paths

 INHALT "Specifying Field Context (Field Path)" \l 4 Since an arbitrarily structured record is hierarchical in nature, a field may appear at any level in the record’s hierarchy, even having multiple occurrences at different levels (different contexts).  This gives rise to an interesting problem for FLAIM.  Because it is possible for a field to be used in different contexts in arbitrarily structured records, the meaning of the field in one context may be different from the meaning of the field when used in a different context.  Hence, while it may be appropriate for a field’s contents to be used when extracted from one context, it may not be appropriate when extracted from a different context.  To differentiate, FLAIM allows the framer of a query to specify the desired context of the field.  A full field path or partial field path may be specified.  The field path essentially specifies the desired context the field is to be found in.  When evaluating the selection criteria against a specific record, if a referenced field is present in the record being evaluated, but not in the specified context, it is treated as if the field were missing from the record.

3.6.2.3 Partial Evaluation

The query evaluation code has been carefully optimized to short-circuit (or bypass) sections of the query tree that do not need to be evaluated.  For example, if two predicates are joined by an AND operator and the first predicate evaluates to FALSE, there is no reason to evaluate the second predicate, allowing it to be skipped.

3.6.3 Result Sets

The answer to a query is the set of records that satisfy the selection criteria.  This is often called a result set.  From a conceptual point of view, a query’s result set exists the instant its selection criteria has been defined.  All that remains from the application’s point of view is to start retrieving the individual records of the result set.

FLAIM provides a set of functions for navigating through a result set and retrieving records from it.  This includes the ability to position to and optionally retrieve the first, last, next, previous, and current record in the result set.

3.7 Database Files

A FLAIM database consists of five types of files: 1) A control file, 2) lock file, 3) data files, 4) rollback log files, and 5) roll-forward log files.  The name of the database is the name of the control file.  The names of all other files are based on the name of the control file.  The naming convention and usage of each type of file is explained below.

3.7.1 Control File (xxx.db)

The control file name is expected to conform to the following convention:

xxx.db

where xxx is a one to three character string.  All other file names are derived from the xxx name.

The first block of the control file is reserved for some application information, a log header, and a database header.   These are described in the next section.  The rest of the file is actually part of the rollback log space in the database.  Because the rollback log can grow and shrink, it is common to see the control file change its size.

3.7.2 Lock File

The lock file name is xxx.lck.  It resides in the same directory as the control file and is used to prevent multiple processes from opening a database at the same time.

On NetWare and Windows platforms, the lock file is created and opened in exclusive mode.  When FLAIM first opens a database, it will attempt to create and open this file.  When FLAIM finally closes a database, the lock file will be deleted.  The mere existence of the lock file does not mean that the database is currently open by some process.  It may be that the process has aborted without shutting down FLAIM, or the system crashed before FLAIM could close the database.  Thus, when opening a database for the first time, if the file already exists, FLAIM will attempt to delete the file first.  If it cannot delete the file, it knows that another process is currently accessing the database, and it will return an access denied error.

On Unix platforms, FLAIM uses the lock file in a slightly different way.  Instead of deleting and re-creating the file every time it opens a database, the file is created when the database is first created, and remains as long as the database remains.  To prevent multiple processes from accessing the database, FLAIM will put a byte lock on byte zero of the file.  If it cannot obtain the byte lock, it knows that another process has already obtained the byte lock and is accessing the database.

3.7.3 Data Files

The data files are used to store all of the blocks of the database, including data blocks, index blocks, available blocks, etc.  Data files reside in the same directory as the control file, and have the same xxx name as the control file, but different extensions.  Each data file has a number that is encoded into the extension.

3.7.3.1 Naming Convention

The maximum number of data files is 2047 (file numbers 1 through 2047).  For file numbers 1 through 511, the extension for a data file is its file number encoded as a two digit base 24 number.  For file numbers 512 through 2047, the file number mod 512 is used to encode the first two digits as a two digit base 24 number, and then an additional third digit is added to the extension, as follows:

Data File Numbers

Additional Third Digit

512 through 1023


‘r’

1024 through 1535

‘s’

1536 through 2047

‘t’

The following examples illustrate:

Data File Number

Data File Name

1



xxx.01

2



xxx.02

512



xxx.00r
(512 mod 512 is 0)

513



xxx.01r
(513 mod 512 is 1)

1024



xxx.00s
(1024 mod 512 is 0)

1025



xxx.01s
(1025 mod 512 is 1)

1536



xxx.00t
(1536 mod 512 is 0)

1537



xxx.01t
(1537 mod 512 is 1)

3.7.4 Rollback Log Files

The rollback log files are used to log blocks of the database.  The control file is actually also a rollback log file, except for its very first block (see explanation above).  It is considered to be rollback log file number zero.  If this file fills up because of a very large transaction (a circumstance that will be very rare), additional rollback log files will be created.  These additional rollback log files reside in the same directory as the control file, and will have the same xxx name as the control file, but different extensions.  Each additional rollback log file has a number that is encoded into its extension.

