Skip to main content
  • The new GREEN working group gets ready for an energy efficient Internet

    The Getting Ready for Energy-Efficient Networking (GREEN) working group will explore use cases, derive requirements, and provide solutions to optimize energy efficiency across the Internet.

    29 Oct 2024
  • IETF Annual Report 2023

    The IETF Annual Report 2023 provides a summary of Internet Engineering Task Force (IETF), Internet Architecture Board (IAB), Internet Research Task Force (IRTF), and RFC Editor community activities from last year.

    25 Oct 2024
  • IETF 122 Bangkok registration open

    Registration is now available for the IETF 122 Bangkok meeting scheduled for 15-21 March 2025, which is the first time registration for an IETF meeting has been open before the preceding meeting registration has closed.

    25 Oct 2024
  • First Impressions from the IAB AI-CONTROL workshop

    The Internet Architecture Board (IAB) organized a workshop on 19-20 September 2024 to discuss issues around and possibilities for practical mechanisms that publishers of data on the Internet could employ to opt out of use by the Large Language Models and other machine learning techniques used for Artificial Intelligence (AI).

    24 Oct 2024
  • New Participant activities at the IETF: Major expansion coming for IETF 122!

    The IETF New Participants program has a long history of helping people just starting out in the IETF be more effective. Based on feedback from program participants over the past two years, and in consultation with the Internet Engineering Steering Group (IESG), the program will be significantly enhanced starting with IETF 122 Bangkok.

    22 Oct 2024

Filter by topic and date

Filter by topic and date

EDHOC - A new lightweight authenticated key exchange protocol provides improved security with less overhead for Internet-of-Things devices

5 Jun 2024

Ephemeral Diffie-Hellman Over COSE (EDHOC) is a very compact, lightweight authenticated key exchange protocol, providing state-of-the-art security including mutual authentication, forward secrecy and identity protection.

pexels-mhafetrey-2416657-4048177

Running an authenticated key exchange protocol over low-power Internet-of-Things radio technologies is challenging. These technologies often have Maximum Transmission Units (MTUs) on the order of several tens of bytes and very limited data rates, sometimes lower than dial-up modems used to access the Internet in the 1990s. What is more, the devices are also constrained in terms of the available memory and processing. EDHOC—described in the recently-published RFC 9528 and RFC 9529—enables state-of-the-art key exchange, for which we have formal security proofs, yet avoids message fragmentation even in the presence of these radio constraints thanks to small message sizes. EDHOC implementations require a minimal amount of code and data memory.

EDHOC is designed to be a security enabler in the next generation of Internet-of-Things products and can be used for instance in appliances for home and businesses. One example of a company working in this area is ASSA ABLOY, who offer a broad range of access solutions where EDHOC is considered as a suitable authentication component enabling modern standards-based IoT integrations that are power efficient, fast and lightweight.

EDHOC is built on proven technologies. It uses the Concise Binary Object Representation (CBOR) encoding for message compactness, without sacrificing on extensibility. It leverages the CBOR Object Signing and Encryption (COSE) algorithms to provide cryptographic agility and reduce the amount of new code that is required on constrained devices. EDHOC also uses COSE for identification of authentication credentials, including COSE keys, CBOR Web Token (CWT), CWT Claims Set (CCS), X.509, and CBOR-encoded X.509 (C509) certificates. EDHOC’s authentication credentials, e.g. certificates, need not be transported over the air, a feature that enables significant byte savings. Through this effective usage of Internet technologies standardized for constrained environments, and careful cryptographic design, EDHOC guarantees mutual authentication of the two endpoints and the confidentiality of the established shared secret. This secret can then be used by other protocols such as Object Security for Constrained RESTful Environments (OSCORE) or COSE for data encryption.

Following up on the successful standardization stories of TLS 1.3 and Messaging Layer Security (MLS), particular attention during the standardization process in the LAKE working group was given to formal verification of protocol security. The academic community was invited to study the protocol and responded with more than 5 independent studies. The open process gives assurance that the protocol is sound.

Screenshot 2024-06-03 at 16.22.11

EDHOC is already widely implemented. Optimized implementations for microcontrollers exist in Rust and in C, and in Java for non-constrained systems. Implementations have been interop-tested through several interop events organized by the LAKE working group. More implementation effort is always welcome and any feedback should be communicated to the LAKE working group, which is continuing the maintenance of EDHOC by compiling implementation experience, defining application profiles and adding security applications through the integration point defined by the base protocol.


Share this page