3.7.4.1 Naming Convention

The maximum number of rollback log files is 2049  -- file number 0 (the control file), and file numbers 2048 through 4095.  The file name for file number zero is, of course, xxx.db.  Additional rollback log files (2048 through 4095) use the file number mod 512 to encode a two digit extension (base 24 format described above), and then add on a third digit as follows:

Rollback Log File Number

Additional Third Digit

2048 through 2559


‘v’

2560 through 3071


‘w’

3072 through 3583


‘x’

3584 through 4095


‘z’

Below are some examples:

Rollback Log File Number

Rollback Log File Name

2048




xxx.00v
(2048 mod 512 is 0)

2049




xxx.01v
(2049 mod 512 is 1)

2560




xxx.00w
(2560 mod 512 is 0)

2561




xxx.01w
(2561 mod 512 is 1)

3072




xxx.00x
(3072 mod 512 is 0)

3073




xxx.01x
(3073 mod 512 is 1)

3584




xxx.00z
(3584 mod 512 is 0)

3585




xxx.01z
(3585 mod 512 is 1)

3.7.5 Maximum Data File and Rollback File Sizes

The maximum file size for data and rollback files is 0xFFFC0000 bytes (almost 4 gigabytes).  Because databases allow up to 2047 data files, database capacity is almost 8 terabytes.  This will always be the case for newly created databases.  However, databases that are converted from a prior version may not be able to have a maximum file size of 0xFFFC0000.  This would happen if the database already has more than one data file (xxx.02, xxx.03, etc.) at the time it is converted.  In this case, FLAIM has to set the maximum file size to the old limit, which is 0x7FFFF0000 (about 2 gigabytes).  With 2047 data files, this still increases the database capacity to almost 4 terabytes.

Note on the reason for choosing 0xFFFC0000 as the new maximum file size:  This odd number was chosen because of a bug that was discovered in the NetWare legacy file system that only allows a file to grow to one block less that 0xFFFFFFFF when operating in direct I/O mode. Assuming a block size of 64K (normal for most NetWare legacy file systems), this means we could have had a maximum of 0xFFFF0000.  However, since we do not know what the maximum possible block size is, we had to assume that there was a chance it could be more than 64K on some systems, but would probably never be more than 256K - thus the limit of 0xFFFC0000 - which is 256K less than 0xFFFFFFFF.

3.7.6 Roll Forward Log Files

FLAIM logs the operations of transactions to a roll-forward log.  Roll-forward log files are used to recover transactions after a system failure and when restoring a database from backup.

3.7.6.1 Naming Convention

Roll-forward log files are stored in a subdirectory called xxx.rfl.  Unless otherwise specified by an administrator, this subdirectory is located in the same directory as the other database files (xxx.db, xxx.01, etc.).  If an administrator specifies a different directory for the roll-forward log files, an xxx.rfl subdirectory will still be created within the specified directory. For example, if an administrator specified sys:\rflfiles as the directory for roll-forward log files, FLAIM would create an xxx.rfl subdirectory:

sys:\rflfiles\xxx.rfl.

Roll forward log files in the xxx.rfl subdirectory will be named as nnnnnnnn.log, where nnnnnnnn is a hex number that is the log file's sequence number.  Thus, log file number 1 is named 00000001.log, log file number 2 is named 00000002.log, and so forth.

3.8 Data Integrity and Transactions

It is desirable that database operations be performed in such a way as to preserve logical database integrity.  However, it is not always possible to leave the database in a logically consistent state after a single update.  Multiple update operations may be required before consistency is restored.  Thus, in order to preserve consistency, a multi-operation transaction must be atomic; that is, all of the operations in the transaction must either complete or none of them must complete.  This allows the database system to support a more complex notion of database integrity than it otherwise could. 

3.8.1 Checkpoint

A checkpoint brings the on-disk version of the database up to the same coherent state as the in-memory (cached) database.  FLAIM attempts to do a checkpoint whenever there are periods of minimal update activity on the database.  In this case, FLAIM acquires a lock on the database and does as much work as possible until either the checkpoint completes or another thread wants to update the database.

To prevent the on-disk database from becoming too out of sync, there are conditions under which a checkpoint will be forced even if threads are waiting to update the database.  First, if the checkpoint thread has not been able to complete a checkpoint within a specified time interval (default is three minutes), a checkpoint will be forced.  Second, a checkpoint will always be forced when FLAIM is told to shut down.  Third, I/O errors or out-of-disk conditions on the RFL volume will cause a checkpoint to be forced.  Forcing a checkpoint helps to shorten the amount of time it takes to recover the database after a system failure.

3.8.2 Transactions

FLAIM provides two types of transactions, update and read.

3.8.2.1 Update Transaction

An update transaction allows an application to read and update data.  Until a transaction has been committed, none of the operations performed during the transaction are made permanent in the database.  Furthermore, changes to the database are not visible to other concurrent transactions.  If an update transaction is aborted, the changes made to the database during the transaction are undone (rolled back).

3.8.2.2 Read Transaction

A read transaction is a transaction where only read operations are allowed.  This type of transaction provides a read-consistent view of the database, which can be logically viewed as a snapshot of the database taken at the start of the transaction.  In effect, updates made by other concurrent processes that have not committed before the start of the read transaction are not visible from within the transaction.  In a concurrent environment, a read transaction is executed so that it never blocks other read or update transactions.

Maintaining a read-consistent view of the database requires FLAIM to keep multiple versions of database blocks and records in the database caches.  Each prior version of a block and/or record is kept until it is no longer needed by any active read transaction.

3.8.2.3 Transaction Failures

There are two types of transaction failures.  The first type of failure occurs when the application executing the transaction discovers an error that makes it impossible to continue the transaction.  Upon detecting the error, the application can request that FLAIM abort the transaction.  FLAIM will then undo (or rollback) all operations that were performed within the transaction.

The other type of transaction failure occurs when the application that is performing the transaction terminates before committing or aborting the transaction, thus leaving the effects of a partially completed transaction in the database.  Such transactions are sometimes called “dead” transactions because the application that created the transaction has terminated without specifying a final disposition for the transaction.  Dead transactions may be the result of external events over which the application has no control (CPU failures, etc.), or they may be the result of faulty application code.  Whatever the reason, FLAIM provides for the automatic detection and rollback of dead transactions.

3.8.2.3.1 Rollback Logging

When updated blocks are written to disk, FLAIM must first write the prior versions of the blocks to a rollback log. Rollback logging has three primary purposes: 1) to undo a transaction when it aborts, 2) to recover a database to its last checkpointed state when doing database recovery after a system crash, and 3) to maintain read-consistent views of the database for read transactions.

To ensure that the rollback log can be used for recovery after a system failure, the state of the database and the rollback log after any single write must be such that a consistent (checkpointed) state can be restored if a failure were to occur during or after that write.

3.8.2.3.2 Roll-Forward Logging

FLAIM logs the operations of each update transaction to a roll-forward log.  Roll-forward log files are used to recover transactions after a system failure and when restoring a database from backup.

FLAIM is able to operate in two modes with respect to the roll-forward log.  In the default mode, the log is truncated every time a checkpoint is completed, since the log is no longer needed for recovery.  This mode allows applications that do not need continuous backup capabilities to conserve disk space. 

The other mode allows transactions logged to the roll-forward log be kept indefinitely.  When this mode is employed, multiple log files are utilized instead of just one.  Roll-forward log files are not reset and reused when checkpoints are performed.  Instead, the roll-forward log continually grows.

For all practical purposes, a single file with a 64-bit address space would be more than adequate for thousands of years worth of transactions, given the transaction rate we can realistically sustain.  However, there are a couple of reasons it is not practical or useful to simply keep growing a single file, even one with 64-bit capacity.  First, not all operating systems support 64 bit files (NetWare’s legacy file system only allows 4 gigabytes per file). Second, in the design of hot continuous backup, it was desirable that an administrator be allowed to move older portions of the roll-forward log to tape or some other backup media, thus conserving disk space on the volume where the roll-forward log files are kept.  To achieve this, the roll-forward log is broken into multiple files.  Each log file has a sequence number.  The sequence number is written into a header within the file and is also encoded into the log file's name.

For recovery after a non-catastrophic event, only the RFL entries since the last checkpoint are needed.  For recovery after a media failure, requiring a backup and the RFL to be used, only the RFL entries logged since the backup are needed.  In short, only a subset of the RFL is needed to allow recovery in either case, thus allowing obsolete portions of the RFL to be removed as needed to reduce its footprint.  FLAIM provides mechanisms for an application to identify and remove sections of the log that are no longer relevant.

3.8.2.3.3 Recovery

In order to recover from a system failure, a mechanism for undoing the effects of partially completed transactions is required.  When FLAIM performs recovery, it uses the rollback log first to recover the database to its last checkpoint.  Subsequently, the transactions in the roll-forward log are replayed to recover the database up to the last committed transaction.

Database recovery is idempotent.  This means that if a crash occurs during the recovery, the process can be repeated until the database is successfully recovered.  During recovery, occasional checkpoints will be performed so that if a failure happens during the recovery process, the recovery can be resumed without having to re-start from the beginning.

3.8.3 Concurrency Control

The goal of concurrency control is to ensure that operations being executed at the same time by different applications do not interleave in such a way as to compromise database integrity.  Because transactions are defined as the unit of work that transforms a database from one consistent state to another, it is necessary to address concurrency issues in the context of transaction processing.

Individual transactions that run in isolation should always leave the database in a consistent state.  In practice, it is usually desirable to allow many transactions to run concurrently.  However, if the various operations of the different transactions were allowed to interleave indiscriminately, serious errors may result that could leave the database in an inconsistent state.  The fundamental concern of database concurrency control is to ensure that concurrent execution of transactions does not result in a loss of database consistency.  This means that the effect of interleaving the operations of multiple concurrent transactions should be the same as running the transactions serially.

3.8.3.1 Locking

In FLAIM, locking is the technique used to coordinate multiple update transactions.  Locking is not used for read transactions.  Update transactions do not block read transactions, read transactions do not block update transactions, and read transactions do not block each other.  The only transactions that block each other are update transactions.  At present, the locking granularity is at the database level.  Thus, when an update transaction is started, other updates will be held off until the transaction commits or aborts.

3.8.3.1.1 Lock Wait Period

When two update transactions contend for the database lock, one is granted the lock and the other is put into a queue to wait for the lock.  An application may specify a lock wait period at the beginning of a transaction.  The lock wait period indicates the number of seconds that FLAIM should allow the transaction to wait for the lock.  If the transaction does not obtain the lock within the specified amount of time, the transaction is removed from the lock wait queue and automatically aborted.

3.8.3.1.2 Deadlock Prevention

A deadlock can occur when two or more threads try to obtain locks that are already held by each other.  FLAIM prevents deadlock by aborting an update transaction whenever it is denied a lock request.

3.8.3.2 Many Readers / One Writer

FLAIM places no restrictions on the number of concurrent readers that can access a database.  It is impossible for readers to interfere with each other because they do not modify the database.  Whenever an application knows that a transaction will only perform read operations, a read transaction should be used instead of an update transaction.  This improves concurrent access to the database.

3.8.4 Backup and Restore

A basic, no-frills backup solution requires that all updates to the database be held off while the backup runs.  This could be as simple as shutting down the database server and copying the files to a backup location, or to be slightly more sophisticated, the database server could continue to run in a read-only mode (after all dirty cache is flushed to disk) while the files are copied to a backup location.  For most database deployments, this type of backup is generally not acceptable.

The next level of sophistication, hot backup, refers to a backup that is performed while other concurrent operations are allowed to execute against the database.  This type of backup results in a snapshot in time of the database, capturing all committed transactions at the time of the backup.  All modifications made to the database during the backup are excluded.

A hot backup allows for reasonable protection of the data in the database, while also allowing the database to remain fully on-line for the duration of the backup.  The drawback is that changes made to the database between backups are not protected against catastrophic failure.  This could mean the loss of several hours, or even days, of database updates depending on when the last backup was made.  For some deployments, this risk of partial data loss is unacceptable.

Hot, continuous backup extends the concept of a hot backup by providing a mechanism for protecting changes to the database made between backups.  Typically, this is accomplished by preserving roll-forward log (RFL) files, thus maintaining a complete record of changes made to the database since the last hot backup.  These log files are typically stored on a device (disk, tape, etc.) separate from the device that hosts the database.

3.8.4.1 Backup

FLAIM supports three different types of backups:  Full, Incremental, and Continuous.  All backup operations take place while the database is on-line, without blocking concurrent transactions.

3.8.4.1.1 Full Backup

A full backup makes a complete copy of all data in the database that is committed as of the start of the backup.  It does this by starting a single read transaction (thus guaranteeing a read-consistent view of the database) and then streaming each of the blocks in the database out to the backup utility.  Since this type of database scan is a classic example of a cache-poisoning operation, the read transaction is started with a special flag that prevents it from using cache in a way that would cause it to be poisoned.  It is interesting to note that since block reads are done from cache when possible, it is likely that some of the blocks in the backup set will be newer than the corresponding database blocks on disk.

3.8.4.1.2 Incremental Backup

An incremental backup is similar to a full backup in that it is done within a single read transaction that scans every block in the database.  The difference is that an incremental backup only copies those blocks that have changed since the last backup (either full or incremental).

3.8.4.1.3 Continuous Backup

As discussed above, full and incremental backups are essentially snapshots of the database at the time of the backup.  Thus, transactions posted to the database after the start of the backup will not be recorded in the backup set.  Continuous backup overcomes this shortcoming by preserving the transactions written to the roll-forward log.  During a database restore, the transactions recorded in the roll-forward log can be applied to the newly restored database to bring it up to date with the last committed transaction.

3.8.4.2 Restore

A FLAIM database restore is done via a callback mechanism which allows the application to stream bytes from the backup media into FLAIM.  During a restore, FLAIM will first request data from a full backup.  Subsequently, FLAIM will request data from any incremental backups that are available.  And finally, if roll-forward logs are available, FLAIM will replay transactions until the database is up-to-date or until the restore is terminated.

3.9 Caching

FLAIM uses a two-level caching system: a block cache and a record cache.

3.9.1 Block Cache

The block cache stores in-memory images of the database blocks.  Each block in cache maintains a linked list of older and/or newer versions of the blocks that are cached.  This is essential for providing read consistency.

3.9.2 Record Cache

The record cache operates at a logically higher level than the block cache.  The items in the record cache are FLAIM records that have been extracted from database blocks.  Without the record cache, every record access would require FLAIM to re-construct the record from its corresponding elements in the data blocks of the database.  Because of the obvious inefficiency of reconstituting records every time they are needed, the records are placed in the record cache after their first non-cached access.  Once in cache, records can be returned by FLAIM without having to access database blocks.  Like block cache, items in the record cache may also have a linked list of older and/or newer versions of the records that are cached.

3.9.3 Cache Poisoning

Cache poisoning occurs when an item is inserted into cache and is subsequently removed from cache before any cache hits occur on that item.  Cache poisoning degrades performance, to the point that a severely poisoned cache usually performs slower than running without any cache at all.

The types of access patterns that poison a cache will depend on the algorithm used to determine which items to remove from a full cache.  Typical access patterns that cause cache poisoning in FLAIM are scans and cycles.  For example, database scans can iterate over more records and blocks than could fit in cache, while only visiting each item once.

FLAIM offers a non-poisoning mode for transactions.  In the case of a read transaction, newly added cache blocks are added to the least-recently used end of the cache.  Since the item at the LRU end may simply be replaced over and over, the rest of the cache remains undisturbed.  In the case of an update transaction, new blocks that are read from disk are also added to at the LRU end.  However, if a block becomes dirty during an update, it is relocated to the MRU end, since replacing a dirty block is more expensive than replacing a non-dirty block.  Also, whenever a cache hit occurs in non-poisoning mode, the item is transposed with its neighbor toward the MRU end.  This way, cache hits are promoted incrementally toward the MRU without poisoning cache.

3.9.4 Cache Performance Measurements

There are four types of cache measurements we can make: cache hits (how many times we have reused items from cache), cache looks (how many links we follow on the bucket collision chain to end up with a hit), faults (how many times we could not find an item in cache and had to read from disk), and fault looks (how many links we follow on the bucket collision chain only to end up with a fault).  The formula (cache looks/cache hits) * 2 gives us an average of how long our collision chains are (the factor of 2 comes from the fact that we would seek an average of halfway down the collision chain to reach a hit).  The formula (fault looks/faults) also gives us an average of how long our collision chains are, since every fault results in as many fault looks as there are collision links.

The primary metric by which cache performance should be measured is in the number of faults per unit of throughput.  Each cache fault results in an expensive I/O operation.  The cost of the I/O operation may vary from platform to platform and may become more expensive as CPU speeds increase and disk speeds stagnate, but will probably be equivalent to at least thousands if not hundreds of thousands of CPU instructions.  Efforts spent in reconfiguring a system's cache should be spent in trying to reduce the number of faults.  Increasing the cache hits on a system will net little gain unless there is a corresponding decrease in the number of faults over the same operation.

An administrator has many variables to work with when trying to optimize FLAIM database performance, including total amount of system memory, cache configuration, and access patterns.  Adding more memory may not always help performance if the access pattern results in a cache poisoning.  Allowing FLAIM to occupy more cache may not help either, depending on the access pattern.  The best recommendation for administrators is to experiment with various tuning variables in a production environment.

3.9.5 Configuration

The FLAIM cache size can be configured to limit the amount of memory used.  The size can be specified as either a hard limit or a dynamically adjusting limit.

3.9.5.1 Hard Limit

A hard limit, put simply, is a fixed maximum number of bytes that FLAIM may use for cache.  The number, once set, will not change unless a new cache size is explicitly set.  A disadvantage to using a hard cache limit is that if the system RAM availability changes for some reason (e.g., a memory upgrade on the server), the cache size will not adapt automatically.  A new limit would have to be specified to take advantage of the additional memory.

3.9.5.2 Dynamic Limit

In an attempt to avoid problems associated with a static cache size, dynamically adjusting limits were developed.  Dynamically adjusting limits allow the user to specify a certain percentage of available memory to be used for cache.  Available memory is defined as RAM that is not currently allocated to any process plus the RAM which FLAIM is using for cache at that point in time.  In addition to specifying the percentage of available memory to use, the user indicates a lower and upper bound for how many bytes cache should consume.  The lower bound is expressed as a number of bytes.  The upper bound is expressed either in terms of a maximum number of bytes to use or in terms of a minimum number of bytes to leave available on the system.

In order to calculate the actual cache size with the dynamically adjusting limit, the amount of available memory is computed, and the user-specified percentage of that number is computed.  Next, that result is compared with the upper bound, and the smaller of those two numbers is used.  The final step is to compare that result with the lower bound, and the larger of those two numbers is used as the cache size.

At a certain time interval, known as a cache adjust interval, FLAIM will perform the above calculations again, and compute a new cache limit.  The default cache adjust interval is 15 seconds but the user may configure it differently if desired.

The primary disadvantage of a dynamically adjusting limit is its complexity, which results in a larger user support cost.  Users want a simple explanation for how the dynamically adjusting limit works, and a simple formula to compute the optimum configuration values.  Unfortunately, the system is inherently complex, and the optimum values for any given system can only be learned by trial and error.  Therefore, users wanting to use this feature must be willing to spend adequate time and resources learning about and tinkering with dynamically adjusting cache limits.

3.9.5.3 Distribution

Cache is divided between record cache and block cache. The default split is 50% record cache and 50% block cache but the user may modify this, if desired.  We wish to note that our performance tests have yet to reveal any record cache/block cache divisions that are clearly superior to the default 50/50 split.

3.9.5.4 Extended Server Memory

TBD

Extended server memory is any memory installed in a machine running a 32-bit operating system that is above the On 32-bit platforms with more than 4 gigabytes of RAM, FLAIM 

3.9.5.5 Issues

The maximum amount of memory that can be used for cache on a system is determined by several factors.  Obviously, a certain amount of physical RAM will be consumed by the OS, other processes running on the system, and parts of the FLAIM system unrelated to cache.  The maximum size of the platform pointer type and FLMUINT type may confine the addressable memory space.  For example, if a system's void * or FLMUINT is 32 bits wide, the maximum addressable memory will be 232 bytes or approximately 4 GB.  In addition, the OS may impose limitations on how much physical RAM it will allow a process to allocate.  For example, most versions of Windows limit processes to 2 GB; NetWare has a limit of approximately 3 GB.

The memory manager is another factor that affects cache.  For example, NetWare's memory management system allocates pools of memory for each process.  When a NetWare process frees memory, the memory manager may delay (perhaps by several minutes) returning that memory back to the OS in order to optimize near-future allocations for that process.  Until that memory leaves the process' pool, NetWare will continue to report that memory as unavailable; this can limit the usefulness of the dynamically adjusting limit

Finally, paging FLAIM's cache to disk in a virtual memory environment will degrade performance.  Setting the cache size to some amount less than the amount of physical RAM may be the only  effective means of eliminating this problem if the platform does not allow the pages to be pinned in memory.

3.9.6 Cache Cleanup

A background thread, known as the monitor thread, periodically scans the FLAIM caches looking for items that are no longer needed.  These items are release and the memory allocated to them is returned to the system.

3.10 Database Maintenance

For a variety of reasons, computer systems are subject to failures.  These include disk crashes, power failures, software errors, and even sabotage.  Despite FLAIM’s proven stability, extensive experience has shown that there are many factors beyond FLAIM’s control that can cause database corruptions.  These include faulty disk array controller firmware, file system bugs, etc.  No database will ever be able to fully isolate itself from external problems that can cause corruptions.  Because of this, FLAIM provides mechanisms that allow corruptions to be detected and repaired.

3.10.1 Run-Time Data Verification

In the normal course of processing database operations, FLAIM provides capabilities for verifying data.

3.10.1.1 Block Checksumming

Whenever FLAIM writes a database block to disk, it calculates a checksum for the data in the block and stores the checksum in the block header.  As blocks are read from disk, this checksum is verified.  If the checksum is bad, an error is repored.

3.10.1.2 Block Sanity Checking

FLAIM provides four levels of block sanity checking.

3.10.1.2.1 No Sanity Checking

All sanity checks are disabled.  The checksum is still verified, however.

3.10.1.2.2 Basic Sanity Checking

FLAIM checks information in each block header for any anomalies.  It also traverses the physical elements of the block to ensure that they are correct.

3.10.1.2.3 Intermediate Sanity Checking

All of the basic checks are performed.  In addition, FLAIM verifies that the keys in index blocks are in ascending order and that DRNs in container blocks are in ascending order.

3.10.1.2.4 Extensive Sanity Checking

All of the intermediate checks are performed.  In addition, reference sets in index blocks are verified for consistency and the fields in each element of container blocks are checked to ensure that records end on correct boundaries, that fields have valid data types, and that the contents of fields appear consistent with their data types.

3.10.2 Database Check

In addition to the continuous run-time data verification mechanisms that are built into FLAIM, an API for performing a comprehensive on-line database check is provided.  There are two levels of checking available: physical checking and index checking.  Both can be performed without requiring exclusive access to the database; both update and read transactions may operate concurrently with a database check.

3.10.2.1 Physical Check

The physical check performs operations similar to the block sanity checks discussed earlier, but provides a more detailed check than is possible with the simple sanity checks.  A comprehensive physical check is able to verify relationships between blocks as well as information within blocks.

3.10.2.2 Index Check

A structurally sound database may still have logical errors, generally due to code errors in the indexing code (which are rare).  The index check is used to verify that all records that are referenced from indexes are present and generate the correct keys, and that there are no extraneous keys in the indexes.

3.10.3 Database Rebuild (Salvage)

A database rebuild operation attempts to salvage data from a damaged database.  The first thing that a rebuild must do is determine the database block size.  Once determined, the rebuild will create an empty destination database for storing the recovered records.  The dictionary container in the source database is dredged to extract all usable dictionary definitions, which are added to the destination database.  Finally, the rebuild tries to extract records from the source database and adds them to the destination.  Note that the rebuild does not try to recover index keys; these are re-created automatically in the destination database by virtue of the fact that the index definitions from the source database were added to the destination’s dictionary.

3.10.4 Space Reclamation

Whenever a block becomes empty, FLAIM links the block into an available block list (or “avail” list).  Subsequently, if FLAIM needs to create a new block, it will first look in the avail list for a block before extending the database.  In certain instances, it may be desirable to have blocks in the avail list returned to the file system to reduce the footprint of a database.  FLAIM provides a function for reorganizing blocks so that free space can be returned to the file system.

The space reclamation function can be performed on-line, without requiring exclusive access to the database.  Update operations, but not reads, are prevented while a reclamation operation is in progress.  However, the reclamation function allows the specification of the maximum amount of unused space to be reclaimed.  Typically, it is best to reclaim small chunks at a time by making successive calls to the reclamation function instead of trying to reclaim all unused space in one call.  This helps to minimize interference with normal update operations.

4 Appendix A – Dictionary Definition Records

4.1 Field Definition Record

The following record is used to define fields in the data dictionary.

0 field <name>

1 type  {context | number | text | binary | blob}

[ 1 state  { checking | unused | purge}]

Notes:

checking:  User request to determine if field is used.  This is done by calling FlmDbSweep.

unused:  Field is not used and may be deleted.  FlmDbSweep will set this state if it discovers that the field is not used.  If a field subsequently becomes used, this state will be changed back to active.

purge:  Field is to be deleted.  If an attempt is made to use the field in a record update (add, modify, or delete), the update will fail.  FlmDbSweep will remove all usages of the field and then delete the field definition record.  NOTE: A field in this state may still have other dictionary records that reference it (such as an index definition).  It is up to the application to fix these situations.  The typical way an application deletes a field is by marking the field as 'purge' and calling FlmDbSweep. 

4.2 Container Definition Record

The following record is used to define containers in the data dictionary.

0 container <name>

4.3 Index Definition Record

The following record is used to define indexes in the data dictionary.

0 index <name>

[ 1 container <ID> ] 

[ 1 language <language> ]

1 key [EACHWORD]

 

[ 2 base <field path> ]

[ 2 post ]

[ 2 positioning ]

[ 2 unique ]

{ 2 field <field path>}...

[ 3 case upper ]

[ 3 required ]

[ 3 use {eachword|substring|value|field} ]

[ 3 filter {minspace|nodash|nounderscore|nospace} ]

[ 3 limit <limit> ]

Following are some in-depth notes about particular parts of the index definition:

[ 1 container <ID> ]

This line, if not specified will default to DEFAULT_DATA_CONTAINER.

[ 1 language <language> ]

This line, if not given, will cause the default DB language to be used (the default language is one of the DB create options).  The choice of language will affect the collation order of the keys.  It may also affect the storage format used for the keys (for example, 1 byte per character is used for keys in US English, while 2 bytes per character is used for keys in Japanese, Chinese, Korean etc.)

1 key [EACHWORD]

The EACHWORD keyword, when applied to a key, will cause keys to be generated for each word in the field value.  This only makes sense for text fields.  Whitespace characters in the field value delimit each word.

[ 2 base <field path>]

The base keyword optionally specifies the beginning of the field path for this index.  In other words, any field paths given via { 2 field <field path>} will have the base <field path> automatically prepended to the given field path.

[ 2 post]

The post keyword defines a sorting order where keys will be sorted first in a case-insensitive manner, and if there are any ties to break, the tie-breaker will be to sort in a case-sensitive manner.  This is only relevant with compound indexes.  Note:  Lower-case sorts before upper-case.

[ 2 positioning ] 

The presence of the positioning keyword will cause FLAIM to store subordinate counts in each non-leaf node of the B-Tree.

[ 2 unique]

The unique keyword enforces that no duplicate keys will be allowed for the index.

{ 2 field <field path>}...

The <field path> outlines a path from lower-level field(s) to higher-level field(s).  The syntax for indexing fields 2.3.4 (where 3 is subordinate to 2 and 4 is subordinate to 3) is simply "2 3 4".  This will only generate keys for records containing fields which have a 2.3.4 field path.  Before the index is built, if the base keyword is present, its ID will be prepended to this field path.  Including more than one {2 field <field path>} statement in an index definition will result in a compound index.

[ 3 case upper ]

The default case-sensitivity of an index is case-sensitive.  Setting the upper option will cause a case-insensitive key to be generated.  This reduces the space each key occupies, since no case bits are needed.  It also optimizes queries for this field using case-insensitive operators, while incurring a penalty on queries using case-sensitive operators.

[ 3 required ] 

The required keyword will ensure that a key is only generated for the index if this field, plus all other required fields for the index are present.

[ 3 use {eachword|substring|value|field}]

The eachword keyword is discussed above, but in this case applies to only one field.  The substring keyword is discussed in an earlier section.  The value keyword is the default, and indicates that the field value should be indexed.

[ 3 filter {minspace|nodash|nounderscore|nospace}]

TBD

[ 3 limit <limit>] 

TBD

5 Appendix B – International Languages

Within an index definition, the user may specify the “language” of the index.  The language defines what the collation sequence for TEXT fields within the index will be.  The default collation sequence for TEXT data is according to the US language.  Alternate collation sequences may be specified by selecting one of the following language codes:

AF
- Afrikaans

AR
- Arabic

CA
- Catalán

HR
- Croatian

CZ
- Czech

DK
- Danish

NL
- Dutch

OZ
- English – Australia

CE
- English – Canada

UK
- English – United Kingdom

US
- English – United States (this is the default)

FA
- Farsi

SU
- Finnish

CF
- French – Canada

FR
- French – France

GA
- Galician

DE
- German – Germany

SD
- German – Switzerland

GR
- Greek

HE
- Hebrew

HU
- Hungarian

IS
- Icelandic

IT
- Italian

JP
- Japanese

NO
- Norwegian

PL
- Polish

BR
- Portuguese – Brazil

PO
- Portuguese – Portugal

RU
- Russian

SL
- Slovak

ES
- Spanish

SV
- Swedish

YK
- Ukranian

UR
- Urdu

TK
- Turkey

NOTE: The collation sequence for each language is not necessarily unique.

The following rules describe the sort order (collating sequence) for characters in TEXT fields:

1. White space is sorted BEFORE all other characters

2. Characters such as "!@#$%^" etc. are sorted between white space and numeric characters.  These characters may vary from language to language.

3. Numeric characters are sorted next (sorted in numeric sequence).

4. Alphabetic characters (sorted from lowercase to uppercase with Greek characters 1st, Latin characters 2nd, and Cyrillic characters 3rd.) 

6 Appendix C – FLAIM Utilities

Several rudimentary utilities have been developed for testing and diagnostic purposes.  Even though they are a little rough around the edges, these utilities are still very useful. These utilities all use a windowed user interface known as FTX, or the FLAIM Text interface. FTX provides for many of the common graphical user interface widgets such as forms, menus, and pull-down lists and receives keyboard input, while still allowing the utilities to run on all supported platforms.

6.1 DBShell

DBShell, simply put, is a wrapper around another utility known as the Record Editor. The Record Editor allows a user to view and change the entries of the records in a database.

6.2 CheckDB

CheckDB calls FlmDBCheck and prints a detailed status information to the screen. CheckDB can also log the check results to a file if desired. 

6.3 Rebuild

Rebuild calls FlmDbRebuild and reports the number of corruptions and records recovered. Rebuild can also log results to a file if desired.

6.4 View

View allows a user to examine the database blocks at the lowest levels and edit blocks and checksums.

6.5 RFLView

RFLView allows a user to examine the Roll Forward Log files at the lowest levels and examine their headers, serial numbers, etc. but does not allow for editing.

7 Appendix D – Building the FLAIM Libraries

TBD

8 Appendix E – Sample Code

TBD
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